The present invention generally relates to scrap shredders, and more specifically, a scrap material shredder that can variably adjust operating speeds based upon a density of the scrap material being processed within the assembly.
Agglomerated scrap material can be a natural byproduct of metal machining operations. Typically, the agglomerated scrap material is laden with liquid used to lubricate and cool cutting tools performing the machining operations. It is important to recover and reuse as much of the liquid as possible since the liquid is expensive, and further since it can be difficult and expensive to dispose of scrap that includes the liquid in an environmentally safe manner. Additionally, much of the scrap can be agglomerated in portions of scrap that have various densities that are to be separated for disposal. These various densities of the scrap material can contain varying amounts of material that need to be recovered for reuse.
According to one aspect of the present invention, a shredding apparatus for separating scrap material includes a conveyor that delivers agglomerations of metal scrap from a collection area to a conveyor outlet. A shredding tool is positioned proximate the conveyor outlet. The shredding tool is rotationally operable between a plurality of shredding speeds and wherein the shredding tool includes a plurality of teeth that shred the agglomerations of metal scrap for delivery to an outlet section. A variable speed motor is coupled with the shredding tool. The variable speed motor rotationally operates the shredding tool to selectively define the plurality of shredding speeds. A sensor is positioned proximate one of the shredding tool and the conveyor, wherein the sensor monitors a density of the agglomerations of metal scrap. A controller is in communication with the sensor and the variable speed motor. The sensor communicates the density of the agglomerations of metal scrap to the controller and the controller modulates an operational speed of the variable speed motor based upon the density of the agglomerations of metal scrap.
According to another aspect of the present invention, a shredding apparatus for separating scrap material includes a screw-type conveyor that delivers agglomerations of metal scrap from a collection area to a conveyor outlet. A shredding tool is positioned proximate the conveyor outlet. The shredding tool includes a plurality of teeth that shred the agglomerations of metal scrap for delivery to an outlet section. A sensor is positioned proximate one of the shredding tool and the screw-type conveyor. The sensor monitors a density of the agglomerations of metal scrap within the screw-type conveyor to define a sensed density. A variable speed motor is coupled with the shredding tool. Operation of the variable speed motor rotationally operates the shredding tool to selectively define a plurality of operating speeds of the shredding tool, wherein the sensed density of the agglomerations of metal scrap defines the operating speed of the variable speed motor and the shredding tool.
According to another aspect of the present invention, a method of shredding scrap material includes delivering agglomerations of metal scrap from a collection area to a conveyor outlet via a screw-type conveyor and detecting the density of the agglomerations of metal scrap within the screw-type conveyor using a sensor. The method also includes modulating a speed of a motor in response to a sensed density of the agglomerations of metal scrap, wherein the speed of the motor is modulated before a blockage reaches the conveyor outlet. The method also includes shredding the agglomerations of metal scrap using a shredding tool located proximate the conveyor outlet, wherein the sensor is one of a decibel sensor and a torque sensor that is attached to the shredding tool and discharging shredded metal scrap from the shredding tool to a scrap separator.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
As exemplified in
Referring again to
During operation of the shredding apparatus 12, various densities of the agglomerations 14 will be moved through the conveyor 22 and toward the shredding tool 10. During this movement of the agglomerations 14, and other loose particles of scrap material 16, the sensor 36 monitors the varying density 38 of the scrap material 16, including the various agglomerations 14. Where the agglomerations 14 of scrap material 16 have a higher density 60, the sensor 36 cooperates with the controller 40 and the motor 34 to decrease the operational speed 44 of the motor 34 and the shredding speed 26 of the shredding tool 10. It has been found through investigation of the device that slower shredding speeds 26 of the shredding tool 10 tend to perform more efficiently at shredding agglomerations 14 having a higher density 60. Where the agglomerations 14 have a lower density 62, or where primarily loose scrap material 16 is present, the controller 40 and the sensor 36 cooperate to operate the motor 34 at a higher operational speed 44 and the shredding tool 10 at a higher shredding speed 26. The higher operational speed 44 has been shown to be proficient at separating agglomerations 14 having a lower density 62 or portions of the scrap material 16 having a generally lower density 62. Operation of the sensor 36 in connection with the controller 40 and the motor 34 will be described more fully below.
Referring again to
Referring again to
According to various aspects of the device, where the sensor 36 is a torque sensor, the torque sensor can be attached to a portion of the auger 70, the shredding tool 10, or sensors 36 can be coupled with each. During operation of the shredding apparatus 12, agglomerations 14 having a higher density 60 can cause the auger 70 and/or the shredding tool 10 to experience a greater resistance 90 to rotational movement. As the sensor 36 detects or measures this resistance 90 to rotational movement, the sensor 36 communicates to the motor 34, typically via the controller 40, that an agglomeration 14 having a higher density 60 is moving through the shredding apparatus 12. The controller 40 communicates with the auger 70 and/or the motor 34, to slow the rotational operation of the auger 70 and/or the shredding tool 10. Slowing the rotation of the shredding tool 10 may also, in various embodiments, increase the torque 92 applied by the shredding tool 10 against the agglomerations 14 of scrap material 16 having a higher density 60.
In various aspects of the device, agglomerations 14 of scrap material 16 having a higher density 60 may also cause greater vibration 100 or other noise within the shredding assembly. Accordingly, the sensor 36 may take the form of a vibration sensor or noise sensor, such as a decibel sensor, that can detect these added vibrations 100 and/or noises that may be experienced when an agglomeration of scrap material 16 having a higher density 60 is moved through the conveyor 22 toward the shredding tool 10. These vibrations 100 or noises can increase such that the vibrations 100 or noises are indicative of agglomerations 14 having the second higher density 60.
As exemplified in
In conventional scrap shredders, higher densities of metal scrap are addressed by stopping the assembly and backing up or reversing the flow of the assembly so that the agglomeration of metal scrap can be removed, displaced, or otherwise manipulated so that the scrap shredder can continue to process the material. By reversing the flow of the scrap material, the flow for processing the scrap material is slowed significantly. Additionally, these conventional shredders typically wait for a blockage to reach the tool for the apparatus before the system is reversed. In such an instance, the tool may be completely blocked or totally stopped as a result of the increased density of the scrap being processed. Removal of these blockages may take significant amounts of time that can further delay the processing of scrap by the conventional apparatus.
Referring again to
According to various aspects of the device, the sensor 36 can modify or assist in modifying the operational speed 44 of the motor 34 and can also modify the delivery speed 110 of the conveyor 22. Accordingly, in addressing various agglomerations 14 of scrap material 16, the shredding tool 10 may maintain a consistent shredding speed 26 while the conveyor 22 may increase and decrease the delivery speed 110 in response to various agglomerations 14 of scrap material 16 having varying densities 38. The sensors 36 may also be utilized to vary the shredding speed 26 of the shredding tool 10 during use of a consistent delivery speed 110 of the conveyor 22 for delivering the agglomerations 14 of scrap material 16 toward the shredding tool 10. It is contemplated that both the shredding tool 10 and the conveyor 22 can be adjusted or modulated in velocity. By way of example, and not limitation, where a flow of scrap material 16 having a lower density 62 is moved through the shredding apparatus 12, the conveyor 22 and the shredding tool 10 may be increased in velocity to provide more expedient processing of the scrap material 16. Conversely, where the agglomerations 14 of scrap material 16 have agglomerations 14 of a higher density 60 that are being processed, the shredding tool 10 and the conveyor 22 may each be slowed to better process the agglomerations 14.
In various aspects of the device, as exemplified in
Referring again to
Referring now to
According to the method 400, the sensor or sensors 36 are used for detecting the density 38 of the agglomerations 14 of metal scrap 18 within the screw-type conveyor 22 (step 404). The method 400 also includes a step 406 of modulating the operational speed 44 of the variable speed motor 34 in response to a sensed density 42 of the agglomerations 14 of metal scrap 18. The operational speed 44 of the motor 34 is modulated such that the modulation occurs before the agglomeration 14 of metal scrap 18 having a higher density 60 reaches the conveyor outlet 24 and causes a potential blockage of the shredding apparatus 12. To assist in modulating the operational speed 44 of the variable speed motor 34, a controller 40 placed in communication with the sensor 36 and the variable speed motor 34 can be utilized. During operation of the shredding apparatus 12, the sensor 36 communicates a sensed density 42 of the agglomerations 14 of metal scrap 18 to the controller 40. The controller 40 uses the sensed density 42 from the sensor 36 to modulate the operational speed 44 of the variable speed motor 34 based upon the sensed density 42 of the agglomerations 14 of metal scrap 18. The sensed density 42 delivered to the controller 40 can result in the controller 40 increasing or decreasing the operational speed 44 of the variable speed motor 34, and, in turn, the shredding tool 10.
Various testing of the device has shown that an increased shredding speed 26 of the shredding tool 10 is proficient at shredding agglomerations 14 of metal scrap 18 having a lower density 62. Also, testing has shown that a lower operational speed 44 or slower shredding speed 26 of the shredding tool 10 is proficient at processing agglomerations 14 of the metal scrap 18 having a higher density 60. It is contemplated that depending upon the material being processed, a high-operational speed 44 or high shredding speed 26 of the shredding tool 10 may be useful in processing agglomerations 14 of a higher density 60 of a particular material. Conversely, agglomerations 14 of a lower-density 62 may be better processed utilizing a low operational speed 44 of the variable speed motor 34 and the shredding tool 10. The appropriate speeds for processing the various agglomerations 14 of scrap material 16 may vary depending upon the character and quality of the scrap material 16 being processed. The shredding apparatus 12 may be utilized for processing metal scrap 18, as well as other materials that may include, but are not limited to, wood, plastic, composite materials, combinations thereof, and other similar materials.
Referring again to
According to various aspects of the device, the shredding apparatus 12 utilizing the variable speed motor 34 that can be controlled by one or more sensors 36 can be useful in processing agglomerations 14 of metal scraps 18 or other scrap material 16. By using the sensors 36 proximate the shredding tool 10 and/or within the conveyor 22, the variable speed motor 34 can be modulated to provide an appropriate operational speed 44 for processing agglomerations 14 of scrap material 16 having varying densities 38. By varying the operational speed 44 of the variable speed motor 34, and the shredding speed 26 of the shredding tool 10, blockages can be substantially prevented during processing of scrap material 16. By limiting or avoiding blockages, greater amounts of scrap material 16 can be processed over time. Additionally, reversal of the conveyor 22 for the shredding apparatus 12 can also be avoided by modulating the speed of the variable speed motor 34 to better process the agglomerations 14 of scrap material 16, having a higher density 60.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.