1. Field of the Invention
The current invention relates to a metal-sealing material-feedthrough. It further relates to usage as well as to a gas generator, airbag and belt tensioning device including an ignition device, comprehensively a metal-sealing material-feedthrough.
2. Description of the Related Art
Metal-sealing material feedthroughs are already known in various forms from the current state of the art. They are understood to be vacuum-tight seals of sealing materials, especially glass or synthetics to metal seals. In this type or arrangement the metals act as electrical conductors. We refer you to representative documentation U.S. Pat. No. 5,345,872, U.S. Pat. No. 3,274,937. Feedthroughs of this type are common in electronic and electrical engineering. The material used for sealing, especially glass, serves as an insulator. Typical metal-sealing material-feedthroughs are constructed such that metallic internal conductors are sealed into a pre-formed sintered glass component, wherein the sintered glass component or the glass tube is sealed into an outer metal component with the so-called base body. Preferred applications for metal-sealing material-feedthroughs of this type are for example ignition devices. One area of application is in airbags or belt tensioning devices in motor vehicles. In this instance the metal-sealing material-feedthroughs are a component part of an ignition device. In addition to the metal-sealing material-feedthrough, the entire ignition device includes an ignition bridge, the explosive agent, as well as a metal shrouding which tightly encloses the ignition mechanism. Either one or two, or more than two metallic pins may be inserted through the feedthrough. In one embodiment with one metallic pin the housing is grounded. In a two-pin embodiment one of the pins is grounded. The previously described ignition device is used especially for airbags or for belt tensioning devices in motor vehicles. Already known ignition devices of the aforementioned, or similar types are described in U.S. Pat. No. 6,274,252, U.S. Pat. No. 5,621,183, DE 29 04 174 A1, DE 199 27 233 A1, U.S. Pat. No. 5,732,634, U.S. Pat. No. 3,134,329, DE 34 15 625 A1, EP 1 225 415 A1, U.S. Pat. No. 3,971,320, EP 0 248 977 B1, US 2002/0069781 A1, DE 101 33 223 A1 as well as EP 1 491 848 A1 and EP 1 455 160 A1 whose disclosure contents are included in their entirety in the present application. The aforementioned ignition units include two metal pins. However, electronic ignition devices with a singular pin are also possible. The ignition devices which are known from the current state of the art include a metal base body or metal sleeve which is constructed as a pivoted component, or they include a base body of synthetic material. The metal base body has at least one feedthrough opening through which at least one metal pin is inserted. One fundamental problem in this embodiment is that this type of construction is material intensive and expensive. Also when constructed as a pivoted component the configuration of the pass through opening deviating from a circular cross section is possible only with additional costs. In addition, pivoted components are characterized by relatively large dimensions which is then reflected in a respectively necessary sizing of the entire ignition device.
Designs of ignition devices are known from EP 1 491 848 A1 which include a pair of electrodes arranged in an insulating material and a base body in the embodiment of a housing. In order to increase the resistance relative to the pressure created when the ignition is triggered and thereby in order to increase the ejection force, ways are provided on one of the components of the metal-sealing material feedthrough which interact with each other. These are provided either on the sealing material, the electrode or on the base body on the surface which is facing the neighboring element. The design on the base body includes at least one step, that is to say—a change in the cross section of the feedthrough opening wherein this causes an enlargement of the surface that is exposed to the pressure during the ignition process. There are no restrictions regarding the material choices for the base body so that, depending upon design, especially when constructed as a pivoted component, the already mentioned disadvantages also occur, which only intensify through the additional necessary inclusion of the required ways for the increase of the tensile force, extraction force, and/or ejection force.
A generic metal-sealing material-feedthrough is already known from EP 1 455 160 A1. This discloses a metal-sealing material-feedthrough which is described in a special design as a glass-to-metal-feedthrough, including one metallic base body through which at least one metal pin is inserted. If two metal pins are provided in a preferred design form then at least one of the two provides the ground connection to the base body at least indirectly, in other words, directly or indirectly through additional elements. In a design having two metal pins said metal pins are located parallel to each other. At least one of the metal pins is located in a feedthrough opening in the base body and is sealed relative to it through sealing material, such as in form of a glass slug. The base body is formed from a sheet metal element wherein in a first design form at least the feedthrough opening is created by a separation process, especially by punching. The base body itself is punched from a solid material. The final geometry of the base body however is achieved through a forming process, for example through deep-drawing. In a preferred design form the final geometry describing the outer contour and the basic geometry describing the feedthrough opening is produced at least by a separation process, especially punching. Final geometry means that no further forming processes will be conducted on this form. Basic geometry means that this either represents the final geometry if no further changes are required or that changes through ways of additional manufacturing processes, especially forming processes may be made, wherein the final geometry is achieved only following these additional processes. Ways are provided between the front and the back side in order to avoid a relative movement of sealing material in the direction toward the back relative to the inside circumference of the feedthrough opening, especially during ignition. The ways are an integral component of the base body or embody a structural unit with same. The manufacture of the base body by way of punching provides the advantage of short manufacturing periods and permits free forming, especially of the feedthrough opening. However, fabrication by way of punching is subject to limits with a view to individual material related parameters exceeding of which would render the fabrication uneconomical and which would also have a negative effect upon the available ejection force.
What is needed in the art is a metal-sealing material-feedthrough of the type mentioned at the beginning, including a base body which has at least one feedthrough opening which is obtained by punching and which is characterized by a high rigidity at low material- and labor expenditure and at the same time by high ejection forces. In addition, assembly errors which are a result of inaccurate coordination of the individual elements are to be avoided.
The inventive metal-sealing material-feedthrough includes at least one metal pin which is placed in a feedthrough opening in the base body in a sealing material, wherein the base body has a front and a back side. Ways are provided between the front and the back side in order to avoid a relative movement of sealing material in the direction toward the back relative to the inside circumference of the feedthrough opening.
Metal-sealing material-feedthrough openings can generally be characterized by the so-called ejection force and by the extraction force. The ejection force is that force which must be applied in order to eject the sealing material which is placed in the feedthrough opening of the metal-sealing material-feedthrough from said feedthrough. The level of the ejection force may be determined either hydrostatically or mechanically.
If the ejection force is determined mechanically then the surface of the sealing material is treated with a die wherein the die surface which presses upon the sealing material is smaller than the surface of the sealing material.
Alternatively, the ejection force may be measured hydrostatically. In this instance the sealing material is treated with a hydrostatic pressure, for example with water pressure and is then measured; wherein the sealing material is expelled from the feedthrough opening by said hydrostatic pressure.
The extraction force is that force which is required in order to pull the metal pin of the metal-sealing material-feedthrough out of the sealing material.
At least the feedthrough opening on the base body is produced by punching. In a further developed design form of the invention the entire base body, in other words the outside circumference of the base body, as well as the feedthrough opening may also be produced by punching. The entire base body is then constructed as a punched component.
The base body is configured so that the ratio between the thickness of the base body and the maximum dimension of the feedthrough opening vertical to the axis direction of the feedthrough opening is in the range of between and including 0.5 to 2.5. When considering the ratio of thickness D of the base body to the maximum dimension of the feedthrough opening after punching of the feedthrough opening, however before grinding of the feedthrough opening, then this ratio is preferably in the range of 0.6 to 2.5. When considering the ratio of thickness D of the base body to the maximum dimension of the feedthrough opening after a grinding process of the feedthrough opening, then this ratio is preferably in the range of 0.5 to 2.
In accordance with an embodiment, the ratio between the thickness D of the base body and the maximum dimension of the feedthrough opening vertical to the axis direction of the feedthrough opening after grinding is in the range of between and including 0.8 to 1.6, preferably 0.8 to 1.4, especially preferably 0.9 to 1.3, more especially preferably 1.0 to 1.2.
Thickness refers to the extent or dimension in height direction or direction of the extension of the feedthrough opening. The geometric axis of the feedthrough opening is determined depending on the construction of said feedthrough opening. In a symmetric design it corresponds to a symmetrical axis, otherwise to a theoretical center axis.
For applications in ignition devices for airbags base bodies having a thickness of between 1 mm and 5 mm, preferably 1.5 mm and 3.5 mm, especially preferably 1.8 mm to 3.0 mm, more especially preferably 2.0 mm to 2.6 mm are used. Even with consistently sized metal pins this represents a considerable saving in materials due to the smaller dimensions compared to the pivoted component which has thicknesses for example, of 3.2 mm to 5 mm, as well as providing an energy saving manufacturing process. In addition, the reduction in the support surface for the sealing material slug which is inherent with the reduction in the thickness can be compensated for with regard to its function, by simple measures which require almost no additional expenditure.
A base body with a thickness of between 1 mm and 5 mm, preferably 1.5 mm and 3.5 mm, especially preferably 1.8 mm to 3.0 mm, more especially preferably 2.0 mm to 2.6 mm, can be deformed under compression. The deformation under compression prevents a relative movement of the sealing material in a direction toward a back side of the base body of the metal sealing material feedthrough. This is due to the effect that due to the deformation a local bending stress at the front side and/or the back side of the base plate occurs. By the bending stress especially at the front side of the base plate the fixing material, especially the glass slug, within the feedthrough opening is fixed. In other words, the bending stress provides the feedthrough opening and the glass slug within the feedthrough opening with an additional force which is directed in general in parallel to the surface of the base body. This additional force increases the holding force of the glass slug within the feedthrough opening. This mechanism can be understood as if the diameter of the feedthrough opening would be locally reduced during the bending if no glass slug would be present in the feedthrough opening. In the presence of the glass slug, the diameter reduction is prevented, but the additional force additionally fixes the glass slug in the feedthrough opening. This inventive measure provides for a high hydrostatic pressure which must be applied in order to eject the fixing material, especially the glass slug. The hydrostatic pressure necessary to eject the glass slug can be even more increased in case of a conical feedthrough opening, with a smaller diameter at the back side than at the front side. This is due to the fact that in case of a conical shaped feedthrough opening a bending stress occurs at the front side as well as at the back side.
There are no limitations with regard to the cross sectional geometry of the feedthrough opening. However, a circular or oval cross section can be selected in order to achieve a uniform distribution of tension in the connection between the sealing material and the feedthrough opening. In a circular or oval cross section the diameter of the feedthrough opening is then in the range of 1.4 mm to 4 mm, preferably 1.4 mm to 3.5 mm, especially preferably 1.6 mm to 3.4 mm.
The diameter of the metal pin is for example 0.8 to 1.2 mm.
The metal-sealing material-feedthrough includes a metallic base body through which at least one metal pin is inserted. If two metal pins are provided, then at least one of the two provides the ground-connection to the base body at least indirectly, in other words, directly or indirectly through additional elements. In a design having two metal pins said metal pins can be located parallel to each other. At least one of the metal pins is located in a feedthrough opening in the base body and is sealed relative to it through sealing material, such as in form of a glass slug.
In order to account for the problem arising from fusing of the individual metal pin into a feedthrough opening and also for safeguarding against expulsion of the sealing material and metal pin entity, ways are provided to avoid a relative movement of sealing material in the direction toward the back side relative to the inside circumference of the feedthrough opening. These act as barbs and during relative movement in the direction toward the backside lead to a positive fit between the sealing material slug, especially a glass slug and the base body. They include for example at least one local narrowing of the feedthrough opening wherein this can be provided in the entire area of the inside circumference, with the exception of the front side of the base body.
The current invention provides for cost effective manufacturing processes and starting materials wherein the material usage is considerably reduced. The entire base body may also be constructed as an integral component into which the metal pin is fused by way of the sealing material, in other words for example by way of the glass slugs. An additional substantial advantage is that even under an increased load upon the glass slug—for example a pressure load—pushing the glass blob with the metal pin out of the feedthrough opening can probably be avoided. The entire embodiment when compared with a pivoted component is lower in height and assures a secure bonding of the glass slug in the base body, even during high ejection force.
It is however critical that the local narrowing of the cross section occurs in the area of the backside or between the back side and the front side, wherein however the front side is always characterized by a larger diameter. The cited ratio details always refer to the largest cross section or the largest dimension of the feedthrough opening. The dimensional reduction—resulting from the undercut—of the area adjacent to this vertical to the direction of axis of the feedthrough opening originating from the axis, or the difference between the dimensions of the largest and the smallest cross section is always in the range of between 0.05 mm to 1 mm, preferably 0.08 mm to 0.9 mm, preferably between 0.1 mm to 0.3 mm. Accordingly this dimension provides an enlargement of the surface at the inside circumference of the feedthrough opening which is sufficient to maintain the ratio between thickness and dimension of the feedthrough opening relative to a very small thickness and at the same time to increase the ejection force accordingly. If the feedthrough opening is circular for example, the largest dimension of a cross section is characterized by the diameter of the feedthrough opening. In the instance of an elliptical shape the largest dimension is the dimension of the large axis of the ellipse.
In accordance with another embodiment the second metal pin is placed or secured as a grounding pin to ground at the back side of the base body. This eliminates additional measures of having to ground a metal pin that is sealed into the base body with sealing material, or having to connect it electrically with the base body. In addition, only one pin then needs to be sealed into one feedthrough opening, providing a plurality of possibilities to securely seal the single pin completely in circumferential direction; and the possible connection area for the ground pin can be enlarged.
A glass slug, a ceramics slug, a glass-ceramic slug, a synthetic material, a high performance polymer or a glass/polymer mixture can be used as sealing material.
A plurality of possibilities exists for the specific development of the way for the prevention of a relative movement between sealing material and feedthrough opening, especially prevention of sliding out. These are characterized by measures on the base body and/or the metal pin. In the simplest form one would revert to measures on the base body which can be realized during manufacturing, especially during the punching process. In this context the feedthrough opening distinguishes itself by a change of the cross sectional progression between the back side and the front side. In the simplest form at least two areas of different inside dimensions are provided in an embodiment of a feedthrough opening that has a circular cross section with different diameters. The cross section change may occur in stages or progressively. In the latter scenario the feedthrough opening is conical between the front and the back, wherein it narrows toward the back side.
The ejection force can be significantly increased through the described measures that can be taken in the area of the feedthrough opening. In the examples according to the current invention including undercut, the hydrostatic pressure which must be applied in order to eject the glass slug is 1500 bar to 2500 bar, preferably 2000 bar to 2500 bar. Or, in other words, the force which must be applied mechanically upon the glass slug in order to eject the glass slug is 1750 N to 3000 N, preferably 2000 N to 3000 N.
The measures which are applied to the base body are normally further characterized by the provision of several recesses or protrusions. These form at least one undercut—originating from the backside—on the inside circumference of the feedthrough opening in the base body between backside and front side wherein the front side has no such undercuts. In a symmetrical embodiment of the feedthrough opening said feedthrough opening is characterized by three partial segments—a first partial segment which extends from the backside in the direction of the front side, a second partial segment adjacent to this and a third partial segment which extends from the front side in the direction of the back side. The second partial segment is characterized by smaller dimensions of the feedthrough opening than the first and the third partial segment. The first and the third partial segments are then characterized by identical cross sectional dimensions.
In embodiments having more than two segments of different dimensions, especially different diameters, methods are selected which are created by two-sided treatment of the base body. If the previously described designs are geared toward an asymmetrical arrangement of the feedthrough opening then a feedthrough opening design is selected in these arrangements having more than two segments which can be used as desired with regard to the installation position. This is shaped symmetrical, relative to a theoretic center axis which progresses vertical to the pin axis of the pin which is located in the base body and which extends in the center area of the base body. This means that the front and backside are interchangeable regarding their function. The thereby formed undercuts counteract possible movements of the sealing material slug in both directions.
An additional possibility to avoid relative movements between the sealing material slug and the feedthrough opening consists in the provision of a frictional connection between these. Normally, for example, the glass is inserted into the opening together with the metal pin. The glass and metal pin are heated, so that after cooling the metal shrinks onto the glass slug. The feedthrough opening generally represents essentially its final diameter after being punched. Naturally, the punched feedthrough opening may be further processed, for example ground without substantially altering the final diameter. The feedthrough opening may have a circular cross section. Other possibilities are feasible, for example an oval cross section.
In accordance with an advantageous further development measures are provided on the metal pin, in order to further prevent relative movement occurring under load between the metal pin and the sealing material. This may be at least one protrusion which extends in circumferential direction around the entire outside circumference of the metal pin. Alternatively, being optional or strictly pre-defined, this may respectively be protrusions or recesses extending over the entire outside circumference of the metal pin, such as firmly positioned protrusions located adjacent to each other and in circumferential direction. Due to measures taken on the metal pin the extraction force of the metal pin is in the range of 160 N to 380 N, preferably 300 N to 380 N.
The method for the fabrication of a base body of a metal-feedthrough is characterized in that in order to obtain the base geometry which describes the fundamental shape of the feedthrough opening for at least one metal pin it is punched from a sheet metal component. The end contour describing the outer geometry may be obtained by a separation process without tension-causing processing of a sheet metal component of pre-defined thickness. Both processes may be combined in a cost saving effort to one machine tool and one operating cycle. The undercut in the feedthrough openings are formed by change in shape of the feedthrough opening, for example through stamping. The individual stamping process may occur before or after the punching process. The stamping and punching process respectively could occur on the same side of the base body in order to avoid unnecessary position changes of the work piece and to possibly conduct these processes immediately following each other.
According to the desired geometry that is to be obtained, the stamping processes occur on one or on both sides, wherein in the latter scenario identical stamping parameters can be set in order to assure a symmetrical appearance of the feedthrough opening.
Materials for the base body can be metals, especially standard steel such as St 35, St 37, St 38 or special steel or stainless steel types. Stainless steel according to DIN EN 10020 is a designation for alloyed and unalloyed steels whose sulfur and phosphor content (so-called companion elements to iron) does not exceed 0.035%. Additional heat treatments (for example tempering) are often provided subsequently. Special steels include for example high purity steels wherein components such as aluminum and silicon are eliminated from the molten mass in a special manufacturing process. They also include high alloy tool steels which are intended for later heat treatment. The following are examples of what may be utilized: X12CrMoS 17, X5CrNi1810, XCrNiS189, X2CrNi1911, X12CrNi177, X5CrNiMo17-12-2, X6CrNiMoTi17-12-2, X6CrNiTi1810 and X15CrNiSi25-20, X10CrNi1808, X2CrNiMo17-12-2, X6CrNiMoTi17-12-2. The advantage of the aforementioned materials, especially the cited tool steels, is that when using these materials a high corrosion resistance, a high mechanical rigidity as well as excellent weldability is assured, especially where the base body is in the embodiment of a punched component with a welded edge.
The inventive metal-sealing material-feedthrough, especially glass-metal feedthrough, may be utilized in ignition devices of any desired design. It may for example be provided in an ignition device for a pyrotechnic protective device, especially an airbag or belt tensioning device, including a cap which is connected with the metal-sealing material-feedthrough, especially with the base body, wherein a propellant is enclosed between the metal-boding material-feedthrough and the cap and wherein the base body has a welded edge that is thinner than the interior part or section, wherein the cap is welded to the welded edge with a continuous weld seam.
There are no limitations with regard to the geometry of the outer contour of the base body. However, if said base body is in the form of a punched component it can be in circular form. The location of the feedthrough may be co-axial or eccentric to the opening center axis, or in a symmetrical embodiment of the outside contour of the base body it may be co-axial or eccentric to the axis of symmetry.
The ignition devices with the inventively constructed metal-sealing material-feedthrough can be utilized in gas generators, for example hot gas generators, cold gas generators, hybrid generators. Additional areas of application are ignition devices for pyrotechnical protective systems, for example airbags and belt tensioning devices.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
a illustrates an embodiment of metal-sealing material-feedthrough in accordance with the current invention;
b provides Table 1;
c provides Table 2;
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
The feedthrough opening 11 which serves to retain and seal the metal pin 4 by way of the glass slug 6 is produced by a punching process in the form of a hole Subsequently the metal pin 4 is inserted into the feedthrough opening 11 at the back side 12 of the metal-sealing material-feedthrough 1, together with the glass slug. The metal body containing the glass slug 6 and the metal pin is heated so that the metal shrinks after a cooling process, thereby producing a frictional connection between the glass slug 6 with the metal pin 4 and the base body 3.
It is also feasible to bring the sealing material 34 in its molten or free flowing condition, especially the molten glass from the front side 13 into the feedthrough opening 11. During cooling a positive fit or material seal is created between the outside circumference 14 of the metal pin 4, as well as the inside circumference 15 of the feedthrough opening 11. In accordance with the current invention the base body 3 is designed such that the ratio between the thickness D of the base body 3 and the maximum possible dimension of the feedthrough opening 11 vertical to the direction of the axis of the feedthrough opening 11 is in the range of between and including 0.5 to 2.5. Depending upon the design of the feedthrough opening 11 which may for example be characterized by a circular cross section or an oval cross section, the maximum possible dimension is determined by the diameter d or the length of the oval. The axial direction is consistent with the geometric axis, especially the axis of symmetry of the feedthrough opening 11 and extends through the base body 3. If the base body 3 is in the embodiment of a punched component, it is preferable in order to produce an especially compact, cost efficient and energy efficient base body 3 including the desired characteristic, especially the desired force of ejection when triggering the ignition, that the ratio between the thickness D of the base body 3 and the maximum possible dimension of the feedthrough opening 11 vertical to the direction of the axis of the feedthrough opening 11 is selected in a range of between and including 0.8 to 1.6, preferably 0.8 to 1.4, especially preferably 0.9 to 1.3, more especially preferably 1.0 to 1.2. Specifically expressed in dimensions this means that for example, the thickness D of the base body 3 is between 1 and 5 mm, preferably 1.5 mm and 3.5 mm, especially preferably 1.8 mm to 3.0 mm, more especially preferably 2.0 to 2.6 mm. Compared to pivoted components a substantially smaller construction is realized and in addition, the cross section of the feedthrough opening 11 may be selected as desired, depending upon requirement.
Table 1 and Table 2 of
Table 2 of
In order to avoid loosening of the metal pin 4 with the glass slug 6 from the base body 3 during the stress associated with ignition, even with the smaller support surface resulting from the shortening of the feedthrough opening 11, a way to prevent a relative movement between sealing material 34 and inside circumference 15 of the feedthrough opening in the direction of the backside 12 is provided and is identified here by 35.
These function as barbs and under the effects of tensile force and/or pressure upon the glass slug 6 and/or the metal pin 4 lead to a positive fit between the base body 3 and the glass slug 6 and thereby prevent sliding out on the back side 12. The feedthrough opening can be designed such that it has an undercut 36 which is formed by a protrusion 37. This is located in the area of the back side 12 and in the illustrated example, has a positive fit with it. The feedthrough opening 11, which, in the illustrated example, can possess a circular cross section, is characterized by this protrusion 37 through two different diameters d1 and d2. Diameter d1 is larger than diameter d2. Diameter d2 is the diameter of the feedthrough opening 11 on the back side 12. Diameter d1 is the diameter of the feedthrough opening 11 on the front side 13. However, the feedthrough opening 11 is constructed as having a constant diameter d1 along a substantial section of its extension ld1. ld2 designates the feedthrough opening 11 with the diameter d2. This means that the feedthrough opening has two partial segments, a first partial segment 16 and a second partial section 17, wherein the first partial segment 16 is characterized by the diameter d1 and the second partial segment 17 by the diameter d2. These diameters are produced by a one-sided punching process in the form of hole-punching from the front side 13 or the back side 12 with a subsequent forming process under the influence of pressure, especially stamping. The punching and forming process can occur from the same side—in the illustrated example from the front side 13. Punching out of the base body 3 can occur also within the scope of the punching process for the feedthrough opening 11, in other words during the same process step. The tool for this is formulated such that the entire base body 3 including a feedthrough opening 11 is punched in one process step from a sheet metal having a certain sheet thickness b which is consistent with a thickness D of the base body 3. In accordance with the present invention, the above referenced ratios between the thickness D of the base body 3 and the dimension of the feedthrough opening 11 are adhered to in order to achieve a high tensile force, ejection force, and/or extraction force at a reduced thickness when compared to pivoted components, thereby achieving an especially cost effective and material effective fabrication. By merely providing an undercut 36 the tensile force, ejection force, and/or extraction force can be almost doubled. According to the invention the undercut 36 and thereby the protrusion 37 is configured such that a cross sectional reduction in the partial section 17 occurs which is characterized by a reduction in diameter, in other words the difference Δd=d1−d2, or a reduction of the maximum dimension in the range if 0.05 to 1 mm, in the range of 0.08 to 0.9 mm, preferably 0.1 to 0.3 mm. The difference Δ=d1-d2 in diameter which leads to the undercut 36 and the protrusion 37 is sufficient to compensate for the shorter construction and thereby the shorter length of the feedthrough opening in a punched component when compared with a pivoted component, wherein in addition the ejection force is also increased.
Materials for the base body can be metals, especially standard steel such as St 35, St 37, St 38 or special steel or stainless steel types. Stainless steel according to DIN EN 10020 is a designation for alloyed and unalloyed steels whose sulfur and phosphor content (so-called companion elements to iron) does not exceed 0.035%. Additional heat treatments (for example tempering) are often provided subsequently. Special steels include for example high purity steels wherein components such as aluminum and silicon are eliminated from the molten mass in a special manufacturing process. They also include high alloy tool steels which are intended for later heat treatment. The following are examples of what may be utilized: X12CrMoS17, X5CrNi1810, XCrNiS189, X2CrNi1911, X12CrNi177, X5CrNiMo17-12-2, X6CrNiMoTi17-12-2, X6CrNiTi1810 and X15CrNiSi25-20, X10CrNi1808, X2CrNiMo17-12-2, X6CrNiMoTi17-12-2.
The advantage of the aforementioned materials, especially the cited tool steels, is that when using these materials a high corrosion resistance, a high mechanical rigidity as well as excellent weldability is assured.
In the arrangement depicted in
In all arrangements depicted in
In all previously described solutions it is possible to use a smaller base body 3 with the same or increased strength of seal provided by the glass slug 6.
The base body 3 according to
If the
Another possibility which is not illustrated includes an arrangement of several protrusions which are located adjacent to each other in circumferential direction, such as at identical distances from each other on the metal pin 4 in the area of the connection in the base body 3. The characteristic of the protrusions on the metal pin 4 contributes substantially to the improvement in the tightness of the seal. This characteristic prevents the removal of the metal pin 4 during an appropriate test in which the metal pin would normally fail under tension load and removal of the glass slug. This applies in analogy for the embodiment according to
In addition the embodiments shown in
In the inventive feedthrough described in detail before, the base body with a thickness of between 1 mm and 5 mm, preferably 1.5 mm and 3.5 mm, especially preferably 1.8 mm to 3.0 mm, more especially preferably 2.0 mm to 2.6 mm, can be deformed under compression. The deformation as shown in
The previously described design examples all referred to metal-sealing material-feedthroughs or glass-metal-feedthroughs including two metal pins which could be located parallel to each other and wherein one of the metal pins is grounded on the backside of the base body. However, the invention can essentially also be applied with more than 2 metal pins and with so-called Mono-Pins. Mono-Pins are ignition devices which include only one singular metal pin which is held in a pin retainer. The pin retainer includes for example a metal ring which represents the ground connection.
A Mono-Pin of this type is depicted in
The feedthrough opening 11 is cut into the base body 3 by way of a punching step. In one design form the base body 3 can be punched out together with the feedthrough opening 11, as previously described. The base body 3, together with the sleeve 27, can form a single-piece component. The fabrication of a single-piece component may for example be accomplished wherein one punched component is produced in one process step and the sleeve is obtained by deep-drawing. Sizing of the feedthrough opening and the thickness of the base body remains as described previously.
The inside wall surface 28 of the sleeve 27, as well as the free end of the metal pin 4, can be coated. Gold, for example, is used as the coating material. Electrolytic coating can be used. The purpose of the coating is to maintain a low electric resistance at the transitional point 30 between a connector 52, which is inserted into the sleeve, and the inside 28 of the sleeve 27.
In all design examples illustrated in
In all designs depicted in the drawings the feedthrough openings may be designed as having different cross sectional profiles, including circular cross sections. The formation of the undercuts occurs as an integral component of the base body.
The present invention provides the ratio the thickness of the punched component must be to the hole diameter in order to be able to fabricate a metal-sealing material-feedthrough as a punched component, and especially the feedthrough opening by way of punching.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 004 036 | Jan 2006 | DE | national |
This is a continuation-in-part of U.S. patent application Ser. No. 11/627,173, entitled “METAL-SEALING MATERIAL-FEEDTHROUGH AND UTILIZATION OF THE METAL-SEALING MATERIAL FEEDTHROUGH WITH AN AIRBAG, A BELT TENSIONING DEVICE, AND AN IGNITION DEVICE”, filed Jan. 25, 2007 now U.S. Pat. No. 8,127,681, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1325194 | Geist | Dec 1919 | A |
1584998 | Symons et al. | May 1926 | A |
1813906 | Caron | Jun 1928 | A |
3134329 | Zeman | May 1964 | A |
3274937 | Kyle | Sep 1966 | A |
3635067 | Hanas | Jan 1972 | A |
3735664 | Hermle | May 1973 | A |
3735705 | Hudson, Jr. et al. | May 1973 | A |
3854827 | Merz et al. | Dec 1974 | A |
3901772 | Guillotin et al. | Aug 1975 | A |
3971320 | Lee | Jul 1976 | A |
4048835 | Giger | Sep 1977 | A |
4453033 | Duff et al. | Jun 1984 | A |
4566892 | Ertel | Jan 1986 | A |
4577646 | Ziehn | Mar 1986 | A |
4686903 | Wittwer | Aug 1987 | A |
4800745 | Yokoyama | Jan 1989 | A |
5016461 | Walker et al. | May 1991 | A |
5140906 | Little, II | Aug 1992 | A |
5157831 | Wang et al. | Oct 1992 | A |
5243492 | Marquit et al. | Sep 1993 | A |
5321307 | Murai | Jun 1994 | A |
5345872 | Takahashi et al. | Sep 1994 | A |
5367125 | Viret et al. | Nov 1994 | A |
5404263 | Graves et al. | Apr 1995 | A |
5538527 | Viret et al. | Jul 1996 | A |
5557074 | Miyamoto et al. | Sep 1996 | A |
5621183 | Bailey | Apr 1997 | A |
5672841 | Monk et al. | Sep 1997 | A |
5709724 | Naugler et al. | Jan 1998 | A |
5732634 | Flickinger et al. | Mar 1998 | A |
5943897 | Tsue et al. | Aug 1999 | A |
5988069 | Bailey | Nov 1999 | A |
6026721 | Fukai | Feb 2000 | A |
6274252 | Naugler et al. | Aug 2001 | B1 |
D460684 | Liao | Jul 2002 | S |
6557474 | Morte et al. | May 2003 | B1 |
6612241 | Avetisian | Sep 2003 | B2 |
6755670 | Korber | Jun 2004 | B2 |
6877431 | Heeke | Apr 2005 | B2 |
6936303 | Katsuda et al. | Aug 2005 | B1 |
D528407 | Schwab | Sep 2006 | S |
7124688 | Avetisian et al. | Oct 2006 | B2 |
7267056 | Takahara et al. | Sep 2007 | B2 |
7770520 | Fink et al. | Aug 2010 | B2 |
7975611 | Bjoern | Jul 2011 | B2 |
8127681 | Fink | Mar 2012 | B2 |
20020069781 | Avetisian et al. | Jun 2002 | A1 |
20020069783 | Avetisian et al. | Jun 2002 | A1 |
20020081899 | Korber | Jun 2002 | A1 |
20020174792 | Kubozuka et al. | Nov 2002 | A1 |
20030177936 | Luebbers | Sep 2003 | A1 |
20030192446 | Berg et al. | Oct 2003 | A1 |
20040079545 | Heeke | Apr 2004 | A1 |
20040216631 | Fink et al. | Nov 2004 | A1 |
20040250542 | Nishina | Dec 2004 | A1 |
20050051435 | Forster et al. | Mar 2005 | A1 |
20050126415 | Takahara et al. | Jun 2005 | A1 |
20060207469 | Fink et al. | Sep 2006 | A1 |
20060222881 | Fink et al. | Oct 2006 | A1 |
20070187934 | Fink | Aug 2007 | A1 |
20080245545 | Bjorn | Oct 2008 | A1 |
20080250963 | Fink et al. | Oct 2008 | A1 |
20090044715 | Hartl et al. | Feb 2009 | A1 |
20090158953 | Magne et al. | Jun 2009 | A1 |
20100199872 | Fink et al. | Aug 2010 | A1 |
20100229616 | Fink et al. | Sep 2010 | A1 |
20120067099 | Hartl et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2 459 262 | Sep 2004 | CA |
100393555 | Jun 2011 | CN |
2904174 | Aug 1980 | DE |
34 14 625 | Oct 1984 | DE |
34 15 625 | Oct 1985 | DE |
198 35 478 | Feb 2000 | DE |
199 27 233 | Jan 2001 | DE |
101 33 223 | Oct 2002 | DE |
103 48 944 | May 2004 | DE |
203 14 580 | Sep 2004 | DE |
103 26 253 | Nov 2004 | DE |
10 2005 009 644 | Sep 2006 | DE |
10 2006 004 036 | Aug 2007 | DE |
10 2007 016 692 | Jul 2008 | DE |
10 2010 045 641 | Mar 2012 | DE |
0 064 263 | Apr 1982 | EP |
0 137 488 | Apr 1985 | EP |
0 064 263 | Jul 1986 | EP |
0 248 977 | Dec 1987 | EP |
0 248 977 | Jan 1992 | EP |
0 610 925 | Aug 1994 | EP |
1 061 325 | Dec 2000 | EP |
1 130 697 | Sep 2001 | EP |
1 225 415 | Jul 2002 | EP |
1 061 325 | Jan 2003 | EP |
1 455 160 | Sep 2004 | EP |
1 491 848 | Dec 2004 | EP |
1 808 667 | Jul 2007 | EP |
1 813 906 | Aug 2007 | EP |
1 455 160 | May 2008 | EP |
2 187 162 | May 2010 | EP |
2 251 633 | Nov 2010 | EP |
2 270 417 | Jan 2011 | EP |
1 813 906 | Apr 2011 | EP |
60-105829 | Jun 1985 | JP |
3-5753 | Jan 1991 | JP |
5-256596 | Oct 1993 | JP |
3058511 | Mar 1999 | JP |
2000-500856 | Jan 2000 | JP |
2000-111297 | Apr 2000 | JP |
2001-518439 | Oct 2001 | JP |
2003-285712 | Oct 2003 | JP |
9916721 | Apr 1999 | WO |
03083404 | Oct 2003 | WO |
20071054530 | May 2007 | WO |
Entry |
---|
Communication dated Oct. 17, 2011 from European Patent Office for European Patent Application No. EP 10 00 9062, including European Search Report (dated Oct. 6, 2011) and Written Opinion (8 pages). |
Communication dated May 21, 2007 from European Patent Office including European Search Report (dated May 10, 2007) and European Search Opinion for European patent application No. EP 06 021 694.2 (7 pages). |
Communication dated Aug. 12, 2009 from European Patent Office for European patent application No. EP 06 021 694.2 (5 pages). |
Communication dated Dec. 1, 2010 from European Patent Office for European patent application No. EP 06 021 694.2 (8 pages). |
Communication dated Dec. 17, 2010 from European Patent Office for European patent application No. EP 06 021 694.2 (50 pages). |
Letter dated Mar. 4, 2011 from Dr. Michael Sawodny to European Patent Office, including corrected English translation of claims, for European patent application No. EP 06 021 694.2 (8 pages). |
EP 2 187 162 A3 including European Search Report dated Jul. 30, 2010 for European Patent Application No. EP 10 00 2045 (4 pages). |
Communication dated Jul. 28, 2010 from European Patent Office for European patent application No. EP 06 021 694.2 (5 pages). |
Communications dated Oct. 18, 2010 and Oct. 29, 2010 from European Patent Office for European patent application No. EP 06 021 694.2 (2 pages). |
Gestaltungsregein für Stanzteile aus Stahl; DIN 6932; Jan. 1983; pp. 61-65 (5 pages). |
Begriffe der Stanztechnik Fertigungsverfahren und Werkzeuge zum Zerteilen; DIN 9870; Oct. 1972; pp. 306-307 and 300-302 (6 pages). |
Communication dated Aug. 6, 2010 from European Patent Office for EP 10 002 0451-1260, including European Search Report dated Jul. 30, 2010 and opinion (7 pages). |
Communication dated Jun. 1, 2011 from European Patent Office for EP 10 002 045.2-1260 (4 pages). |
Communication dated Oct. 17, 2011 from European Patent Office for EP 10 009 062.0-1260, including European Search Report dated Oct. 6, 2011 and opinion (8 pages). |
Communication dated Oct. 17, 2011 from European Patent Office for EP 10 009 095.0-1260, including European Search Report dated Oct. 7, 2011 and opinion (8 pages). |
Opposition documents Dated Feb. 3, 2009 filed in European Patent Office in EP 1 455 160 B1, including documents E5-E13 (52 pages). |
Communication dated Jun. 11, 2004 from European Patent Office for EP 04002670.0-1260, including European Search Report dated May 21, 2004 (4 pages). |
Communication dated Jun. 8, 2005 from European Patent Office for EP 04002670.0-1260 (10 pages). |
Communication dated Jul. 24, 2009 submitted in EP 04002670.0, including document E14 (10 pages). |
Communication dated Oct. 28, 2009 submitted in EP 04002670.0, including documents E6.1-E7.1 (12 pages). |
Communication dated Oct. 12, 2010 from European Patent Office in EP 04002670.0 (3 pages). |
Document dated Jan. 26, 2009 and signed by Sabine Sibera (4 pages). |
Communication dated Jan. 21, 2011 submitted in EP 04002670.0, including documents E14-E25 (33 pages). |
Communication dated Oct. 7, 2011 from European Patent Office in EP 04002670.0 (2 pages). |
Communication dated Mar. 2, 2011 from European Patent Office in EP 04002670.0 (1 page). |
Transcript in opposition in EP 04002670.0 (EP 1455160)(41 pages), Document dated Mar. 2, 2011. |
Documents filed Jun. 30, 2011 in European Patent Office in EP 04 002 670.0-1260 (28 pages). |
Declaration of Mr. Thomas Fink dated May 9, 2011 submitted in U.S. Appl. No. 12/098,616 (2 pages). |
Declaration of Mr. Thomas Fink dated Sep. 19, 2011 submitted in U.S. Appl. No. 12/788,624 (4 pages). |
Declaration of Mr. Thomas Fink dated May 2, 2011 submitted in U.S. Appl. No. 12/098,616 (4 pages). |
Declaration of Dr. Michael Sawodny dated Feb. 28, 2011 in U.S. Appl. No. 11/627,173, with Appendixes A-F (88 pages). |
Declaration of Dr. Michael Sawodny dated Mar. 21, 2011 in U.S. Appl. No. 11/627,173, with Corrected Appendix E (9 pages). |
Declaration of Mr. Thomas Fink dated Feb. 28, 2011 in U.S. Appl. No. 11/627,173, with Appendixes A-B (7 pages). |
Documents filed in appeal in European Patent Office on Oct. 25, 2011 for EP 1 455 160 (Application No. EP 04002670.0)(166 pages). |
Documents filed in opposition in European Patent Office on Jan. 19, 2012 (appears to have filed only in part on Jan. 18, 2012) for European Patent No. EP 1 813 906 (168 pages). |
Communication from Japanese Patent Office (dated Jan. 16, 2012) in Japanese Patent Application No. 2009-270630 (3 pages). |
Number | Date | Country | |
---|---|---|---|
20120199036 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11627173 | Jan 2007 | US |
Child | 13367790 | US |