Described herein are a metal separation system and method. More specifically, described herein are an automated separator and a method for using the separator. The separator uses rebound hardness to separate a granular material having a mixture of materials into separate component materials.
Metal is valuable. As a general rule, recyclers or processing plants will pay a higher price for metals of higher quality and purity. Put another way, the more pure the metal, the more valuable it is. That is why scrap metal is less valuable than pure metal. Because metallic compounds only have a finite supply and the demand for metal materials is approaching infinite, recycling is becoming a necessity.
Recycling centers detect metals in recycled materials and then separate them from other (non-metal) components. Then the different types of metals must be sorted and separated. Some of the separation for large pieces of metal may be accomplished by hand sorting. While magnets can be used to detect and remove ferrous metals (e.g. steel, iron), magnets are ineffective for sorting nonferrous metals (e.g. aluminum). Separating intermingled nonferrous metals has historically required more complicated, expensive, or problematic techniques (e.g. x-ray detection and vacuum technology). Impurities may be removed from scrap after the metal sorting process. Removing impurities usually involves melting the metal down and refining it in a manner similar to removing the metal from its ore. Removing the impurities produces metals that are close to pure and ready for manufacturing into something new.
Grinders, shredders, and mills (jointly referred to as “grinders”) are well known devices for reducing the particle size of a material. Some of these grinders are able to reduce inputted larger material to “particle size” (e.g. smaller than 0.5 inch in diameter). The granular material may then be removed from the grinder. Ground-up material can be sent to a landfill where it will take up less room than unprocessed material. If the material is to be shipped, it can be shipped more efficiently due to its reduced size and greater density.
U.S. Pat. No. 7,950,601 to Watts, U.S. Pat. No. 8,308,090 to Watts, and U.S. Pat. No. 8,678,306 to Watts (the “Watts patents”) describe grinders and grinding methods. Running raw materials through the grinder produces granular materials (“particles”) of small sizes. Running raw materials through the grinder for longer periods produces granular materials (“particles”) of smaller sizes. Depending on the raw materials input into the grinder, the granular materials output from the grinder have different compositions that may include various metals (e.g. aluminum, brass, bronze, copper, and stainless steel). Processes have been devised to remove the non-metal components, but granular material having multiple types of metals still has relatively little value. Recyclers want granular material of a single type (at least relatively pure).
There are processes that have been devised to separate component metals from a mixture of metals. If the components are relatively large, this can be done by hand. U.S. Pat. No. 7,674,994 to Valerio is directed to a method and apparatus for sorting metal. U.S. Pat. No. 4,848,590 to Kelly is directed to an apparatus for the multisorting of scrap metals by X-ray analysis. But these systems are not really suitable for sorting granular material.
Described herein are a metal separation system and method. More specifically, described herein are an automated separator and a method for using the automated separator. The separator uses rebound hardness to separate a granular material having a mixture of materials into separate component materials. Recyclers have no interest in a combination of various granular materials and they are unable to or unwilling to separate the materials. Using the separator described herein, the mixed granular input material is divided into a plurality of separated granular output materials. The separated granular output materials are relatively “pure” and, therefore, are much more valuable than the mixed granular input material.
Described herein is a separator for separating granular input material into component materials. Each component material has a hardness. The separator includes a rebound surface, a propulsion system, and a plurality of sorting zones. The propulsion system is for propelling granular input material toward the rebound surface. The sorting zones are arranged at increasing distances from the rebound surface. The component materials that are rebounded off of the rebound surface land in the sorting zones based on the hardness of the component materials. The component materials in the sorting zones are predominantly of a like hardness.
One preferred separator includes an annular rebound surface, uses a centrifugal propulsion system, and has concentric sorting zones. Another preferred separator includes an inclined rebound surface and uses a gravitational propulsion system.
Some preferred separators further include a pre-sorting system for pre-sorting the granular input material prior to the propulsion system propelling the granular input material toward the rebound surface. Some preferred separators further include a plurality of sorting containers, each sorting container associated with at least one of the sorting zones, and each sorting container receiving component material that landed in its associated at least one of the sorting zones.
Also described herein is a method for using a separator for separating granular input material into component materials. Each component material has a hardness. The method includes the steps of: (a) propelling inputted granular input material toward a rebound surface; (b) rebounding propelled granular input material off of the rebound surface; and (c) the component materials rebounding off of the rebound surface and landing in respective ones of a plurality of sorting zones based on the hardness of the component materials, the plurality of sorting zones arranged at increasing distances from the rebound surface. The method may also include the step of pre-sorting the granular input material prior to the step of propelling inputted granular input material.
One preferred method uses a centrifugal propulsion system, an annular rebound surface, and a plurality of concentric sorting zones. Another preferred method uses a gravitational propulsion system and an inclined rebound surface.
Objectives, features, combinations, and advantages described and implied herein will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings. The subject matter described herein is also particularly pointed out and distinctly claimed in the concluding portion of this specification.
The accompanying drawings illustrate various exemplary separators, components of various exemplary separators, and/or provide teachings by which the various exemplary separators and their methods of use are more readily understood.
The drawing figures are not necessarily to scale. Certain features or components herein may be shown in somewhat schematic form and some details of conventional elements may not be shown or described in the interest of clarity and conciseness. The drawing figures are hereby incorporated in and constitute a part of this specification.
The automated separators 100, 170 (metal separation systems) and methods for using the separators 100, 170 described herein use rebound hardness to separate a granular input material 110 having a mixture of materials (individually represented as M1, M2, and M3) into separate component materials (contained, respectively, within M1 container, M2 container, and M3 container).
Exemplary separators and methods for using the separators may be better understood with reference to the drawings, but these are not intended to be of a limiting nature. The same reference numbers will be used throughout the drawings and description in this document to refer to the same or like parts. The shown shapes and relative dimensions are preferred, but are not meant to be limiting unless specifically claimed, in which case they may limit the scope of that particular claim.
Before describing the separators, methods for using the separators 100, and figures, some of the terminology should be clarified. Please note that the terms and phrases may have additional definitions and/or examples throughout the specification. Where otherwise not specifically defined, words, phrases, and acronyms are given their ordinary meaning in the art. The following paragraphs provide basic parameters for interpreting terms and phrases used herein.
Although the particles of the mixed granular input material 110 specifically do not need to be homogenous in size and shape, preferably they are of roughly similar size and shape. The granular input material 110 being relatively homogenous could increase the efficiency of the separator 100, 170. For that reason, optional pre-sorting 200 (
Pre-sorting systems would be based on the type of pre-sorting to be accomplished. For exampling a size pre-sorting system would be a size measuring system (see the screen size pre-sorting system 180 (
As an example, one type of pre-sorting uses a series of screens (size pre-sorting system 180 (
As an example, another type of pre-sorting uses magnets (material pre-sorting system) to sort mixed granular input material 110 by material (removing ferrous material) before using the separator 100 to sort the mixed granular input material 110.
Optional Funnel 120
As shown in
Granular input material 110 may be input into the top of an optional funnel 120 and exit from the bottom of the funnel 120. Granular input material 110 exiting from the bottom of the funnel 120 enters the top of the input tube 130. If there is no funnel 120, the granular input material 110 may be input directly into the top of the input tube 130.
A hopper may be used instead of or in addition to the funnel 120. A hopper may replace the funnel 120 and function in a similar matter except that it may have additional storage capabilities. A hopper with additional storage capabilities could also be added to the system (most likely above the funnel 120).
Input/Discharge/Propulsion Structure (130, 132, 134, 136)
The separator 100 shown in
As shown, the input tube 130 is centrally located along and parallel to the center axis of the of the cylindrical rebound chamber 140. The hollow discharge tube 132 is shown at an approximately 90 degree angle (right angle) to the input tube 130. (The discharge tube 132 is formed to efficiently accommodate and propel mixed granular input material 110 of different sizes and compositions. The discharge tube 132 may also be replaceable and/or modifiable.) The central shaft 134 is shown as being substantially a downward extension of the input tube 130.
Rotation is used to create the propulsion force (centrifugal force) of the separator 100. The motor 136 creates the centrifugal force by rotating one or more of the input tube 130, discharge tube 132, and/or central shaft 134. Preferably at least the discharge tube 132 is rotated (
In addition to the propulsion force, vacuum may be used to enhance or encourage the flow of the granular input material 110 through the separator 100 (e.g. through the input tube 130 and/or the discharge tube 132). For example, the rebound chamber 140 and/or the attached sorting containers 160 may be maintained in a state of vacuum caused by an integral vacuum pump (not shown).
The shown structure, orientation, and interconnection of the input tube 130, discharge tube 132, and central shaft 134 are meant to be exemplary. As shown, the hollow input tube 130 is vertical and the hollow discharge tube 132 is at an angle (shown as an approximately 90 degree angle) to the input tube 130. Alternatively, the input tube 130 and the discharge tube 132 could be substantially inline with each other and at an angle (e.g. 45 degrees) to the vertical axis of the cylindrical rebound chamber 140. Another variation could have the motor 136 positioned above the rebound chamber 140 and directly rotating the input tube 130 (such that the input tube 130 also functions as the central shaft 134). Although the motor 136 is shown as being attached directly to the central shaft 134, it could alternatively be indirectly attached to the central shaft 134.
The motor 136 may be a variable speed motor. Adjusting (increasing/decreasing) the speed of the motor adjusts (increases/decreases) the speed of the rotation of the discharge tube 132 which, in turn, adjusts (increases/decreases) the propulsion force (centrifugal force) acting upon the granular input material 110. Adjusting (increasing/decreasing) the propulsion force adjusts (increases/decreases) the distance the component materials M1, M2, M3 travel and the rebound or “drop” curve C (
Rebound Structure (140, 142)
As shown in
Sorting Zones 150
The lower portion of the rebound chamber 140 is divided into a plurality of concentric sorting zones 150a, 150b, 150c (jointly referred to as sorting zones 150). From the sorting zones, the sorted component materials M1, M2, and M3 may be transferred to respective containers 160a, 160b, 160c (jointly referred to as sorting containers 160).
The concentric sorting zones 150a, 150b, 150c may be implemented in many different ways. For example, in
As shown in
The respective sizes of the zones 150 are dependent upon the separate component materials M1, M2, M3.
It should be noted that the sorting zones 150 may be fixed sizes, may be removable and replaceable so that different sizes may be used, and/or may be manually or automatically adjustable. Allowing for different sized sorting zones 150 or the adjustability of sorting zones 150 would be advantageous to accommodate different compositions of the mixed granular input material 110.
Sorting Containers 160
The separate component materials M1, M2, M3, once sorted into their respective sorting zones 150, travel, are transferred, and/or are transported (e.g. fall, slide, and/or are pulled) into respective sorting containers 160a, 160b, 160c (jointly referred to as sorting containers 160) for collecting the separate component materials M1, M2, M3. This process results in each of the sorting containers 160 containing component materials predominantly of a like hardness. The sorting container 160a associated with the sorting zone 150a closest to the rebound surface 142 preferably captures and/or stores the component materials M1 with the lowest hardness because the rebound distance is relatively short. The sorting container 160c associated with the sorting zone 150c farthest from the rebound surface 142 preferably capture(s) and/or store(s) the component materials M3 with the highest hardness because the rebound distance is relatively long.
The transfer or transport can be aided by gravity if the sorting containers 160 are lower than the sorting zones 150. They can also be aided by surface angles (e.g. downwardly slanted surfaces that encourage downward movement). Tubes or transport channels (shown as tubes or transport channels 158a, 158b, 158c in
Using
Using
It should be noted that the containers 160 may be fixed sizes, may be removable and replaceable so that different sizes may be used, and/or may be manually or automatically adjustable. Allowing for different sized containers 160 or the adjustability of containers 160 would be advantageous to accommodate different compositions of the mixed granular input material 110.
Alternative Separator 170
An optional funnel 172 may be used as a starting point for “dropping” granular input material 110. Granular input material 110 input into the top of the funnel 172 exits from the bottom of the funnel 172. A hopper may be used instead of or in addition to the funnel 172. A hopper may replace the funnel 172 and function in a similar manner except that it may have additional storage capabilities. A hopper with additional storage capabilities could also be added to the system (most likely above the funnel 172). The granular input material 110 exiting through the bottom of the funnel 172 is shown in this figure only as the singular separate component material M3, although all the components of the granular input material 110 would be “dropped” simultaneously.
The granular input material 110 are propelled A (accelerated due to gravitational force) along the first inclined surface 174. Additional downward propulsion forces (e.g. pneumatic forces) may be used in addition to gravity. The first inclined surface 174 may be a steel inclined surface. As opposed to being vertical, the first inclined surface 174 may be slightly backwardly angled at an angle such as 75 degrees to 89 degrees (e.g. at 88 degrees) relative to the level ground.
At the bottom of the first inclined surface 174, the propelled granular input material 110 hits and rebounds B from the rebound surface 176 along a rebound curve C. The second inclined surface 176 may be a steel inclined surface. The rebound surface 176 is associated with the guide surface 174 at an angle such as 93 degrees to 135 degrees (e.g. at 93 degrees). It should be noted that the angle may be fixed or may be manually or automatically adjustable depending on the composition of the mixed granular input material 110.
Below the rebound surface 176 are slots or containers 160′ (e.g. M1 container 160a′, M2 container 160b′, and M3 container 160c′ (jointly referred to as containers 160′)) that function as sorting zones 150a′, 150b′, 150c′ (jointly referred to as sorting zones 150′). The sorting zones 150′ are positioned at increasing distances from the rebound surface (and rebound point B). The materials M1, M2, and M3 land in respective sorting zones 150′ according to their hardness. This process results in each of the sorting zones 150′ and/or sorting containers 160′ containing component materials predominantly of a like hardness. It should be noted that the sorting zones 150′ and the containers 160′ of alternative separator 170 are not shown as concentric circles or otherwise nested.
It should be noted that the sorting zones 150′ and containers 160′ may be fixed sizes, may be removable and replaceable so that different sizes may be used, and/or may be manually or automatically adjustable. Allowing for different sized sorting zones 150′ and containers 160′ or the adjustability of sorting zones 150′ and containers 160′ would be advantageous to accommodate different compositions of the mixed granular input material 110.
The rebound curve C is dependent on the hardness of the respective granular input material 110 (M1, M2, M3). Put another way, softer materials (e.g. M1) follow the dotted line trajectory and rebound closer off the rebound surface 176 into M1 container 160a′, harder materials (e.g. M3) follow the solid line trajectory and rebound further off the rebound surface 176 into M3 container 160c′, and medium materials (e.g. M2) follow the dashed line trajectory and rebound off the rebound surface 176 between the harder and softer materials into M2 container 160b′.
Process
The blocks of the flow chart of
Methods for using the separators 100, 170 described include, in their most basic form, the following steps:
In addition, before the step of propelling 210, the mixed granular input material 110 may be pre-sorted 200 based on characteristics including, but not limited to size, weight, shape, material, and any other characteristic known or yet to be discovered.
Further, after the step of landing 240, the separated component materials M1, M2, M3 are transferred 250 from the respective sorting zones 150a, 150b, 150c to respective sorting containers 160a, 160b, 160c.
The steps of the process may be iterative. For example, a first pass through the separator 100 may include steps 210 to 250 to sort the component materials M1, M2, M3 to a relatively “pure” state, but there could be some “errors” (e.g. where particles collided). Repeating the process would improve the purity of the resulting component materials M1, M2, M3. Put another way, the component materials in each sorting containers can be sent through the separator 100 for additional sorting. The arrow from the transferring step 250 to the propelling step 210 shows this optional iteration.
It is to be understood that the inventions, examples, and embodiments described herein are not limited to particularly exemplified materials, methods, and/or structures. It is to be understood that the inventions, examples, and embodiments described herein are to be considered preferred inventions, examples, and embodiments whether specifically identified as such or not. The shown inventions, examples, and embodiments are preferred, but are not meant to be limiting unless specifically claimed, in which case they may limit the scope of that particular claim.
It is to be understood that for methods or procedures disclosed herein that include one or more steps, actions, and/or functions for achieving the described actions and results, the methods' steps, actions, and/or functions may be interchanged with one another without departing from the scope of the present invention. In other words, unless a specific order of steps, actions, and/or functions is required for proper or operative operation of the methods or procedures, the order and/or use of specific steps, actions, and/or functions may be modified without departing from the scope of the present invention.
All references cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.
The terms and expressions that have been employed in the foregoing specification are used as terms of description and not of limitation, and are not intended to exclude equivalents of the features shown and described. While the above is a complete description of selected embodiments of the present invention, it is possible to practice the invention using various alternatives, modifications, adaptations, variations, and/or combinations and their equivalents. It will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiment shown. It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention that, as a matter of language, might be said to fall therebetween.
The present application is an application claiming the benefit of U.S. Provisional Patent Application No. 62/779,203, filed Dec. 13, 2018. The present application is based on and claims priority from this application, the disclosure of which is hereby expressly incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2096594 | Sanchez | Oct 1937 | A |
2666524 | Payne | Jan 1954 | A |
2769539 | Packman | Nov 1956 | A |
2932393 | Leslic | Apr 1960 | A |
3109262 | Weaver et al. | Nov 1963 | A |
4195735 | Facchinelli | Apr 1980 | A |
4375853 | Feller | Mar 1983 | A |
4597487 | Crosby et al. | Jul 1986 | A |
4721457 | Areaux et al. | Jan 1988 | A |
4848590 | Kelly | Jul 1989 | A |
4895209 | Margolin | Jan 1990 | A |
5271506 | Haines | Dec 1993 | A |
5301816 | Weber | Apr 1994 | A |
7674994 | Valerio | Mar 2010 | B1 |
7950601 | Watts | May 2011 | B2 |
8308090 | Watts | Nov 2012 | B2 |
8640879 | Riise | Feb 2014 | B2 |
8678306 | Watts | Mar 2014 | B2 |
9403167 | Watts | Aug 2016 | B2 |
9409210 | Berkhout | Aug 2016 | B2 |
9943851 | Watts | Apr 2018 | B2 |
10449544 | Watts | Oct 2019 | B2 |
20140154080 | Watts | Jun 2014 | A1 |
20180311674 | de Vries | Nov 2018 | A1 |
Entry |
---|
Frank, Stephan; Innovation in Portable Hardness Testing, Article, Sep. 2001, 5 pages. Published at www.ndt.net. |
Electromatic Equipment Co., Inc.; Rebound Hardness Testers, Brochure, at least as early as Dec. 2019, 2 pages. Published at https://www.checkline.com/res/products/126781/QH5BrochureCheckline.pdf. |
Number | Date | Country | |
---|---|---|---|
62779203 | Dec 2018 | US |