The present invention relates to a metal sheet ventilation/smoke exhaust duct section being a part of a metal sheet ventilation/smoke exhaust duct, where the metal sheets are covered on the outside by a heat insulating material and where the duct section includes elongated stiffening bar members located on the outside of the duct, attached to the metal sheets.
Fire regulations require that a tight seal be established in the area where the section of the ventilation/smoke exhaust duct passes through a fire rated wall such that flames and/or toxic gases largely will not pass from one building area to the adjoining building area in case of fire in one of the areas. DIN 4102 Part 4 requires the provision of vertical internal stiffening pipes and, as the case may be, a round-going stiffening frame made up from an L-shaped profile with one leg lying flatly against the metal sheet outer surface. The mounting of the aforementioned vertical pipes inside the duct is time-consuming and also restricts the free flow of air through the ventilation/smoke exhaust duct in normal operation. Moreover, it has been found that the aforementioned stiffening L-shaped frame often applied may in fact in certain cases bring about a further loss of seal between the duct section and the wall.
By the invention it has become possible to avoid the use of any of the aforementioned vertical pipes, or alternatively to reduce the number of any pipes applied or the dimensions of any pipes applied, without compromising the fire requirements. In relation to ventilation ducts the invention may, by way of example, find particular use in connection with fire rated walls to maintain the structural stability of the duct where the duct penetrates the fire rated wall; in smoke exhaust ducts the invention may find general use for keeping the structural stability along the length of the duct.
According to a preferred embodiment of the invention, the bar members are connected to form a frame extending around the ventilation/smoke exhaust duct metal sheets, and the heat insulating material is arranged between the frame and the ventilation/smoke exhaust duct metal sheets, preferably to act as a spacer ensuring the proper spacing between the frame and the metal sheets such that heat transfer between the bar members and the duct is restricted and such that temperature-induced deformations of the bar members are limited, whereby deformations of the metal sheets can be restricted or limited. Preferably U-shaped or T-shaped bars are used.
For attaching the bars to the ventilation/smoke exhaust duct section screws are preferably used, the screws being arranged with a mutual spacing along the length of the bar members of preferably between 200 mm and 700 mm. Hence, for each meter length of the bar members as few as 2-4 screws may be used.
Various embodiments of the invention will now be described in details by reference to the drawings.
The metal ventilation duct section 10 has a square or rectangular cross-section and is formed from thin metal sheets 15 that delimit the duct proper, defining the vertical and horizontal sides of the duct. The two horizontal sides 16 of the duct section 10 are shown in
Fire regulations require that a tight seal be established in the area 5 where the duct section 10 passes through the wall 1 such that flames and/or toxic gases largely will not pass from one area to the adjoining area in case of fire in one of the areas. Often this seal is established by arranging mineral wool heat insulating packers 25, 25′ around the duct section 10 on both sides of the wall 1 and around the duct section 10 in the opening 5 proper.
In the case of fire, hot gases could flow inside the ventilation duct, and the duct metal sheets 15 after some time assume temperatures that give rise to metal sheet 15 deformations whereby the seal between the duct section 10 and the wall 1 becomes ineffective. The deformations typically show themselves in that the upper and lower horizontal sheets 15 flex inwardly, or sag, such that the inside vertical clearance of the duct section 10 is reduced along the centreline of the duct section 10. Hence, the aforementioned packers 25, 25′ may be rendered ineffective along the horizontal edges of the through-going opening 5 of the wall 1.
To safeguard the seal it has been proposed to arrange within the duct section 10 vertical support pipes that effectively reduce the deformations of the duct section in the area of the seal by spanning the upper and lower horizontal metal sheets 15, the pipes being subjected to deformation generated axial loads in the event of fire. The provision of such vertical pipes and, as the case may be, a round-going stiffening frame made up from bars having an L-shaped profile 30 with one leg lying flatly against the outer surface of the duct section, is required by DIN 4102 Part 4/FIG. 84. A duct installation formed in accordance with DIN 4102 Part 4/FIG. 84 is shown in
The mounting of the aforementioned vertical pipes inside the duct is time-consuming and also restricts the free flow of air through the ventilation duct in normal operation. Moreover, the applicant has found that the aforementioned stiffening L-shaped frame often applied may in fact in certain cases bring about a further loss of seal between the duct section 10 and the wall 1.
By the invention, to be discussed further below, it has become possible to avoid the use of any of the aforementioned vertical pipes, or alternatively to reduce the number of any pipes applied or the dimensions of any pipes applied.
One embodiment of the invention is shown in
The round-going frame shown in
As mentioned above, any direct heat transmission between the metal sheets 15 of the duct section 10 and the frame bars 30 should be avoided, or at least be reduced to a great extend. In this manner, temperature induced deformations of the bars 30 are reduced or delayed. Hence, generally the bars 30 forming the frame will be located at a distance from the metal sheets 15 forming the duct section 10 sides 16, the connection between the frame bars 30 and the duct section 10 preferably being provided in discrete areas or points by separate connecting means 40, such as screws, preferably self-cutting screws that preferably may be applied by the worker after the duct section 10 has been arranged in its final position extending through the wall 1, before or after the duct section 10 has been connected to the rest of the ventilation duct. The metal bars 30 may be provided with pre-drilled holes receiving the screws 40, the distance between the pre-drilled holes corresponding to the required number of screws per unit length of the bars 30, such that the worker does not apply an excessive number of screws 40. On applying the screws 40 the worker may take advantage of pre-drilled holes in the insulating material 20. However, in a preferred embodiment of the invention the worker would simply screw the screws 40 through the insulating material 20 and into the metal sheet 15 until the screw head engages the bar 30, to establish a reliable connection while at the same time maintaining the required spacing between the metal bars 30 and the metal sheets 15 of the ventilation duct section 10.
Alternatively, bolts pre-mounted to the duct section 10 metal sheets 15 and arranged to extend through holes in the bars 30 and secured to the bars 30 by nuts may be used. The screws or bolts 40 may be made from a material having smaller heat conductivity, compared to that of the bars 30.
Tests have shown that using ordinary 4-5 mm steel screws 40 applied at a number of two equidistant screws 40 per meter length of the bars in the case of 1000 mm by 250 mm or 1000 mm by 500 mm ducts will suffice to reliably connect the bars 30 to the duct section 10 while at the same time forming a structural reinforcement or stiffening of the duct section 10. The steel screws 40, i.e. the connecting means, transfer forces between the metal sheets 15 and the metal bars 30, reducing the aforementioned sagging of the metal sheets 15 in case of fire. The limiting of the heat transfer between the duct section 10 metal sheets 15 and the bars 30 of the frame and, hence, the temperature increase of the bars 30 that would otherwise result from the high temperature gases flowing within the ventilation duct reduces temperature induced deformations of the bars 30 proper such that the reinforcement or stiffening provided by the bar 30 frame remains effective for a prolonged period of time, effectively obviating any of the cumbersome pipes required by DIN 4102 Part 4.
To maintain the desired spacing between the frame bars 30 and the duct section 10 metal sheets 15 during use and in case of fire, double threaded screws 40 of the type shown in
The frame bars 30 may alternatively be connected to the duct section 10 by small size legs (not shown) that are integral with the bars 30 and that extend out from the bars, resting on the duct section 10 metal sheets 15 like the tubular spacers 50 of
In an alternative embodiment metal bars 30 as shown and explained herein may be located on the top and bottom side 16 metal sheets 15 of the ventilation duct section 10 only, i.e. dispensing from the use of a metal bar frame. In case of a square or rectangular cross-section ventilation duct section 10 the elongated metal bars 30 would then preferably extend across at least 90% of the horizontal width of the ventilation duct section 10.
A rectangular ventilation duct section 10 as shown in
Number | Date | Country | Kind |
---|---|---|---|
06388042 | Jun 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK2007/000269 | 6/6/2007 | WO | 00 | 2/27/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/140780 | 12/13/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3559660 | Rollins | Feb 1971 | A |
4061162 | Jones et al. | Dec 1977 | A |
7798533 | Waldner | Sep 2010 | B2 |
20100212807 | Princell et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
32 27 500 | Jan 1984 | DE |
20 2005 003 370 | May 2005 | DE |
0 516 945 | Dec 1992 | EP |
2 394 541 | Apr 2004 | GB |
WO-02070962 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20090165776 A1 | Jul 2009 | US |