1. Field of the Invention
The present invention relates to welding technology and more particularly, to a metal shell and plate member welding method.
2. Description of the Related Art
Taiwan Patent 460344, which is issued to the present inventor, discloses a method for bonding a shell and a plate member. This method uses an induction heater with an induction coil to heat a semi-finished product of a shell and a plate member. During the bonding process, the control of the heating temperature affects the quality of the finished product. If the heating temperature is not well controlled during the bonding process, the solder material may be not well melted due to that the heating temperature is too low, leading to a defective bonding result and poor quality of bonding between the shell and the plate member. If the heating temperature is too high, the plate member may be caused to blast. Therefore, control means is necessary to control the heating temperature, ensuring stability of welding quality.
Further, the aforesaid prior art method does not teach positioning between the shell and the plate member during the welding process. Keeping the plate member and the shell positively in position during the welding process enables the welding process to be performed stably and accurately, significantly reducing the probability of defective products.
The present invention has been accomplished under the circumstances in view. It is the main object of the present invention to provide a metal shell and plate member welding method, which can control the heating temperature, avoiding defective products caused by temperature factors. It is another object of the present invention to provide a metal shell and plate member welding method, which keeps the shell and the plate member positively in position during welding, enabling the welding process to be performed steadily and accurately.
To achieve these and other objects of the present invention, a metal shell and plate member welding method comprises the steps of: A) preparing a metal shell having a border edge and a plate member, B) applying a solder material to a surface area of the plate member corresponding to the border edge of the shell to form a strip of solder material subject to a predetermined thickness and width, C) covering the shell on the plate member to attach the border edge of the shell to the solder material and to form a semi-finished product, and then putting the semi-finished product in a bottom tool member having a non-metal fence for enabling the bottom tool member to support the semi-finished product and the non-metal fence of the bottom tool member to surround the plate member and the shell to keep the plate member and the shell in place, D) moving the bottom tool member vertically to insert the semi-finished product and the fence into the space surrounded by an induction coil of an induction heater; and then pressing a top tool member on the plate member of the semi-finished product, E) operating the induction heater to generate an oscillating current through the induction coil in a predetermined time and at a predetermined power level, thereby heating the border edge of the shell to a temperature level about 20° C.˜100° C. over the melting point of the solder material and causing the solder material to be melted and the gap in between the shell and the plate member to be filled up by the molten solder material, and F) cooling down the solder material to finish the welding procedure.
Preferably, the solder material defines an open frame when it is applied to the surface area of the plate member during step B); the solder material is kept in flush with the outer perimeter of the border edge of the shell, and the width of the strip of solder material is greater than the thickness of the border edge of the shell so that an inner edge of the strip of solder material is kept within the area surrounded by the border edge of the shell.
Preferably, the border edge of the shell has an outer perimeter kept in flush with the periphery of the plate member; the fence is clamped on the outer perimeter of the border edge of the shell and the periphery of the plate member.
Preferably, the strip of solder material defines an open frame when formed during step B); the plate member is larger than the area surrounded by the border edge of the shell, and the strip of solder material has a width greater than the thickness of the border edge of the shell so that the strip of solder material defines an inner edge within the area surrounded by the border edge of the shell and an outer edge beyond the border edge of the shell.
Preferably, the shell is covered on the plate member to form a semi-finished product and then the semi-finished product is placed on the bottom tool member, or alternatively, the shell is placed on the bottom tool member to keep the border edge upwards and then the plate member is covered on the shell.
Preferably, during step D), the bottom tool member is lifted to insert the semi-finished product into the space surrounded by the induction coil.
Preferably, a sub-step of applying a solder flux to the border edge of the shell is employed during Step A) or Step B).
Preferably, during step D), the central height of the induction coil is kept in flush with the elevation of the junction between the shell and the plate member.
Preferably, the predetermined time and the predetermined power level in step E) are obtained by: applying Steps A)˜D) to a reference plate member and a reference shell, and then operating the induction coil subject to a selected power level and using a temperature sensor to detect the temperature of the reference shell, and then measuring the length of time in which the temperature of the reference shell reaches the level about 20° C.˜100° C. over the melting point of the older material.
Preferably, during step D), the induction coil is kept away from the shell and said fence, leaving a gap therebetween.
Preferably, during step F), at least one air source is used to blow air toward the gap between the induction oil and the shell and the fence.
Preferably, the at least one air source is adapted to blow room temperature air toward the gap between the induction oil and the shell and the fence.
Other advantages and features of the present invention will be fully understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference signs denote like components of structure.
Referring to
A) As illustrated in
B) Apply a strip of solder material 22 to a surface area of the plate member 21 corresponding to the border edge 12 of the shell 11 subject to a predetermined thickness and width. In this embodiment, the applied strip of solder material 22 defines an open frame. However, this open frame configuration is not a limitation.
C) As illustrated in
D) As illustrated in
E) Operate the induction coil 41 to generate an oscillating current in a predetermined time and at a predetermined power level, so as to heat the border edge 12 of the shell 11 to a temperature level about 20° C.˜100° C. over the melting point of the applied strip of solder material 22, thereby melting the applied strip of solder material 22 and causing the molten solder material to fill up the gap in between the shell 11 and the plate member 21. In this embodiment, the predetermined time and predetermined power level are obtained by: applying the aforesaid steps A)˜D) to a reference plate member 21 and a reference shell 11, and then operate the induction coil 41 subject to a selected power level and using a temperature sensor (not shown) to detect the temperature of the reference shell 11, and then measuring the length of time in which the temperature of the reference shell 11 reaches the level about 20° C.˜100° C. over the melting point of the applied strip of solder material 22. Thus, the predetermined time and predetermined power level are obtained.
F) After the applied strip of solder material 22 is cooled down and hardened, the welding procedure is down. The product can be cooled down at room temperature. Alternatively, a cooling air source 38 can be applied to the gap G to accelerate cooling. For example, as shown in
Further, it is to be noted that during the aforesaid step A) or step B), a solder flux 14 can be applied to the border edge 12 of the shell 11, to smoothen the welding procedure and to achieve a better welding result. However, the use of the solder flux is not requisite.
The aforesaid steps A)˜F) are regarding to welding. After welding, lift or lower the top tool member 35, allowing the finished product to be removed from the bottom tool member 31.
In the aforesaid step E), the applied strip of solder material 22 is disposed in the area surrounded by the border edge 12 of the shell 11. Therefore, when the applied strip of solder material 22 is melted during the heating process, as shown in
Further, in the aforesaid embodiment, the periphery of the plate member 21 is kept in flush with the outer perimeter of the shell 11. However, this arrangement is not a limitation. In an alternate form of the present invention, as shown in
In conclusion, the invention provides a metal shell and plate member welding method that has the advantages as follows:
1. The heating temperature can be controlled, avoiding defective products caused by temperature factors.
2. By means of the bottom tool member, the shell and the plate member can be positively positioned prior to welding, enabling the welding process to be performed steadily and accurately.
Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
101137155 | Oct 2012 | TW | national |