This invention relates to snow guards for restraining ice and snow from sliding down inclined surfaces of buildings, particularly inclined roofs.
One particularly successful snow guard having a gem-like appearance and made of plastic and usually of colored plastic is disclosed in U.S. Pat. Nos. 5,901,507 and 5,471,700 to Smeja, et al. The present invention is not limited to this particular shape or kind of snow guard but is applicable to various other shapes and kinds of snow guards. The particular shapes and kinds of snow guards illustrated and described herein are the preferred embodiments of the invention and are merely exemplary.
The snow guards shown in the aforesaid patents have been very successful from a commercial standpoint and were made in plastic of different colors. This snow guard was not only purchased and installed because of its functional capabilities, but is also purchased and installed as a medallion in warm climates only because decorative and esthetic appeal on a building. There is a need to provide a similar shape of snow guard but in metal where the architect or building proprietor wants a particular color and material. Often, it is desired to make the snow guards of the same material as the roof, so that the snow guards blend in with the roof of the same color and same material. Although the plastic molded snow guards may be colored to have the appearance of copper for a copper metal roof, a gold appearance for a gold roof, a green appearance for a green metal roof, etc., the snow guards being made of plastic rather will still have a noticeable look of being made of a different material and often with a slight variation in color. Of course, some will want contrasting or accenting colors of snow guards for their roofs. Whatever the reason, there is a reason for making snow guards from flat metal sheets such as copper, stainless steel, terne metal, galbanum, zinc coated steel, lead coated copper, etc. In other instances, the metal sheets may have a color coating on the surface of metal sheet which is colored to meet an owner's desire for a slate roof, a shingle roof or a metal roof.
When making folded metal snow guards, the aesthetics are important for such a highly visible product. While the product could be folded from a single sheet or several metal sheets and joined together, it is preferred that the product appear substantially seamless or with a minimum of visible seams in the installed position. Further, because some of the metal sheets are expensive, it is preferred that the construction be made without excessive scrap waste. Usually, the sheet metal will be stamped with holes therein and with irregular shapes on the side edges for panel edges that are to be erected. This lends to the formation of scrap. Also, where the sheet is coated as with a color, it is less expensive to make a sheet colored on one side rather than two sides and to fold the sheet to form the snow guard with only the one-coated side being visible.
Typically, snow guards are fastened to roofs with fasteners such as screws or nails, with adhesives, or with solder when securing a metal snow guard to a metal roof. The typical solder operation of a worker applying solder and flux and heating them to liquify the solder and to form the solder connection is time consuming and expensive. That is, the installer will have a roll of solder wire and a flux material and he will lay the flux and the solder against an upper edge or underneath the upper edge of the snow guard inclined on the roof to heat the roof, the snow guard edge, the flux and the solder with a propane torch to melt or liquify the solder and bring the metal of the snow guard and roof to the temperature necessary for soldering together. Although the upper side edges of the snow guard may be soldered, the lower edges and the bottom edge of the snow guard may not be soldered or soldered only with extreme care to avoid running of solder along the roof surface below the snow guard. Good soldering technique is a difficult task to learn in that one really needs three hands with one hand to hold the snow guard in place on an inclined roof, a second hand to hold the solder, and a third hand to apply the flux. If too little solder is applied, a good connection to the roof is not attained. If too much solder or flux is applied, it will run down the expensive metal roof and mar its appearance. There is no good or easy way to remove any solder streaks from the metal roof without affecting its appearance.
Also, it is necessary to apply high temperature heat, e.g., 500°-600° F. from a torch to the snow guard to melt the underlying solder at about 370°-390° F. The snow guard will become so hot that the person doing the soldering cannot hold the snow guard in position while it is being soldered. If insufficient heat is applied and a weak, cold solder joint will be made between the snow guard and the roof. Thus, today commercial installers of snow guards attach them to the roof with fasteners or adhesives because of the difficulties in applying the right amount of solder, heat and a good soldering technique.
Thus, there is a need for a new method of attaching metal snow guards to metal roofs. Also, there is a need for new and improved snow guards.
As set forth in this disclosure, there is provided a new and improved manner of soldering a metal snow guard to a metal roof.
In accordance with the improved method of soldering the metal roof guard to a metal roof, it is preferred to provide a solid soldering material, for example, a sealed layer of solder with or without a flux thereon. In the preferred embodiment, the lead in the solder layer is coated over and covered with a layer of flux so that the solder will not oxidize and form an inert lead oxide that interferes with a good soldering of the snow guard to the roof. Often, the snow guards are not used for several months after there manufacture and the uncovered or unsealed solder may oxidize or crystallize and interfere with the attachment of the guard to the roof. In other embodiments, having snow guards made of materials other than copper, such as lead coated or stainless steel metals, there is a need for such an aggressive flux that this aggressive flux will be provided separately such as paste in a tube to be applied to the solder at the time of soldering. Typically, such a flux is a form of sulfuric acid in a paste form and the roof surface will be cleaned as with an abrasive pad and the flux can be applied to the roof and then the sealed solder layer can be placed on the solder paste and the top of the snow guard may be heated.
In accordance with a important aspect, the amount of solder on the underside of the snow guard is controlled so that there is no excess solder running down from the snow guard and ruining the appearance of the expensive metal roof. Preferably, the layer of solder is enough to solder the snow guard without running of the solder from the snow guard down along the metal roof below the snow guard.
In one embodiment, the layer of soldering material is in the form of spaced projections on the underside of the base. When heated the soldering materials flows to cover uneven, that is non-flat surfaces on the underside of the base and/or roof surface to improve the soldering area between the snow guard and the roof. The person doing the soldering will feel that the snow guard shifts or moves relative to the roof as the projections melt and spread the soldering material from the melting projections into the spaces between projections. Usually, this person will sense a sinking downwardly of the snow guard as the projections melt.
In this embodiment, the projections are formed by forcing a paste of soldering material through holes in a plate onto the base of the snow guard. Herein, the projections of soldering materials is a paste solder and flux combined which after application to the base is heated slightly to cause the projections to adhere to the base and the flux to form an outer coating covering the outer surfaces of the projections thereby protecting the underlying solder in the projections. At the time of installation, the crust of flux melts and engages the roof and causes the melting solder to adhere to the roof.
It will be appreciated that the head applied to the snow guard to melt the solder, which melts at about 380°-385° F., will typically be from a torch that will quickly heat the metal snow guard, e.g., a copper snow guard is an excellent heat conductor. In order to prevent the installer from burning his hand holding the snow guard in place on the roof, a forked wooden tool or the like may be used. If it is desired to use a mechanical fastener, e.g., a metal screw, the snow guard may be first fastened in place and then heat applied without the use of a non-conducting head tool. The solder will form around the screw and seal the opening and any interface about the snow guard and screw.
The amount of solder and amount of flux layered on the underside of the snow guard is such that it will not run or wick down the roof. The amount of heat applied is such that the solder merely forms a meniscus at the edge of the snow guard. Also, viewing holes or openings may be provided in the snow guard base so that when applying heat to do the liquidification of the soldering material, the installer may view the formation of the liquid solder to prevent overheating or underheating of the solder, roof material and snow guard material. In one embodiment of the invention, the solder material will be seen to be bubbling in a small viewing hole or holes to allow the installer to ascertain the state of the soldering operation occurring beneath the base of the snow guard.
In one embodiment, the metal snow guard is formed with a flat metal base having an upper layer of metal from a folded metal panel folded over a lower metal panel. An upstanding snow retention member is formed integral with the flat metal base panel. In this embodiment, a plurality of folded upstanding panels form the erected retention members with a central cut-outs or openings at a center juncture or apex of the members to allow water to flow down through the openings and along the lower portion of the base when the snow guard is installed at an incline on an inclined roof. In this embodiment, the preferred upstanding snow retention members have diagonal edges. While the diagonal edges of the upstanding members may have a seam, it is preferred that these diagonal edges be formed by a fold line between adjacent panels in the metal sheet to provide a seamless diagonal edge for the upstanding members.
In accordance with another aspect of the disclosure, the upper viewing hole may be sized smaller in the upper layer of a panel of the base than the larger hole in the lower panel of the base containing the solder paste. The smaller viewing hole may be sized to receive a fastener if it is desired to use a fastener to secure the snow guard to the roof. Of course, if fasteners are used, the snow guard could be made without any solder material in the holes in the lower base. On the other hand, the fasteners can be driven through solder paste and driven into the roof. The preferred solder past may be screen printed onto the underside of the base for a fast and efficient way of applying the solder paste to the base. If desired, to avoid contamination and to seal the solder against oxidizing, a cover sheet may be releasably attached to cover the flux and/or flux solder layer on the snow guard.
Preferably, the folded panels for the snow guard are secured together by a swedging operation of adjacent meal layers although rivets may be used to rivet the layers together.
As shown in the drawings for purposes of illustration, the invention is embodied in a snow guard 10 which is fastened to a downwardly inclined roof or a downwardly inclined portion of building facia, or the like to restrain ice and/or snow from sliding downwardly onto people, automobiles, or the like. For the sake of convenience, the term “roof” shall be used generally to mean not only a roof but also an inclined surface of a facia, covered walkway structure, or whatever the snow guard is fastened to. The snow guard has a base 12 that is fastened to the inclined roof and includes upstanding members 20 projecting upwardly from the base and for engaging the ice or snow accumulated on the roof. The roof may be made of various materials and shapes. Typically, the metal roof formed of a series of adjacent metal sections or panels that have upwardly projecting side edges flanges that are overlapped to form a seam between adjacent panels. In this type of roof, the metal sections have a fixed width, e.g., 9-24 inches with 12 inches being typical between their respective side edge flanges 18. In the length, the panels often extend quite a long way, e.g., 10-40 feet in length.
The sun heats the metal roof sections and the snow or ice between the seams tends to form, at times, into long sheets that slide down metal roofs. Sometimes, sheets as long as six feet in length may project over the roof's edge. The snow guard is intended to hold the ice and snow sheet against sliding off the roof in a big sheet or from hanging over the roofs edge and then dropping onto and damaging people and property.
The snow guard 10 illustrated in
In accordance one embodiment, the snow guard 10 is made from a folded sheet of metal with the base 12 formed by folding a stamped metal sheet 14 (
In accordance with another important aspect, there is a new and improved method of soldering a metal snow guard of almost any kind to a metal roof. This is achieved by providing the snow guard with a layer of solid soldering material 25 (
In the preferred embodiment, the soldering material 25 comprises a flux layer 25a that is used to wet the underlying surface of the metal base to cause the adhering of a solder layer 25b to the base. The solder layer 25b is a thin layer either laid in a pattern at special locations, or preferably as illustrated in
In this preferred embodiment, a solid layer 25a of flux is laid across the solder layer 25b and performs the dual functions of sealing the solder layer 25b from air that will oxidize the lead in the solder and thereby interfere with a good soldering interface between the solder and the underlying metal roof. The amount of flux, including the thickness of the flux layer 25a, is controlled such that the roof metal will be wetted to receive the liquid solder to form a good solder connection between the snow guard base 10 and the roof without flux and/or solder flowing down along the roof.
In a preferred embodiment, the layer of soldering material (25) is formed with projections 29 (
The use of a solid flux layer 25a laid on the underside of the metal snow guard base 10 works with metals such as copper sheet with the snow guard being made substantially entirely of copper. If the snow guard is made of lead or zinc, then a very aggressive flux should be used and this aggressive flux may be provided separately from the solder layer 25b, that is without there being a flux layer 25a covering the solder layer. For example, a tube of paste flux of the aggressive kind may be provided in lieu of the preapplied layer 25a. After abrading the metal roof surface, as with a rough surface pad, the paste is applied as a coat onto the cleaned surface or to the flux layer 25a on the underside of the metal base.
With a suitable heat source such as a torch, the upper side of the metal base is heated to melt the flux and the solder, the solder typically melts at 380°-385° F. Because the metal snow guard is such a good heat conductor, it is preferred to hold the snow guard in place by a tool, such as a fork or splined wooden tool 100 (
The aggressive solder should be used for soldering snow guards made of zinc, lead, lead coated steel, etc. The use of the preprinted 25a of flux or the separate application of a flux that is not layered and stored with the snow guard depends on a number of factors that vary depending on the snow guard construction, its size, shape and material as well as the roof material. The above descriptions are merely illustrative and are not limiting.
The time of heat application may also be varied. In some instances, the liquidification of the solder may be felt when the projections 29 melt and the snow guard lowers; and in other instances the liquid solder may be seen through viewing holes 30 in the base. In other instances, the solder viewing through the holes 30 may be difficult and the applicator may view a solder meniscus forming at the edge of the base plate and discontinue heating the snow guard. In other instances, the time of heat application may be given along with the installation instructions. With the proper amount of solder, flux and heat application, the difficult task of soldering may be accomplished.
In the embodiment shown in
In accordance with a still further embodiment of the invention illustrated in
For a copper metal snow guard, one method of forming the solid solder layer 25b is to apply a powder of flux and solder on the base 10 and add to heat the base to cause the powders to liquify and then allow the solder to solidify. Alternatively, the solder layer 25b may be formed by applying flux to the underside of the metal base and dipping it in another solder bath. After application of the solder layer 25b, it is cleaned and rinsed off. Then a liquified flux layer 25 is applied over the solder layer 25b and is dried to cover and seal the solder layer. Other methods may be used to form the solder layer and/or flux layer such as squeezing a paste of solder and/or flux through openings to form the projections 29.
accordance with another aspect, the soldering material 25 may be prevented from being contaminated by a cover 36 (
Referring now in greater detail to the embodiment of
The four upstanding members 20 create the spaces or chambers 39 between each pair of adjacent members into which ice or snow may be collected. The ice or snow in the chambers or pockets between the upstanding members holds the same against sliding down the roof surface. To allow rain water or water from melting ice to flow through the snow guard, the center of the snow guard is formed with four openings 23, one opening being formed in each of the upstanding members 20 adjacent the center axis of the snow guard. Herein, each of the upstanding members 20 is generally triangular in shape except for a small lower inner corner that has been cut off along a diagonal line 40 (
Referring now to the preferred blank or metal sheet 14 (
The blank 13 is preferably creased with a fold line at the respective horizontal center line A and also with a fold line at the vertical center Line A′ in order to form four panel sections which are identical or mirror images of one another. The first bending operation will be to bend at 30 the four trapezoidal shaped panels H to start to form the bottom layer 17 of the base by bending at about each fold line C between each respective panel H and an adjacent panel I which will form the upper layer 15 of the base having the viewing holes 26 therein. In the next forming operation, each of D fold lines between panels I and panels P is bent up to about 95° between the respective panels I and P. Then, the four panels Q, which are to be vertical sides of the upstanding members 20 are bent upwardly at 90° about fold lines E which are between the panels Q and adjacent intermediate panels G. Then, the center axis fold lines A, A′ and B are all bent upwardly toward the central vertical axis 22 to form the four upstanding members 20 with the two upper panels Q, Q being back-to-back to form a first upstanding member 20 that is aligned with another second upstanding member 20 formed from the two lower panels Q, Q of the blank when they are back-to-back in the upright position.
The tip F of the intermediate channel G is pivoted out until aligned with its associated fold line C as the panels Q, Q and Q, Q are bent upwardly to form the upstanding members 20. Next, the four, bottom layer panels H are bent the full 180° about fold lines C to form the bottom layer 17 of the snow guard. In the fully assembled snow guard, each edge 51 of the intermediate panel G will be located adjacent the juncture of upstanding panel P and an adjacent horizontal panel I of the base at the fold line D therebetween. Each free edge 52 of upper layer panel I will be adjacent to and/or abutting a vertical side panel Q of the upstanding member when the snow guard is fully erected.
It is preferred to make the assembled snow guard more secure against panel separation during shipping, handling, installing, etc. by interlocking pieces of the panels together. An inexpensive and preferred manner of interlocking is to use a pointed swedging tool (not shown) through the aligned holes 26, 31 and 32, as best seen in
In this above described embodiment of the invention, the bottom of the base has an opening or cavity 65 through which the roof could be viewed. It is preferred to fill the cavity 65 (
In many instances, it is preferred to provide an extension tab 70 that is extended up under a shingle, as shown, for the long tab 70 in
For those snow guards 10 having solder material 25 in the holes 26, 31 and 32, the top and bottom of the holes are covered by tape (
In another embodiment of the invention, a blank 100 (
The formation of the snow guard shown in
Bending/Forming Procedure
A still further embodiment of the invention is shown in
The preferred bending/forming procedure for this
When using tape style mounting, insert 1.50″ square into center of base from bottom side to fill hole.
Referring now to the embodiments disclosed in
The illustrated snow guard 10 is formed of two bent sheets of metal such as copper with a second sheet having the upstanding wall 20a integrally joined to and bent upwardly at 90° at a fold line 114a to an integral horizontally extending tab or panel. The bent flanges 105a-105e abut the outer side edges of the upstanding wall 20a to mechanically join this first sheet having the triangular shaped panels 101a-101e and the base 12a to the second sheet having the upstanding wall 20a and rear panel 112. The first and second sheets of snow guard are also mechanically joined as by rivets 115 or upstanding metal swedge portions of the respective rear panel 112 on the second sheet and the panel of the first sheet forming the base 12a. That is, the rear panel 112, which is integrally joined to the upstanding wall 20a, is attached mechanically to the base 12a which is a panel that is integrally formed and attached to the triangularly shaped panels 101a-101e. The rear panel 112a is parallel to and lays on the rear portion of the base 12a and is attached thereto. Herein, the attachment between the rear panel and the base is by a pair of upstanding rivets 115. However, it is preferred to mechanically join the rear panel to the base by swedging upwardly portions of the base panel into a hole formed in the upper rear panel 112 and to force upturned metal in the upper panel with the upturned metal from the base being inwardly and concentric with the upper turned metal of the rear panel about the hole formed in each. The swaging can be done in a progressive die when forming the snow guard to avoid the cost of using rivets and a separate riveting operation when making the snow guard 10a.
In another embodiment 10b shown in
The base 12a or 12b of the snow guards 10a or 10b are preferably coated with a solid solder material 25a in the form of projections 29 in the manner described above and hence will not be repeated now. Preferably, the solder material 25 comprises a solder layer 25b sealed by an overlaid flux layer 25a, as illustrated in
By way of example only, the base 12a of 12b of snow guards 10a and 10b are each provided with spaced spots or areas 27 of adhesive in the form of beads or projections 29. In this illustrated embodiment, nine projections 29 are provided and are spaced by a distance in the range of 0.375 to 0.500 inch and are about 0.250 to 0.3125 inch in diameter including the outer crust of solder 25a over the inner layer of solder 25b which is soldered to the underside of the base 12a or 12b. Manifestly, the pattern size, height and/or shape of the soldering material 25 may be varied from that described herein. For example, the number and pattern of the projections 29 of soldering material is varied, as shown in
Herein, it is preferred to make the tab portion 170 integral with the rear panel 112 and the upstanding wall 20a. That is, the difference between the short snow guard of
Although snow guards 10, 10a or 10b made be fastened to the roof using conventional screws, nails, etc. through the holes 30 or 119, it is preferred to use the precoated solder technique described herein. The snow guard 10a may be provided with a view hole or opening 119 (
This application claims the benefit of U.S. Provisional Application Ser. No. 60/356,049, filed Feb. 11, 2002, which is incorporated by reference in its entirety herein.
Number | Date | Country | |
---|---|---|---|
60356049 | Feb 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10360324 | Feb 2003 | US |
Child | 11120122 | May 2005 | US |