Information
-
Patent Grant
-
6615563
-
Patent Number
6,615,563
-
Date Filed
Monday, January 10, 200024 years ago
-
Date Issued
Tuesday, September 9, 200321 years ago
-
Inventors
-
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 052 7319
- 052 7311
- 052 7314
- 052 7315
- 052 7317
- 052 7318
- 052 7332
- 052 7333
- 052 356
- 052 4811
-
International Classifications
-
Abstract
A metallic stud for use in a framing structure, the stud definable in terms a x, y, z coordinate system. The stud includes the z-axis elongate substantially rectangular integral web within a yz plane and further includes a series of xz plane tabs projecting in an x-axis direction, the tabs alternating in x-axis extent between interdigitating greater and lesser dimensions, in which a z-axis line of dependency exists between a common xz plane of all of the tabs in a first major rectangular base of the yz plane of the web of the stud. The stud further includes a z-axis elongate L-shaped element integrally dependent from a second major rectangular base of the web, the elongate element parallel to the first base. The element includes an integral xz plane sub-element, extending in a z-axis direction, and substantially parallel with the series of xz plane tabs from a z-axis line of dependency from the second major base of the web, the z-axis L-shaped element further including a yz plane sub-element, in the nature of a lip, integrally depending from the xz sub-element along an entire z-axis length and projecting toward the series of xz plane tabs, in which the yz sub-element is substantially parallel with the yz plane of the elongate web. The studs preferably formed of a thin gauge steel.
Description
BACKGROUND OF THE INVENTION
The present invention relates to metallic stud frames of a type used in the formation of a frame of a residential or commercial structure.
Historically, frames of such structures were formed of either wood, steel or concrete. In the case of load bearing structures, it is common to use a steel bar, know as rebars within a poured concrete structure. The use of vertical light gauge steel studs, in lieu of wooden studs to accomplish internal framing within a wood frame structure, is also well known in the art.
It is, however, not known to employ thin gauge vertical studs in combination with exterior wall concrete framing in which the vertical stud operates to define an offset the distance between an exterior poured concrete wall and an interior plasterboard wall which is secured to one surface of such a vertical steel stud.
A need for such a vertical steel stud frame element has arisen as a consequence of rapid on-site assembly high techniques employing thin external concrete walls which have developed in the construction arts. The present invention therefore relates to such vertical metallic stud in which one rectilinear surface thereof may be poured as a part of a process of casting of an exterior concrete wall, its base and/or load bearing of the resultant structure.
SUMMARY OF THE INVENTION
The instant invention relates to a metallic stud for use in a framing structure, the stud definable in terms a x, y, z coordinate system. The stud, more particularly, includes the z-axis elongate substantially rectangular integral web within a yz plane thereof and further includes a series of xz plane tabs projecting in an x-axis direction, said tabs alternating in x-axis extent between interdigitating greater and lesser dimensions thereof, in which a z-axis line of dependency exists between a common xz plane of all of said tabs in a first major rectangular base of said yz plane of said web of said stud. Said stud further includes a z-axis elongate L-shaped element integrally dependent from a second major rectangular base of said web, said elongate element parallel to said first base thereof. Said element includes an integral xz plane sub-element, extending in a z-axis direction, and substantially parallel with said series of xz plane tabs from a z-axis line of dependency from said second major base of said web, said z-axis L-shaped element further including a yz plane sub-element, in the nature of a lip, integrally depending from said xz sub-element along an entire z-axis length thereof and projecting toward said series of xz plane tabs, in which said yz sub-element is substantially parallel with said yz plane of said elongate web. The stud preferably formed of a thin gauge steel.
It is accordingly an object of the present invention to provide a metallic stud framing element particularly adapted for use within a concrete framing structure.
It is another object to provide a metallic stud of the above type which can function as an interior to exterior wall defining offset.
It is a further object of the invention to provide a vertical metallic stud capable of defining the shape and extent of vertical load bearing concrete columns within a poured concrete structure.
The above and yet other objects and advantages of the present invention will become apparent from the hereinafter set forth Brief Description of the Drawings, Detailed Description of the Invention and Claim appended herewith.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view of an inventive metallic stud.
FIG. 2
is a transverse cross-sectional view taken through Line
2
—
2
of FIG.
1
.
FIG. 2A
is a transverse cross-sectional view, similar to the view of
FIG. 2
, however, showing a second embodiment of the present invention.
FIG. 2B
is a transverse cross sectional view, similar to the view of
FIG. 2
, however, showing a third embodiment of the inventive metallic stud.
FIG. 2C
is a transverse cross-sectional view, similar to the view of
FIG. 2
, however, showing a further embodiment of the metallic stud.
FIG. 2D
is a transverse cross-sectional view, similar to the view of
FIG. 2
, however, showing an embodiment of the metallic stud in which the yz sub-element thereof is not substantially parallel with the xy plane web of the invention.
FIG. 3
is a transverse cross-sectional view taken through Line
3
—
3
of FIG.
1
.
FIG. 3A
is a transverse cross-sectional view, of a further embodiment, taken along Line
3
—
3
of
FIG. 1
in which the x-axis dimension of the lesser dimension tabs of the invention is zero.
FIG. 4
is an exploded view showing the stud frame of
FIG. 1
in combination with upper and lower system framing elements.
FIG. 5
is an assembly view of the exploded view of FIG.
4
.
FIG. 6
is a view, further to the view of
FIG. 5
, in which a concrete base of a resultant structure has been formed.
FIG. 7
is a fragmentary bottom horizontal sectional view of a resultant structure showing a xz plane tab of the inventive stud embedded within a poured concrete exterior wall.
FIG. 8
is a view, further to the view of
FIG. 6
, in which a concrete capstan of a resultant structure has been formed.
FIG. 9
is a yz plane side view of FIG.
8
.
FIG. 10
is a horizontal cross-sectional view of a wall of a structure, further to
FIGS. 6
to
7
, showing the positioning of steel stud frame elements relative to a poured concrete wall, interior vertical poured concrete columns and interior plasterboard connected to a curved surface of the stud frame.
DETAILED DESCRIPTION OF THE INVENTION
With reference to the perspective view of
FIG. 1
, the present inventive metallic stud for use in the framing of structures may be seen to be definable in an x,y,z coordinate system which is shown as a part of FIG.
1
.
More particularly, an inventive stud
10
may be seen to include an integral web
12
having a z-axis elongate structure, which is substantially rectangular. Web
12
includes a first major base
14
and an opposing second major base
16
, which bases are substantially parallel with each other. See also
FIGS. 2 and 3
.
The instant framing stud may, with reference to
FIGS. 1 and 2
, be further seen to include a series of xz plane tabs
18
and
20
which project into an x-axis direction. It is, however, noted that said tabs
18
alternate in x-axis extent between interdigitating greater dimensions said (said tabs
18
) and lesser dimensions (tabs
20
) of said series. It is noted that a z-axis line of dependency, which is co-linear with said first major rectangular base
14
, exists between an xz plane which is common to all of said tabs
18
and
20
and the yz plane of said integral web
12
.
With reference to the opposite side of stud
10
, there is provided a z-axis elongate L-shaped element
22
which is integrally dependent from said second major rectangular base
16
along a z-axis line of dependency therefrom. As may be further noted, said element is bi-planar and, therefrom, includes an elongate integral xz plane sub-element
24
which extends into a z-axis direction and which is substantially parallel with said interdigitating series of tabs
18
and
20
. Said L-shaped element
22
further includes a yz plane sub-element
26
which is also z-axis elongate, but which projects in the direction of said tabs
18
and
20
, and is preferably parallel with the plane of web
12
.
Shown in
FIG. 2A
is a second embodiment of the invention which differs from the preferred embodiment, shown and described with reference to
FIGS. 1 and 2
above, in that said yz plane sub-element
26
of the L-shaped element
22
is not employed. Accordingly, as may be noted in
FIG. 2 and 2A
, in the second embodiment of the invention, the right sides of the respective figures is the same. However, with respect to L-shaped element
124
of the second embodiment, namely, stud frame element
110
, there exists only an integral xz plane sub-element
124
. Accordingly, in this embodiment, the stud frame element is symmetrical about a xz plane of symmetry.
With reference to
FIG. 2B
there is, therein, shown a third embodiment of the invention, namely, metallic stud frame
210
in which the left hand side thereof is identical to the left hand side of the embodiment of FIG.
2
. However, at the right hand portion thereof, there is provided an L-shaped member
222
which is symmetric with L-shaped element
22
at the left side of FIG.
2
B. Said L-shaped element
222
includes an elongate xz plane sub-element
218
which is integrally dependent from web
212
at first major base
14
of web
212
. Extending integrally in a yz plane from sub-element
218
is a yz plane sub-element
226
which is substantially symmetric with said yz, plane sub-element
26
of element
22
, above discussed. However, in the embodiment of
FIG. 2B
, there are further provided projecting substantially T-shaped elongate elements
219
which are z-axis longitudinal with respect to each of the sub-elements
218
from which they project in the positive y-axis direction.
With reference to the embodiment of
FIG. 2C
, it is noted that web
12
of the prior embodiments i s replaced by a web
312
which is characterized by a longitudinal crimp
325
which may, in cross section, resemble a triangle, as is shown in FIG.
2
C. This embodiment provides for compressibility between xz surface
318
and
324
of the metallic stud frame. Accordingly, the embodiment of
FIG. 2C
provides for a stud frame element which is capable of absorbing compressive forces, along the y-axis which may then be absorbed by crimp
325
within web
312
.
With reference to
FIG. 2D
, there is shown an embodiment of the invention in which a z sub-element
227
, is not substantially parallel to said web
212
.
In
FIG. 3
is shown an embodiment in which the x-dimension project in the tab
20
is greater than zero.
In
FIG. 3A
is shown an embodiment of the invention in which the x dimension of each xz plane lesser tab is exactly zero.
With reference to the relationship of the y-axis dimension of the web, in any of the above described embodiments, relative to the x-axis dimension of said tabs
18
,
218
and
318
, defines a ratio in a range of about 6:1 to about 2:1.
As may further noted in
FIG. 1
, the x-axis dimension of each of said L-shaped elements
24
and
124
are approximately equal to the x-axis dimension of each of said yz tabs
18
,
218
and
318
.
It is to be further noted that the y-axis dimension of said yz plane sub-elements
26
of L-shaped element
24
, to an xz axis dimension of said xz plane sub-element (the element connecting web
212
and sub-element
26
), defines a ratio of about 1:1 to about 1:4.
It is to be yet further noted that the z-axis dimension of said tabs
18
(the greater dimension tabs), to an x-axis dimension thereof, defines a ratio in a range of about 1:1 to about 7:1.
The fashion of integration of frame stud
10
into a larger structure may be seen with reference to the exploded view of
FIG. 4
in which three of the inventive metallic studs
10
are shown in vertical position relative to horizontal framing members
28
and
30
. In
FIG. 5
, the elements of
FIG. 4
are shown in assembly view.
In
FIG. 6
, the structure of
FIG. 5
is shown, however, with the addition of a horizontal concrete footing
32
.
The view of
FIG. 8
is further to that of
FIG. 6
in which a resultant structure, including a capstan
33
, is shown which is cast over horizontal finishing members
28
and
30
. Further shown in
FIG. 8
are rebars
35
within said capstan, and rebar
37
with footing
32
.
FIG. 9
is a yz end plan view of
FIG. 8
, showing the vertical relationship between stud
10
and inner and outer walls of
36
and
34
respectively of a resultant framed structure. Shown within outer wall
34
is wire mesh
41
.
In
FIGS. 7
is shown the manner in which tabs
18
of the metallic stud
10
are embedded within a thin concrete wall
34
, which forms an exterior of the structure to be framed. This may be fully seen with reference to
FIG. 10
which comprises a horizontal (xy plane) cross section of a structure with which metallic studs
10
are employed. In
FIG. 10
may be further seen the attachment of plaster boards
36
or the like to sub-elements
24
of the metallic stud
10
. Such attachment is typically effected through screw attachment, although other means of securement, i.e., glue or adhesion may be employed. As may be further noted in
FIG. 10
, studs
10
may be used to form vertical molds within into which columns
38
and
40
may be poured to provide load bearing capability to the resultant structure.
The above described metal stud
10
constitutes a cost-effective means for rapid assembly of a large variety of structures which obviates entirely the need for wood, steel I-beams, or heavy steel rebars within concrete. Further, structures resultant from the use of stud
12
do not require large or massive quantities of concrete to produce a structure of suitable resistance to loads and stresses, both horizontally and vertically. In addition, because of vertical concrete columns, such as columns
38
and
40
, may be formed through the use of the inventive metallic stud, traditional truss structures may be placed thereupon where special purpose roofing designs are required.
Stud
10
is preferably formed of a light gauge in a range of 16 to 25 gauge.
While there has been shown and described the preferred embodiment of the instant invention it is to be appreciated that the invention may be embodied otherwise than is herein specifically shown and described and that, within said embodiment, certain changes may be made in the form and arrangement of the parts without departing from the underlying ideas or principles of this invention as set forth in the Claims appended herewith.
Claims
- 1. A metallic stud, the stud definable in terms of an x, y, z coordinate system, in which the stud comprises:(a) a z-axis elongate substantially rectangular integral web within a yz plane thereof; (b) a series of xz plane tabs projecting within a substantially x-axis direction, said tabs alternating in x-axis dimension between interdigiting greater and lesser dimensions thereof, in which a z-axis line of dependency exists between a common xz plane of all of said tabs and a first major rectangular base of said yz plane of said web of said stud, in which said x-axis dimension of said tabs of lesser dimension comprises substantially zero; and (c) a z-axis elongate L-shaped element integrally dependent from a second major rectangular base of said web parallel to said first base thereof, said element including an elongate integral xz-plane sub-element extending in a substantially z-axis direction, and substantially parallel with said series of xz plane tabs, from a z-axis line of dependency from said second major base of said web, said L-shaped element further including a yz plane sub-element, in t he nature of a lip, integrally depending from said first xz plane element along an entire z-axis length thereof, said second sub-element projecting toward said series of xz plane tabs.
US Referenced Citations (8)