This application claims the benefit of Canadian Application No. 2,772,550, filed on Mar. 22, 2012, and PCT Application No. PCT/CA2013/050120, filed on Feb. 15, 2013, each of which are incorporated by reference in their respective entirety.
The present invention relates generally to a trough for cooling and delivering molten metal to a casting station. More specifically, the invention relates to a trough that allows for extraction of heat from the molten metal. The invention also relates to a method for controlling the temperature of the molten metal upon delivery to the casting station.
A metal transfer trough is generally used to receive molten metal from a furnace and deliver it to a casting station, which for example carries moulds for casting metal pigs. The furnace may be used in a remelt shop or it may be fed from molten metal crucibles carrying hot metal which, in the aluminum industry, could have been siphoned directly from an aluminum electrolysis pot.
Generally, the transfer trough is insulated to ensure that the heat loss during transfer is minimized and energy is not wasted. However, in certain circumstances, the molten metal may be considered too hot for delivery to the casting station, and it is necessary to lower its temperature before delivery. Typically in such circumstances, the rate of casting is slowed down in order to allow enough time for the pigs to solidify before leaving the casting station. This brings about an undesirable reduction in the production rate of the plant. Alternatively, the holding time in the crucible is increased in order to allow the metal to cool down, which also results in production slowdowns.
Other systems for cooling molten metal during transfer are known in the art. For example, EP 0 161 051 describes a closed conduit which is immersed in a heat exchanger medium such as a fluidized bed of solid particles. Circulation of the molten metal into the conduit is effected using pressure without contact with the atmosphere. CA 2,083,919 discloses a partially inclined elongated conveying conduit for transporting molten metal within a diffusion furnace. The conduit comprises gas feed means for feeding an inert gas into the conduit, thereby forcing circulation of the molten metal.
There is a need for a system that allows for a more efficient cooling of the molten metal during transfer to the casting station and also that allows for control over the temperature of the molten metal upon delivery.
The invention relates to a cooling trough for delivering molten metal to a casting station. The trough allows for a more efficient cooling of the molten metal during transfer to the casting station and also allows for control over the temperature of the molten metal upon delivery. Moreover, the trough enables casting directly from the crucibles used in the aluminum industry as mentioned above. Therefore, cycle time, energy cost and number of furnaces are reduced. Advantageously, the refractory portion of the trough, which holds the molten metal, is made of a material that is more conductive than standard conductive refractory materials generally used in the art. The refractory portion can be shaped to further facilitate heat removal.
According to an aspect of the invention, the trough comprises a refractory portion for holding the molten metal and heat transfer means that is associated to external walls of the refractory portion for extracting heat from the molten metal. Advantageously, the heat transfer means comprises a fluidized bed. For this purpose, the trough is provided with a fluidized bed compartment for holding and fluidizing a fluidization material.
According to another aspect, the invention relates to a trough for cooling and delivering molten metal to a casting station, the trough being made of conductive ceramic material and having a first set of fins extending outwardly from external walls thereof, and a cooling jacket associated to the external walls so as to form a fluidized bed compartment between the trough and an inner wall of the cooling jacket, the first set of fins extending into the compartment. Advantageously, the heat transfer means comprises a fluidized bed. For this purpose, the trough is provided with a fluidized bed compartment for holding and fluidizing a fluidization material.
The invention further relates to a method for controlling the temperature of a molten metal being delivered to a casting station. The heat transfer means of the cooling trough extracts heat from the molten metal, thereby lowering its temperature. The heat transfer means can be operated such as to increase or decrease heat extraction at selected sections of thereof, thereby allowing for a control of the temperature of the molten metal upon delivery to the casting station.
According to an aspect, the method comprises the steps of: (a) providing a trough that comprises a refractory portion for holding molten metal and heat transfer means associated to lateral external walls of the refractory portion for extracting heat from the molten metal; (b) feeding the molten metal in the trough through an upper end portion thereof; (c) operating the heat transfer means such that the molten metal reaches a controlled casting temperature; and (d) delivering the molten metal which is at the controlled casting temperature to the casting station through a lower end portion of the trough.
In order for the invention to be more clearly understood, an embodiment is described below with reference to the accompanying drawings, in which:
Referring to
As mentioned above, the heat transfer means extracts heat from the molten metal (12), thereby lowering its temperature upon entry to the casting station (70). More specifically and as will be described in greater detail below, heat on the refractory side is extracted and transported to the water cooled inner wall (26) by the fluidized material through mass transfer, conduction and radiation. The fluidized material ensures close contact between the refractory portion and the cooling jacket, thereby increasing the overall efficiency of heat extraction from the molten metal.
The refractory portion (28) of the trough (20) is made of conductive refractory or ceramic material. Conductive refractory materials include for example Ceramite™ CSA, aluminum nitride and silicon carbide. The cooling jacket (30) is made of heat conductive material such as aluminum, steel, copper or a combination thereof. The inner wall (26) of the cooling jacket may be made of the same material, or not, as the remainder of the cooling jacket. Preferably, the inner wall (26) of the cooling jacket is made of aluminum or copper.
A first set of fins (32) extends outwardly from the external walls (22) of the refractory portion (28) and into the fluidized bed compartment (24), as illustrated in
Still referring to
The fluidized bed compartment (24) is formed by the external walls (22) of the refractory portion (28) and the inner wall (26) of the cooling jacket (30). In embodiments of the invention, fins (32) extending from external walls of the trough and/or fins (34) extending from an inner wall of the cooling jacket are present and located within the fluidized bed compartment (24). It should be noted that only one or both sets of fins (32, 34) may be present. In embodiments where both sets of fins (32, 34) are present, they are organized in a mating spaced-apart arrangement, as illustrated for example in
Fin density herein refers to the number of fins per length of the trough. Fin density may be adapted as desired depending on the amount of heat to be extracted from the molten metal. When fin density is increased, the amount of heat extracted from the molten metal is generally increased as would be understood by those of ordinary skill in the art. In embodiments of the invention, the distance between two consecutive fins, hereinafter fin spacing, is about 10 to about 300 mm; preferably, fin spacing is about 20 to about 50 mm; more preferably, fin spacing is about 20 to about 35 mm. Fin spacing for the first set of fins (32) and the second set of fins (34) may be the same or different. In embodiments of the invention, fin spacing for the first set of fins (32) is about 20 to about 30 mm and fin spacing for the second set of fins (34) is about 30 to about 40 mm. The length of fins (32, 34) may be about 50 to about 300 mm; preferably, about 80 to about 120 mm.
In embodiments of the invention wherein fins (32, 34) are organized in a parallel configuration as illustrated for example in
In embodiments of the invention, a thickness of the base (72) of the refractory portion (28) is about 10 to about 80 mm; preferably about 40 mm. In other embodiments, a thickness of the base of the cooling jacket (30) (part of the jacket which does not have any fins extending therefrom) is about 5 to about 20 mm; preferably, a cooling jacket thickness is about 8 to about 15 mm.
A particulate fluidization material (74) is provided in the fluidized bed compartment (24). Examples of such material include: alumina, alumina mixed with a mineral oxide, silica oxide, or a combination thereof. The fluidization material can be from various sources and can be of various grain size and porosity. The nature and size of the fluidization material may be optimized to obtain better heat extraction efficiency. In embodiments of the invention, the grain size of the fluidization material is about 50 to about 600 μm; preferably, the grain size is about 150 to about 400 μm; more preferably, the grain size is about 250 μm.
Fluidization is activated to effect heat transfer thereby cooling the molten metal. The fluidized particles extract heat at the external walls (22) of the refractory portion (28) of the trough (20) and at the fins (32), and by mass transfer (collision, friction), the heat is conveyed by the fluidized particles to fins (34) and inner wall (26) of the cooling jacket (30).
Referring to
In an embodiment of the invention, the fluidized bed compartment (24) is divided into a plurality of sections, for example A, B, C . . . , by for example division plates (40) in gas chamber (41). Each section is provided with a separate air inlet (38A, 38B, 38C . . . ) and air valve (39A, 39B, 39C . . . ) and can be operated separately and independently from the other sections. Fluidization may thus be effected at selected sections thereby fluidizing only selected sections of the fluidized bed compartment (24). The effective length of the cooling trough can thus be varied as desired, allowing for control over the temperature of the molten metal. The effective trough length refers to the percentage of the trough in which fluidization is carried out. This embodiment is illustrated in
The cooling jacket is operated by circulating water therein, at a suitable flow rate. Any suitable coolant, other than water, may be used, as would be understood by those of skill in the art. The trough is provided with a water flow meter (46) and a main water valve (49).
Referring to
Referring to
In another embodiment and referring to
Dimensions (length, height and width) of the trough are adjusted as necessary, depending on the desired controlled casting temperature for the molten metal as well as the amount of metal and the molten metal flow rate. The trough is provided between furnace(s) (60) and the casting station (70). The trough (20) can be used in-line as illustrated for example in
The trough according to the invention has been illustrated for the delivery and cooling of molten aluminum and aluminum alloys. However, the trough may also be used to deliver and cool any other metal or alloy, as would be appreciated by those of skill in the art.
Operation of the trough may advantageously be controlled with temperature sensor array connected to computer means with feedback loop to various values or activators so as to provide in-process controls.
Examples of Situations and Control
In the embodiments of
a) Where a maximum temperature drop of 30° C. is targeted: all sections of the fluidized bed compartment are fluidized and water flow rate is set at the same value, such as to allow for a 6° C. decrease in temperature in each section.
b) Where a temperature drop of 18° C. is targeted: two sections of the fluidized bed compartment are fluidized and water flow rate in each section of the water jacket is set at the same value. Fluidization is off for three sections of the fluidized bed compartment and water flow rate is reduced in order not to overcool.
c) Where a temperature drop of 28° C. is targeted: all sections of the fluidized bed compartment are fluidized; one section with a lower air flow and the water jacket is operated with reduced water flow.
Examples of Temperature Control-1
The graph on
Examples of Temperature Control-2
At a molten metal flow rate of 13 t/hr and for a molten metal level of 277 mm, the molten metal temperature drop ranges between 5.5° C./m to 16.2° C./m depending on operating conditions. Typical temperature drop at higher flow rate in a typical aluminum casting plant ranges between 2 to 4° C./m. Heat extraction rate is modulated between the range indicated above by varying fluidization air flow rate and by performing fluidization at selected sections of the fluidized bed compartment (use of effective trough length). The following table summarizes the cooling trough length in meters in order to meet desired molten metal temperature drop at specific flow rate with actual performances.
Although the present invention has been described hereinabove by way of embodiments thereof, it may be modified, without departing from the nature and teachings of the subject invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2772550 | Mar 2012 | CA | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2013/050120 | 2/15/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/138922 | 9/26/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3738777 | von Starck | Jun 1973 | A |
5346182 | Kurotobi et al. | Sep 1994 | A |
20150158084 | Hebert | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
2083919 | May 1993 | CA |
0 161 051 | Nov 1985 | EP |
2117687 | Oct 1983 | GB |
8704098 | Jul 1987 | WO |
Entry |
---|
Apr. 15, 2013—(WO) International Search Report and Written Opinion—PCT/CA2013/050120. |
Oct. 2, 2014—(WO) International Preliminary Report on Patentability—PCT/CA2013/050120. |
Number | Date | Country | |
---|---|---|---|
20150158084 A1 | Jun 2015 | US |