Metal wood club with improved hitting face

Abstract
A hitting face of a golf club head having improved strength properties. In one embodiment, the hitting face is made from multiple materials. The multiple materials form layers of a laminate construction of a flat portion of a hitting face insert. The layers of the laminate are joined together using a diffusion bonding technique. Preferably, at least one layer of the laminate is a thin layer of a very strong material that forms the rear side of the hitting face insert so as to prevent failure of the hitting face insert on that rear side due to repeated impacts with golf balls.
Description
FIELD OF THE INVENTION

The present invention relates to an improved golf club head. More particularly, the present invention relates to a golf club head with an improved striking face having improved strength and launch characteristics.


BACKGROUND

The complexities of golf club design are known. The specifications for each component of the club (i.e., the club head, shaft, grip, and subcomponents thereof) directly impact the performance of the club. Thus, by varying the design specifications, a golf club can be tailored to have specific performance characteristics.


The design of club heads has long been studied. Among the more prominent considerations in club head design are loft, lie, face angle, horizontal face bulge, vertical face roll, center of gravity, inertia, material selection, and overall head weight. While this basic set of criteria is generally the focus of golf club designers, several other design aspects must also be addressed. The interior design of the club head may be tailored to achieve particular characteristics, such as the inclusion of hosel or shaft attachment means, perimeter weights on the club head, and fillers within the hollow club heads.


Golf club heads must also be strong to withstand the repeated impacts that occur during collisions between the golf club and the golf balls. The loading that occurs during this transient event can create a peak force of over 2,000 lbs. Thus, a major challenge is designing the club face and body to resist permanent deformation or failure by material yield or fracture. Conventional hollow metal wood drivers made from titanium typically have a uniform face thickness exceeding 2.5 mm to ensure structural integrity of the club head.


Players generally seek a metal wood driver and golf ball combination that delivers maximum distance and landing accuracy. The distance a ball travels after impact is dictated by the magnitude and direction of the ball's initial velocity and the ball's rotational velocity or spin. Environmental conditions, including atmospheric pressure, humidity, temperature, and wind speed, further influence the ball's flight. However, these environmental effects are beyond the control of the golf equipment designers. Golf ball landing accuracy is driven by a number of factors as well. Some of these factors are attributed to club head design, such as center of gravity and club face flexibility.


The United States Golf Association (USGA), the governing body for the rules of golf in the United States, has specifications for the performance of golf balls. These performance specifications dictate the size and weight of a conforming golf ball. One USGA rule limits the golf ball's initial velocity after a prescribed impact to 250 feet per second±2% (or 255 feet per second maximum initial velocity). To achieve greater golf ball travel distance, ball velocity after impact and the coefficient of restitution of the ball-club impact must be maximized while remaining within this rule.


Generally, golf ball travel distance is a function of the total kinetic energy imparted to the ball during impact with the club head, neglecting environmental effects. During impact, kinetic energy is transferred from the club and stored as elastic strain energy in the club head and as viscoelastic strain energy in the ball. After impact, the stored energy in the ball and in the club is transformed back into kinetic energy in the form of translational and rotational velocity of the ball, as well as the club. Since the collision is not perfectly elastic, a portion of energy is dissipated in club head vibration and in viscoelastic relaxation of the ball. Viscoelastic relaxation is a material property of the polymeric materials used in all manufactured golf balls.


Viscoelastic relaxation of the ball is a parasitic energy source, which is dependent upon the rate of deformation. To minimize this effect, the rate of deformation should be reduced. This may be accomplished by allowing more club face deformation during impact. Since metallic deformation may be substantially elastic, the strain energy stored in the club face is returned to the ball after impact thereby increasing the ball's outbound velocity after impact. Therefore, there remains a need in the art to improve the elastic behavior of the hitting face.


As discussed in commonly-owned parent patent U.S. Pat. No. 6,605,007, the disclosure of which is incorporated herein in its entirety, one way known in the art to obtain the benefits of titanium alloys in the hitting face is to use a laminate construction for the face insert. Laminated inserts for golf club heads are well-known in the art, where multiple metal layers of varying density are joined together to maximize the strength and flexural properties of the insert. The method used to join the layers together are critical to the life of the insert, as the repeated impacts with golf balls can eventually cause the insert to delaminate. In the art, laminated striking plate inserts for golf clubs, the bonding strength of the laminate is usually quite low, generally lower than the yield strength of the weakest material. As such, there remains a need in the art for additional techniques for effectively bonding together the layers of a laminate hitting face, particularly where all layers of the hitting face are titanium alloys.


SUMMARY OF THE INVENTION

A golf club head includes a hitting face having a first layer of a first material having a first thickness and a second layer of a second material having a second thickness. The second thickness is less than the first thickness, and the second material has a higher tensile strength than the first material. In one embodiment, the first material is more ductile and is positioned to impact the ball. In another embodiment, the layers are bonded by diffusion bonding.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred features of the present invention are disclosed in the accompanying drawings, wherein similar reference characters denote similar elements throughout the several views, and wherein:



FIG. 1 is a front view of a metal wood club head having a hitting face insert according to one embodiment of the present invention;



FIG. 2 is a planar view of the rear face of the hitting face insert of FIG. 1;



FIG. 3 is an enlarged, partial cross-sectional view of the hitting face insert taken along line 3-3 in FIG. 2;



FIG. 4 is a cross-sectional view of a laminate structure which corresponds to FIG. 14 of the parent patent;



FIG. 5 is a planar view of the rear face of another embodiment of a hitting face insert according to the present invention;



FIG. 5A is an enlarged cross-sectional view of the hitting face insert of FIG. 5 taken along line 5A-5A thereof;



FIG. 6 is a planar view of the rear side of another embodiment of a hitting face insert according to the present invention; and



FIG. 7 is an enlarged cross-sectional view of the hitting face insert of FIG. 6.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The '007 patent, previously incorporated by reference, discloses an improved golf club that also produces a relatively large “sweet zone” or zone of substantially uniform high initial velocity or high coefficient of restitution (COR).


COR or coefficient of restitution is a measure of collision efficiency. COR is the ratio of the velocity of separation to the velocity of approach. In this model, therefore, COR was determined using the following formula:

(vclub-post−vball-post)/(vball-pre−vclub-pre)

where,

    • vclub-post represents the velocity of the club after impact;
    • vball-post represents the velocity of the ball after impact;
    • vclub-pre represents the velocity of the club before impact (a value of zero for USGA COR conditions); and
    • vball-pre represents the velocity of the ball before impact.


COR, in general, depends on the shape and material properties of the colliding bodies. A perfectly elastic impact has a COR of one (1.0), indicating that no energy is lost, while a perfectly inelastic or perfectly plastic impact has a COR of zero (0.0), indicating that the colliding bodies did not separate after impact resulting in a maximum loss of energy. Consequently, high COR values are indicative of greater ball velocity and distance.


A variety of techniques may be utilized to vary the deformation of the club face to manipulate the size and location of the sweet spot, including uniform face thinning, thinned faces with ribbed stiffeners and varying thickness, among others. These designs should have sufficient structural integrity to withstand repeated impacts without permanently deforming the club face, as the backside portion of a metal wood face is very sensitive to the high impact stress conditions due to manipulations to achieve a COR value at the allowable USGA limit. In general, conventional club heads also exhibit wide variations in initial ball speed after impact, depending on the impact location on the face of the club.



FIG. 1 shows a metal wood club head 10. A body 13 having a crown 9, a hitting face 12 and a sole 11 is preferably a hollow shell made of a strong and resilient metal, such as steel or titanium. Body 13 may be made by any method known in the art, such as by casting or forging. Body 13 may be any size appropriate in the art for metal wood clubs, but preferably includes a large internal cavity that is greater than 250 cubic centimeters. The internal cavity (not shown) may be filled with a low density material such as foam, but the internal cavity is preferably empty.


Similar to many metal wood club head configurations in the art, club head 10 includes a hitting face 12 that includes an opening into which a face insert 14 is affixed. As shown in FIG. 2, face insert 14 includes a relatively flat portion 16 that forms the main portion of face insert 14 and two optional wings 18, 20. Face insert 14 is affixed to hitting face 12 by any method known in the art, preferably welding. Wings 18, 20 remove the weld lines away from hitting face 12 caused by affixing face insert 14 thereto, i.e., to upper and lower portions of body 13. The discontinuities of material properties associated with welding are removed from hitting face 12.


Face insert 14 is preferably made of a strong and resilient metal material. Flat portion 16 of face insert 14 has a laminate construction, where at least two layers of material are joined together to form a single plate-like piece. The laminate may be formed from as many individual layers as necessary to obtain the desire combination of ductility and strength, however, preferably face insert 14 includes at least two layers, a thin layer 22 and a thick layer 24, where thin layer 22 is a different material or has different material properties from thick layer 24. As shown in FIGS. 2 and 3, thin layer 22 preferably covers the entire rear side 15 of flat portion 16 of hitting face 14. The front side 17 of flat portion 16 of hitting face 14 is preferably made of the material of thick layer 24. Wings 16, 18 are preferably not made of laminated materials, but are purely the material of thick layer 24.


Thick layer 24, or the striking surface of hitting face 14, is preferably made of a metal material that is ductile and tough, such as a titanium alloy like SP700, but may be any appropriate material known in the art such as other titanium alloys and metals. Thick layer 24 provides the flexibility and stiffness properties of hitting face 14, such that a high COR may be achieved. As the thickness of thick layer 24 is preferably substantially greater than the thickness of thin layer 22, these flexibility properties will dominate the deflection of hitting face 14 during impact with a golf ball. The thickness of thick layer 24 is preferably minimized to save weight, thereby providing greater control over the mass distribution properties of club head 10. The actual thickness of thick layer 24 varies from club to club.


Thin layer 22 is preferably made of a thin layer of a very strong material, such as beta titanium alloys like 10-2-3. The additional strength provided by thin layer 22 allows for the thickness of thick layer 24 to be further minimized, as the inclusion of thin layer 22 makes hitting face insert 14 less susceptible to yielding under severe impact conditions. As strong materials tend to be less ductile than similar but weaker materials, thin layer 22 is preferably very thin compared to thick layer 24 so that the flexibility properties of the material of thin layer 22 are dominated by the flexibility properties of thick layer 24. However, the strength of the material of thin layer 22 is locally added to rear side 15 of flat portion 16 of hitting face 14 so that cracks are less likely to develop on rear side 15. In a preferred embodiment, layer 24 is positioned to impact the balls.


As discussed in the parent '007 patent and the parent '314 application, previously incorporated by reference, a useful measurement of the varying flexibilities in a hitting face is to calculate flexural stiffness. Calculation of flexural stiffness for asymmetric shell structures with respect to the mid-surface is common in composite structures where laminate shell theory is applicable. Here the Kirchoff shell assumptions are applicable. Referring to FIG. 4, which is FIG. 14 from the '007 patent, an asymmetric isotropic laminate 50 is shown with N lamina or layers 52. Furthermore, the laminate is described to be of thickness, t, with xi being directed distances or coordinates in accordance with FIG. 4. The positive direction is defined to be downward and the laminate points xi defining the directed distance to the bottom of the kth laminate layer. For example, x0=−t/2 and xN=+t/2 for a laminate of thickness t made comprised of N layers.


Further complexity is added if the lamina can be constructed of multiple materials, M. In this case, the area percentage, Ai is included in the flexural stiffness calculation, as before in a separate summation over the lamina. The most general form of computing the flexural stiffness in this situation is, as stated above:







FS
z

=




i
=
1

n









A
i





j
=
1

n







A
j





E
i



t
i
3







Due to the geometric construction of the lamina about the mid-surface, asymmetry results, i.e., the laminate lacks material symmetry about the mid-surface of the laminate. However, this asymmetry does not change the calculated values for the flexural stiffness only the resulting forces and moments in the laminate structure under applied loads. An example of this type of construction would be a titanium alloy face of uniform thickness and first modulus Et, where the central zone is backed by a steel member of width half the thickness of the titanium portion, and having second modulus Es. In this example, the flexural stiffness can be approximated by the simplified equation, as follows:








FS
z

=


1
3






i
=
1

M








[

E


(


x
k
3

-

x

k
-
1

3


)


]

i














FS
z=⅓{[Es(xo3−x13)]+Et(x13−x23)]}


here, xo=−t/2, x1=t/2−WI and x2=t/2, substitution yielding

FSz=⅓{[Es((−t/2)3−(t/2−WI)3)]+Et((t/2−WI)3−(t/2)3)]}

If t=0.125, then WI=0.083 and FS of this zone is 3,745 lb·in, where the thickness of the steel layer is about one-half of the thickness of the titanium layer.


Similar to the zone-based hitting face structure of the parent '007 patent and the parent '314 application, thick layer 24 may be further divided into additional layers so as to obtain the benefits of additional materials. As shown in FIGS. 5 and 5A, a third layer 25 may be included to affect the flexural properties of hitting face 14 locally. In this embodiment, similar to the hitting face insert dense insert discussed in commonly-owned, co-pending U.S. patent application Ser. No. 10/911,422 filed on Aug. 4, 2004, the disclosure of which is incorporated herein by reference, third layer 25 is made of a stiff material. Third layer 25 is preferably a single piece of material with a surface area that is smaller than thick layer 24 such that third layer 25 defines the desired sweet spot. As such, third layer 25 causes the sweet spot to tend to deflect as a single piece. In other words, third layer 25 creates a trampoline-like effect. Third layer 25 may be any shape known in the art, including but not limited to circular, elliptical, or polygonal. Third layer 25 may be inserted into a machined slot on the back of thick layer 24 or may simply be affixed thereto. For example, as shown in FIG. 5A, third layer 25 may be a circular dense insert 25 placed a cavity 23 on a rear surface of thick layer 24. Dense insert 25 is then preferably diffusion bonded to thick layer 24 within cavity 23 and to thin layer 22.


The bond holding together layers 22, 24 must be sufficiently strong to prevent the delamination of layers 22, 24 after repeated impacts. While any method known in the art may be used to bond together layers 22, 24, preferably layers 22, 24 are joined together using diffusion bonding. Diffusion bonding is a solid-state joining process involving holding materials together under load conditions at an elevated temperature. The process is typically performed in a sealed protective environment or vacuum. The pressure applied to the materials is typically less than a macrodeformation-causing load, or the load at which structural damage occurs. The temperature of the process is typically 50-80% of the melting temperature of the materials. The materials are held together for a specified duration, which causes the grain structures at the interface between the two materials to intermingle, thereby forming a bond.


For example, two titanium alloys such as a beta titanium alloy to an alpha or alpha-beta titanium alloy are prepared for diffusion bonding. The materials are machined into the shapes of the parts, then the bonding surfaces are thoroughly cleaned, such as with an industrial cleaning solution such as methanol or ultrasonically, in order to remove as many impurities as possible prior to heating and pressurization of the materials. Optionally, the bonding surfaces may also be roughened prior to cleaning, such as with a metal brush, to increase the surface area of the bonding surfaces. The bonding surfaces are brought into contact with one another, and a load is applied thereto, such as by clamping. The joined materials are heated in a furnace while clamped together, for example at temperatures ranging from 600 to 700 degrees centigrade. The furnace environment is preferably a vacuum or otherwise atmospherically controlled. The duration of the heating cycle may vary from approximately ½ hour to more than ten hours. In order to speed up the heating process, a laser may be trained on the interface of the two materials in order to provide spot heating of the interfacial region. As the materials are heated, the atomic crystalline structure of the two materials melds together in the interfacial region. When the joined materials are removed from the furnace and cooled to room temperature, the resulting bond is strong and durable.


Other configurations of the laminate structure are also possible. As shown in FIG. 5, the laminate need not be a traditional laminate, where all lamina have similar sizes and shapes. In the present invention, it may be advantageous to include a thick layer 24, as shown in FIG. 6, that forms the majority of the laminate and a thin layer 22 that helps to define areas or zones of hitting face insert 14. For example, thin layer 22 may be used to provide additional stiffness in a particular location, such as the desired location for the sweet spot. Alternatively, thin layer 22 may be used to provide additional strength to a rear side 15 of portion 16 only in the spot of most severe deflection to increase the life of hitting face 14. Similar configurations using multiple materials to define zones having the benefits of material properties such as increased strength and flexibility are shown in the parent patent '007 as well as the parent '314 application, both of which have been previously incorporated by reference.


While various descriptions of the present invention are described above, it should be understood that the various features of each embodiment could be used alone or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein. Further, it should be understood that variations and modifications within the spirit and scope of the invention might occur to those skilled in the art to which the invention pertains. For example, additional configurations and placement locations of the thin layer are contemplated. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.

Claims
  • 1. A hollow golf club comprising: a hollow body defining a cavity, wherein the body is connectable to a shaft; anda hitting face insert configured to be affixed to the body, wherein the hitting face insert comprises a first layer of a first metal material having a substantially constant first thickness, wherein the first layer forms a striking face of the hitting face insert, anda second layer of a second material having a second thickness,wherein the second thickness is less than the first thickness, and the second material has a higher tensile strength than the first material and the second layer covers only a portion of the first layer to define at least one particular zone of the hitting face insert.
  • 2. The golf club head of claim 1 further comprising at least one wing disposed on the hitting face, wherein the wing extends into either a crown or a sole of a club head body.
  • 3. The golf club head of claim 1, wherein the first material has a higher ductility than the second material.
  • 4. The golf club head of claim 1, wherein the second material has a higher yield strength than the first material.
  • 5. The golf club head of claim 1, wherein the first layer is diffusion bonded to the second layer.
  • 6. The golf club head of claim 1, wherein the second layer is provided on the sweet spot.
  • 7. The golf club head of claim 1, wherein the second layer is provided on an area of most severe deflection on the hitting face insert.
  • 8. The golf club head of claim 1, wherein the second layer comprises multiple materials covering multiple zones.
  • 9. The golf club head of claim 1, wherein the first layer is comprised of a SP700 titanium alloy and the second layer is comprised of a beta titanium alloy.
  • 10. The golf club head of claim 1, wherein the second layer is diffusion bonded to the first layer.
  • 11. A hollow golf club head comprising: a hitting face insert comprising a first layer of a first metal material having a substantially constant first thickness, wherein the first layer forms a striking face of the hitting face insert,a second layer of a second material having a second thickness, anda third layer of a third material having a third thickness,wherein the third layer has a smaller surface area than the first layer and is configured to define a sweet spot on the hitting face, and wherein the second thickness is less than the first thickness.
  • 12. The golf club head of claim 11, wherein a third material flexural stiffness is significantly lower than a first or second layer flexural stiffness.
  • 13. The golf club head of claim 11, wherein a second layer surface area is approximately the same as the first layer surface area.
  • 14. The golf club head of claim 11, wherein the third material is denser than the first and second materials, and wherein the third layer is diffusion bonded to the first layer.
  • 15. The golf club head of claim 11, wherein the third layer is diffusion bonded to at least one of the first or second layers.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation-in-part of U.S. patent application Ser. No. 10/911,341 filed on Aug. 4, 2004, now U.S. Pat. No. 7,207,898 which is a continuation-in-part of U.S. patent application Ser. No. 10/428,061 filed on May 1, 2003, now U.S. Pat. No. 7,029,403 which is a continuation-in part of 09/551,771, filed Apr. 18, 2000, now U.S. Pat. No. 6,605,007 the disclosures of which are incorporated herein in their entireties by reference.

US Referenced Citations (205)
Number Name Date Kind
1318325 Klin Oct 1919 A
1319233 Mattern Oct 1919 A
1467435 Kinnear Sep 1923 A
1525352 Aitken Feb 1925 A
1543691 Beat Jun 1925 A
1582836 Link Apr 1926 A
1589363 Butchart Jun 1926 A
1595589 Tyler Aug 1926 A
1605551 Mattern Nov 1926 A
1699874 Buhrke Jan 1929 A
1704119 Buhrke Mar 1929 A
1704165 Buhrke Mar 1929 A
1720867 Webster et al. Jul 1929 A
2034936 Barnhart Mar 1936 A
2087685 Hackney Jul 1937 A
3567228 Lynn Mar 1971 A
3571900 Hardesty Mar 1971 A
3625518 Solheim Dec 1971 A
3659855 Hardesty May 1972 A
3695618 Woolley et al. Oct 1972 A
3863932 Lezatte Feb 1975 A
3985363 Jepson et al. Oct 1976 A
4023802 Jepson et al. May 1977 A
4193601 Reid, Jr. et al. Mar 1980 A
4213613 Nygren Jul 1980 A
4214754 Zebelean Jul 1980 A
D267965 Kobayashi Feb 1983 S
4429879 Schmidt Feb 1984 A
4449707 Hayashi et al. May 1984 A
4451041 Hayashi et al. May 1984 A
4451042 Hayashi et al. May 1984 A
4465221 Schmidt Aug 1984 A
4471961 Masghati et al. Sep 1984 A
4489945 Kobayashi Dec 1984 A
4511145 Schmidt Apr 1985 A
4762324 Anderson Aug 1988 A
4792140 Yamaguchi et al. Dec 1988 A
4804188 McKee et al. Feb 1989 A
4826172 Antonious May 1989 A
4842243 Butler Jun 1989 A
4913438 Anderson Apr 1990 A
4915385 Anderson Apr 1990 A
4915386 Antonious Apr 1990 A
4919430 Antonious Apr 1990 A
4919431 Antonious Apr 1990 A
4921252 Antonious May 1990 A
4928965 Yamaguchi et al. May 1990 A
4930781 Allen Jun 1990 A
4932658 Antonious Jun 1990 A
4955610 Creighton et al. Sep 1990 A
D312858 Anderson et al. Dec 1990 S
5000454 Soda Mar 1991 A
5024437 Anderson Jun 1991 A
5028049 McKeighen Jul 1991 A
5046733 Antonious Sep 1991 A
5056705 Wakita et al. Oct 1991 A
5060951 Allen Oct 1991 A
5067715 Schmidt et al. Nov 1991 A
5090702 Viste Feb 1992 A
5094383 Anderson et al. Mar 1992 A
5106094 Desbiolles et al. Apr 1992 A
5141230 Antonious Aug 1992 A
5163682 Schmidt et al. Nov 1992 A
5180166 Schmidt et al. Jan 1993 A
5183255 Antonious Feb 1993 A
5213328 Long et al. May 1993 A
5221087 Fenton et al. Jun 1993 A
5240252 Schmidt et al. Aug 1993 A
5242167 Antonious Sep 1993 A
5255918 Anderson et al. Oct 1993 A
5261663 Anderson Nov 1993 A
5261664 Anderson Nov 1993 A
5271621 Lo Dec 1993 A
5292129 Long et al. Mar 1994 A
5295689 Lundberg Mar 1994 A
5301945 Schmidt et al. Apr 1994 A
5318300 Schmidt et al. Jun 1994 A
5328184 Antonious Jul 1994 A
5344140 Anderson Sep 1994 A
5346216 Aizawa Sep 1994 A
5346218 Wyte Sep 1994 A
5351958 Helmstetter Oct 1994 A
5358249 Mendralla Oct 1994 A
5362047 Shaw et al. Nov 1994 A
5362055 Rennie Nov 1994 A
5366223 Werner et al. Nov 1994 A
5380010 Werner et al. Jan 1995 A
5390924 Antonious Feb 1995 A
5395113 Antonious Mar 1995 A
5397126 Allen Mar 1995 A
5401021 Allen Mar 1995 A
5405136 Hardman Apr 1995 A
5405137 Vincent et al. Apr 1995 A
5407202 Igarashi Apr 1995 A
RE34925 McKeighen May 1995 E
5417419 Anderson et al. May 1995 A
5417559 Schmidt May 1995 A
5423535 Shaw et al. Jun 1995 A
5429357 Kobayashi Jul 1995 A
5431396 Shieh Jul 1995 A
5433440 Lin Jul 1995 A
5447307 Antonious Sep 1995 A
5447309 Vincent Sep 1995 A
5451056 Manning Sep 1995 A
5460376 Schmidt et al. Oct 1995 A
5467983 Chen Nov 1995 A
5470069 Schmidt et al. Nov 1995 A
5474296 Schmidt et al. Dec 1995 A
5482279 Antonious Jan 1996 A
5497993 Shan Mar 1996 A
5505453 Mack Apr 1996 A
5522593 Kobayashi et al. Jun 1996 A
5524331 Pond Jun 1996 A
5533729 Leu Jul 1996 A
5536006 Shieh Jul 1996 A
5547630 Schmidt Aug 1996 A
5549297 Mahaffey Aug 1996 A
5564994 Chang Oct 1996 A
5584770 Jensen Dec 1996 A
5595552 Wright et al. Jan 1997 A
5611741 Schmidt et al. Mar 1997 A
5611742 Kobayashi Mar 1997 A
D379393 Kubica et al. May 1997 S
5626530 Schmidt et al. May 1997 A
5643104 Antonious Jul 1997 A
5643108 Cheng Jul 1997 A
5643110 Igarashi Jul 1997 A
5649872 Antonious Jul 1997 A
5651409 Sheehan Jul 1997 A
5655976 Rife Aug 1997 A
5669827 Nagamoto Sep 1997 A
5669829 Lin Sep 1997 A
5674132 Fisher Oct 1997 A
D387113 Burrows Dec 1997 S
5695411 Wright et al. Dec 1997 A
5697855 Aizawa Dec 1997 A
5709614 Horiba Jan 1998 A
5709615 Liang Jan 1998 A
5711722 Miyajima et al. Jan 1998 A
5716292 Huang Feb 1998 A
5718641 Lin Feb 1998 A
5720673 Anderson Feb 1998 A
5743813 Chen et al. Apr 1998 A
5753170 Muang May 1998 A
5755624 Helmstetter May 1998 A
5762567 Antonious Jun 1998 A
5766092 Mimeur et al. Jun 1998 A
5766094 Mahaffey et al. Jun 1998 A
5766095 Antonious Jun 1998 A
5776011 Su et al. Jul 1998 A
5807190 Krumme et al. Sep 1998 A
5827131 Mahaffey et al. Oct 1998 A
5827132 Bamber Oct 1998 A
RE35955 Lu Nov 1998 E
D401652 Burrows Nov 1998 S
5830084 Kosmatka Nov 1998 A
5839975 Lundberg Nov 1998 A
5842934 Ezaki et al. Dec 1998 A
5851159 Burrows Dec 1998 A
5863261 Eggiman Jan 1999 A
5873791 Allen Feb 1999 A
5873795 Wozny et al. Feb 1999 A
D406294 Burrows Mar 1999 S
5888148 Allen Mar 1999 A
5890973 Gamble Apr 1999 A
D411272 Burrows Jun 1999 S
5908357 Hsieh Jun 1999 A
5921872 Kobayashi Jul 1999 A
5931746 Soong Aug 1999 A
5935019 Yamamoto Aug 1999 A
5938541 Allen et al. Aug 1999 A
5944619 Cameron Aug 1999 A
5954596 Noble et al. Sep 1999 A
D415807 Werner et al. Oct 1999 S
5961394 Minabe Oct 1999 A
5967903 Cheng Oct 1999 A
5967905 Nakahara et al. Oct 1999 A
5971868 Kosmatka Oct 1999 A
5993329 Shich Nov 1999 A
5993331 Shieh Nov 1999 A
6007432 Kosmatka Dec 1999 A
6027416 Schmidt et al. Feb 2000 A
6099414 Kusano et al. Aug 2000 A
6139445 Werner et al. Oct 2000 A
6143169 Lee Nov 2000 A
6152833 Werner et al. Nov 2000 A
6165081 Chou Dec 2000 A
6183381 Grant et al. Feb 2001 B1
6248025 Murphy Jun 2001 B1
6319150 Werner et al. Nov 2001 B1
6338683 Kosmatka Jan 2002 B1
6354962 Galloway Mar 2002 B1
6368234 Galloway Apr 2002 B1
6381828 Boyce May 2002 B1
6398666 Evans et al. Jun 2002 B1
6435982 Galloway et al. Aug 2002 B1
6506129 Chen Jan 2003 B2
6605007 Bissonnette et al. Aug 2003 B1
6695715 Chikaraishi Feb 2004 B1
6743117 Gilbert Jun 2004 B2
6755627 Chang Jun 2004 B2
6986715 Mahaffey Jan 2006 B2
7192364 Long Mar 2007 B2
20030207726 Lee Nov 2003 A1
20040209704 Mahaffey Oct 2004 A1
Foreign Referenced Citations (48)
Number Date Country
1114911 Jan 1996 CN
2268693 Jan 1994 GB
2331938 Jun 1999 GB
59207169 Nov 1984 JP
61033682 Feb 1986 JP
61162967 Jul 1986 JP
61181477 Aug 1986 JP
61185281 Aug 1986 JP
61240977 Oct 1986 JP
1244770 Sep 1989 JP
02130519 May 1990 JP
4020357 Jan 1992 JP
4327864 Nov 1992 JP
5212526 Aug 1993 JP
05237207 Sep 1993 JP
6007487 Jan 1994 JP
06031016 Feb 1994 JP
6114126 Apr 1994 JP
6126002 May 1994 JP
6154367 Jun 1994 JP
6182005 Jul 1994 JP
6269518 Sep 1994 JP
8168541 Jul 1996 JP
8243194 Sep 1996 JP
8280853 Oct 1996 JP
8280854 Oct 1996 JP
8294550 Nov 1996 JP
9028842 Feb 1997 JP
9047531 Feb 1997 JP
9154985 Jun 1997 JP
9168613 Jun 1997 JP
9192270 Jul 1997 JP
9192273 Jul 1997 JP
9239074 Sep 1997 JP
9239075 Sep 1997 JP
9248353 Sep 1997 JP
9294833 Nov 1997 JP
9299519 Nov 1997 JP
10024126 Jan 1998 JP
10024128 Jan 1998 JP
10085369 Apr 1998 JP
10118227 May 1998 JP
10137372 May 1998 JP
10155943 Jun 1998 JP
10258142 Sep 1998 JP
10263121 Oct 1998 JP
10323410 Dec 1998 JP
10337347 Dec 1998 JP
Related Publications (1)
Number Date Country
20050187034 A1 Aug 2005 US
Continuation in Parts (3)
Number Date Country
Parent 10911341 Aug 2004 US
Child 11105243 US
Parent 10428061 May 2003 US
Child 10911341 US
Parent 09551771 Apr 2000 US
Child 10428061 US