This invention relates generally to heating blankets, and more particularly to heating blankets utilizing metalized fabrics and the method of manufacturing such and a method of manufacturing such.
Insulative blankets and the like have been made for centuries. Such blankets have traditionally been made of a wool or cotton cloth. These materials have provided a certain amount of heat retaining qualities, however, they are not optimal for such a task.
It has recently been discovered that blankets and clothing may be made of a metalized material to provide the added benefit of infrared heat reflecting capabilities to better prevent heat loss from a person. These products may be used as outdoor blankets, medical patient coverings, or other clothing wherein the conservation of body heat is desired. These metalized fabrics however are usually stiff and not soft to the touch.
Encompass Group, LLC has provided a metalized fabric material under the tradename Thermoflect for many years. This metalized fabric has four discrete layers which are bonded together to form the fabric. These four layers include a clear polyethylene layer, a vaporized aluminum layer, a second polyethylene layer, and a smooth surface spunbond polypropylene layer, these layers being recited in sequence from an exterior surface to an interior surface facing a person donning an article incorporating the fabric. It would be desirous to have a metalized fabric material which is softer to the touch and less stiff to provide better draping and loft characteristics. It would also be desirous to provide supplemental heating to warm the person in a quicker and more efficient manner.
It would be beneficial to provide a warming blanket with metalized material which is able to provide an efficient, fast, and consistent heat to a person so that it may be more suitable for use upon a person than those of the prior art. Accordingly, it is to the provision of such that the present invention is primarily directed.
In a preferred form of the invention a heating blanket comprises a carbon veil material, a first electrically conductive strip electrically coupled along a first side of the carbon veil, a second electrically conductive strip electrically coupled along a second side of the carbon veil material opposite the first side of the carbon veil material, a first electrically insulative layer overlaying a first surface of the carbon veil material, a second electrically insulative layer overlaying a second surface of the carbon veil material oppositely disposed from the first surface of the carbon veil material, and an electrical control circuit electrically coupled to the first electrically conductive strip and the second electrically conductive strip. With this construction, current passing from the electrical control circuit to the first and second electrically conductive strips passes through the carbon veil to create heat.
With reference next to the drawings, there is shown a warming blanket 8 made in part with a metalized fabric 10 embodying principles of the invention in a preferred form. The warming blanket 8 has a lower surface 11 which is intended to face away from a person (patient) overlaid with or donning the material and an upper surface 12 which is intended to face the person (patient). The metalized fabric includes a first layer 15 of clear thermoplastic (for example a polyethylene) material, a second layer 16 of vaporized aluminum material (metalized layer), a third layer 17 of thermoplastic (for example a polyethylene) material, and a fourth layer 18 of lofted billow spunbond thermoplastic (for example a polypropylene)non-woven material. The exterior surface of the first layer 15 constitutes the fabric lower surface 11, while the exterior surface of the fourth layer 18 constitutes the upper surface 12.
The warming blanket 8 also includes a resistive heating portion 30 positioned between the third layer 17 and the fourth layer 18. The resistive heating portion 30 is positioned distally from the perimeter or outer edge of the warming blanket 31 and metalized fabric 10 so that a surrounding margin 32 is formed therebetween.
The resistive heating portion 30 has heater trace resistors or heating elements 34 arranged in a longitudinal array with each heating element 34 extending laterally, as best shown in
The warming blanket 8 may have an input voltage of 100 to 250 VAC and a maximum blanket power of 7 W @12 VDC to 109 W @48 VDC.
The metalized fabric is manufactured by joining the third layer 17 of thermoplastic material having the resistive heating portion 30 thereon to the fourth layer 18 of spunbond thermoplastic non-woven material. The second layer 16 of vaporized aluminum material is then deposited or joined onto the third layer 17 via a vacuum deposit chamber. The first layer 15 is then extruded or joined onto the second layer 16. The combination of layers is then passed through cold calender rollers which seals the layers together in a pattern that forms a series, matrix or field of large pillowed areas or regions 20 surrounded at four sides by smaller pillowed regions 21. The large pillowed region 20 is generally oval in shape with a longitudinal length LA of approximately 3/16 of an inch and a lateral width LW of approximately 2/16 of an inch. The seals 23 themselves are non-continuous or fragmented, as they are formed by several unjoined segments 24 which also helps in providing a less stiff feel to the metalized fabric by breaking up the seals which tend to be stiffer than those areas of the fabric which are not sealed, i.e., the bonding of the material at the seals tends to stiffen the sealed areas and thereby tends to stiffen the overall material decreasing its drapability and loft. The metalized fabric of the present invention is fused, bonded or sealed on approximately 14% of the material, as opposed to the prior art material which included at a minimum 18% fusing, bonding or sealing.
It is believed that the position of the heating elements between the person and the metalized second layer 16 provides for an more even distribution of heat. Heat produced from the heating elements is reflected by the metalized second layer 16 back onto the person. Thus, heat initially drawn away from the person is not lost to ambient environment and is instead used to heat the person, a distinct advantage over the prior art.
It is believed that the pillowing of the metalized fabric provides for greater insulative qualities, a softer feel, better glare reduction, improved drapability, and improved loft.
Another discovered advantage has been the materials improved cross-direction tearing resistance. A test was conducted comparing the prior Thermoflect metalized material, previously described, to the metalized fabric of the present invention. The metalized fabric of the present invention was found to have a cross directional tearing factor of 435.7, while the prior Thermoflect metalized material had a tested cross directional tearing factor of 393. This test shows an improvement in tearing resistance of approximately eleven percent (11%).
As an alternative to the first embodiment, a second embodiment of the invention in a preferred form is shown in
A pair of double-sided tape strips 44 may be applied to the fifth layer 41 so that it may be attached or coupled to a pre-existing warming blanket. Also, if need be, the fifth layer 41 with the electronic components may be easily removed or released from the warming blanket. As such, an existing warming blanket may be converted from a static or strictly body heat capturing warming blanket to a positive or active electrically resistive heat added warming blanket. The warming blanket may then be reconfigured to a static body heat capturing warming blanket by removing the fifth layer 42 and electronic components. In this manner, the electronic components may be attached and then removed from multiple warming blankets should they become soiled or otherwise unusable and may be disposed. This disposability decreases the expense involved in providing warming blankets having resistive heating capabilities.
It is believed that this embodiment provides an even higher amount of heat dispersement or distribution as a portion of the heat from the heating elements 34 initially radiating in the direction away from the patient is dispersed as it passes through the fourth layer 18, is reflected by the second layer 16, and then disperses even more as it passes again through the fourth layer 18 prior to reaching the person, i.e., the heat passes through the fourth layer 18 twice before reaching the person. This also allows the temperature of the conductive heating element 34 to be set at a lower temperature because of the additional reflected heat being directed back to the person.
It should be understood that as used herein the term “lofted” is intended to mean something that is fluffed, fluffy, expanded, expanded layers, or the like. Also, the term “billow” or “billowed” is intended to mean raised, embossed, undulating surface, having lofted areas, or the like. The use of a lofted inner material is believed to allow the heat from the heating elements 34 and that reflected back from the metalized second layer 16 to spread so as to provide a more even heating, as opposed to a concentration of the heat should a thin layer be utilized.
With reference next to the embodiment of
Here, the heating elements 34 are formed by adhering a small patch 53 of electrically insulative spunbond material to an exterior facing surface of a carbon veil material 52, wherein the carbon veil material 52 may be a sheet or matt of randomly orientated carbon fibers. The carbon veil material 52 is then adhered, through sewing, adhesive, sonic welding or the like, to a second layer of electrically insulative spunbond material 63 which will be later bonded to a previously discussed metalized fabric 54. The metalized fabric 54 is generally the same as that previously described and which includes the first layer 15 of clear thermoplastic (for example a polyethylene) material, the second layer 16 of vaporized aluminum material (metalized layer), a third layer 17 of thermoplastic (for example a polyethylene) material, and a fourth layer 18 of lofted billow spunbond thermoplastic (for example a polypropylene)non-woven material. The third layer 17 and fourth layer 18 may also be electrically insulative.
Next, a conductive strip in the form of a conductive ink layer 56, which may be made of nickel or silver ink, is deposited, sprayed upon, or printed onto opposite side edges of the carbon veil material 52 as thin strips or side rails 56, also shown in
With reference next to
With reference next to
The second layer of spunbond material 63 is then laminated or otherwise bonded (adhesive, sonic welding, or the like) about the periphery of the fourth layer (spunbond material) 18 and/or carbon veil material 52, thereby sandwiching the carbon veil material 52 between two layers of spunbond material. The second layer of spunbond material 63 protects the carbon veil material 52 while providing a soft exterior layer for patient comfort and safety. The combination of the second layer of spunbond material 63 with the first layer of spunbond material (metalized fabric) essentially creates an envelope surrounding or encasing the carbon veil.
With reference next to
In use, electric current is controlled through the circuit board 70 and passed to the connecting ends 60 of the lower conductive strips 58. The current then travels to the side conductive strips 62 and conductive ink side rails 56 where it is then passed to the carbon veil material 52 wherein resistive heat is created. The metalized fabric reflects the heat to produce an even distribution and more efficient use of the heat.
The circuit board 70 uses multiple thermistors to minimize variance. The placement of the thermistors on the circuit board 70 enables them to be on a re-useable portion of the warming blanket 50 rather than the disposable “blanket” or material covering portion. This placement reduces the replacement costs of the warming blanket.
It is believed that the sewing of the conductive foil of the lower conductive strips 58 and side conductive strips 62 to the second layer of spunbond material 63 and carbon veil material 52 provides a better electrical connection. It is also believed that the sewing maintains a better drapeability of the warming blanket. The improved drapeability is important for patient comfort, effective warming, and reduced cost of manufacture.
The sewing process of the lower conductive strips 58 and the side conductive strips 62 preferably is accomplished with the use of non-conductive cotton-poly blend threads.
It should be understood that the description is for one method of constructing the warming blanket. The exact sequence of the steps involved in the construction may differ while still embodying the invention.
It should be understood that sewing, adhesive bonding, sonic welding, heat welding, or any other conventional method of bonding or coupling, as used herein, are equivalent.
It thus is seen that a heating blanket using a metalized fabric and a method of manufacturing such is now provided which overcomes problems associated with heating blankets of the prior art. It should of course be understood that many modifications may be made to the specific preferred embodiment described herein, in addition to those specifically recited herein, without departure from the spirit and scope of the invention as set forth in the following claims.
Applicant claims the benefit of U.S. Provisional Patent Application Ser. No. 62/471,103 filed Mar. 14, 2017 and entitled Metalized Fabric Heating Blanket.
Number | Name | Date | Kind |
---|---|---|---|
6653607 | Ellis et al. | Nov 2003 | B2 |
6924467 | Ellis et al. | Aug 2005 | B2 |
6933469 | Ellis et al. | Aug 2005 | B2 |
6967309 | Wyatt et al. | Nov 2005 | B2 |
7176419 | Ellis et al. | Feb 2007 | B2 |
7196289 | Ellis et al. | Mar 2007 | B2 |
7786408 | Augustine et al. | Aug 2010 | B2 |
7851729 | Augustine et al. | Dec 2010 | B2 |
8062343 | Augustine et al. | Nov 2011 | B2 |
8283602 | Augustine et al. | Oct 2012 | B2 |
8624164 | Deibel et al. | Jan 2014 | B2 |
8772676 | Augustine et al. | Jul 2014 | B2 |
9687093 | Giles et al. | Jun 2017 | B2 |
20020153368 | Gardner | Oct 2002 | A1 |
20070068923 | Augustine | Mar 2007 | A1 |
20080093356 | Pizzi | Apr 2008 | A1 |
20100161016 | Augustine | Jun 2010 | A1 |
20100200558 | Liu | Aug 2010 | A1 |
20100217260 | Aramayo | Aug 2010 | A1 |
20100255277 | Platt et al. | Oct 2010 | A1 |
20110233193 | Cheng | Sep 2011 | A1 |
20140263265 | Augustine et al. | Sep 2014 | A1 |
20140316494 | Augustine et al. | Oct 2014 | A1 |
20150072113 | Terrell | Mar 2015 | A1 |
20150148874 | Augustine et al. | May 2015 | A1 |
20150327332 | Augustine et al. | Nov 2015 | A1 |
20160143091 | Augustine | May 2016 | A1 |
20170135855 | Stefan | May 2017 | A1 |
20180124871 | Barfuss | May 2018 | A1 |
20180279416 | Sajic | Sep 2018 | A1 |
20190240066 | Hood | Aug 2019 | A1 |
20190351153 | Howard | Nov 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20180270907 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62471103 | Mar 2017 | US |