The present invention generally relates to containers and container end closures, and more specifically metallic beverage can end closures adapted for interconnection to a beverage can body.
Containers and more specifically metallic beverage containers are typically manufactured by interconnecting a beverage can end closure on a beverage container body. In some applications, an end closure may be interconnected on both a top side and a bottom side of a can body. More frequently, however, a beverage can end closure is interconnected on a top end of a beverage can body which is drawn and ironed from a flat sheet of blank material such as aluminum. Due to the potentially high internal pressures generated by carbonated beverages, both the beverage can body and the beverage can end closure are typically required to sustain internal pressures exceeding 90 psi without catastrophic and permanent deformation. Further, depending on various environmental conditions such as heat, over fill, high CO2 content, and vibration, the internal pressure in a typical beverage can may at times exceed 100 psi.
Thus, beverage can bodies and end closures must be durable to withstand high internal pressures, yet manufactured with extremely thin and durable materials such as aluminum to decrease the overall cost of the manufacturing process and the weight of the finished product. Accordingly, there exists a significant need for a durable beverage can end closure which can withstand the high internal pressures created by carbonated beverages, and the external forces applied during shipping, yet which is made from durable, lightweight and extremely thin metallic materials with geometric configurations which reduce material requirements. Previous attempts have been made to provide beverage can ends with unique geometric configuration in an attempt to provide material savings and improve strength. One example of such a beverage can end is defined in U.S. Pat. No. 6,065,634 To Crown Cork and Seal Technology Corporation, entitled “Can End and Method for Fixing the Same to a Can Body” (hereinafter the '634 Patent) and depicted as prior art in
Other patents have attempted to improve the strength of container end closures and save material costs by improving the geometry of the countersink region. Examples of these patents are U.S. Pat. No. 5,685,189 and U.S. Pat. No. 6,460,723 to Nguyen et al, which are incorporated herein in their entirety by reference. Another pending application which addresses the manufacturing processes utilized to produce various embodiments of the end closure of the present invention is described in pending U.S. patent application Ser. No. 10/107,941, which was filed on Mar. 27, 2002 and is further incorporated herein in its entirety by reference.
The following disclosure describes an improved container end closure which is adapted for interconnection to a container body and which has an improved countersink, chuck wall geometry, and unit depth which significantly saves material costs, yet can withstand significant internal pressures.
Thus, in one aspect of the present invention, a container end closure is provided which can withstand significant internal pressures approaching 100 psi, yet saves between 3% and 10% of the material costs associated with manufacturing a typical beverage can end closure. Although the invention described herein generally applies to beverage containers and beverage end closures used to contain beer, soda and other carbonated beverages, it should be appreciated by one skilled in the art that the invention may also be used for any type of container and container end closures. In one embodiment of the present invention, these attributes are achieved by providing a chuck wall with a concave “arch”, and a reduced countersink depth, wherein the countersink is positioned no greater than about 0.095 inches from the height of the central panel, and more preferably no greater than about 0.090 inches.
In another aspect of the present invention, a container end closure is provided which is manufactured with conventional manufacturing equipment and thus generally eliminates the need for expensive new equipment required to make the beverage can container end closure. Thus, existing and well known manufacturing equipment and processes can be implemented to quickly and effectively initiate the production of an improved beverage can container end closure in an existing manufacturing facility, i.e., can plant.
It is another aspect of the present invention to provide an end closure with an “arcuate,” non-linear shaped chuck wall. As used in the prior art, the term “chuck wall” generally refers to the portion of the end closure located between the countersink and the circular end wall (or peripheral curl or peripheral flange that forms the seam with the can body) and which is contacted by or engaged with the chuck during seaming, as shown in
In another aspect of the present invention, a method for forming a beverage can end closure is provided, wherein a can end closure is provided with a countersink radius of no greater than 0.015 inches, and which is generally positioned at a depth no greater than about 0.095 inches from the central panel. Preferably, the central panel is raised no more than about 0.090 inches from the lowermost portion of the countersink.
More specifically, the method of manufacturing generally comprises two processes including a multiple step and a single step. The multiple step produces a “pre-shell” which is formed and moved to another operation for final forming. In this procedure, the “pre-shell” is captured between two opposing tools, where a clamping function occurs prior to panel and countersink forming. The countersink form is achieved through compression verses drawing between a male and female tool group. The single step process produces a drawn flat bottom cup as the male tool enters a female tool. Within the female tool is a tool “panel punch” which is under high pressure and clamps the flat bottom cup against the male punch during entrance and exit of the female tool. The panel and countersink are formed as the male tool withdraws from the female tool. The “panel punch” tool follows the male tool. The “panel punch” tool has the panel and countersink form geometry within its contour. This action forms the panel with the cup bottom wrapping around it's contour and the countersink is formed within the clearance provided between the female and panel punch compressing the bottom of the countersink.
It is another aspect of the present invention to provide a beverage can end closure which saves material costs by reducing the size of the blank material and/or utilizing thinner materials which have improved aluminum alloy properties. Thus, the integrity and strength of the beverage can end closure is not compromised, while material costs are significantly reduced as a result of the blank reduction, and/or improved aluminum alloy properties provided therein.
It is a further aspect of the present invention to provide a beverage can container end closure with an upper chuck wall having a first radius of curvature “Rc1”, and a lower chuck wall having a second radius of curvature “Rc”. A central chuck wall portion has yet another radius of curvature “Rc2” which defines an outwardly oriented, concave “arch” which is positioned between the upper chuck wall and lower chuck wall. Alternatively, the upper and lower chuck wall may be substantially “curvilinear,” and thus having such a moderate degree of curvature that it resembles a straight line, i.e., linear. Further, the unit depth between an uppermost portion of a circular end wall and a lowermost portion of the countersink has a dimension in one embodiment of between about 0.215 and 0.280 inches, and more preferably about 0.250–0.260 inches. Further, in one aspect of the present invention, the inner panel wall may additionally have a non-linear radius of curvature, which is preferably about 0.050 inches.
It is yet a further aspect of the present invention to reduce the distance between the inner and outer panel walls of the countersink, and to thus save material costs while additionally improving the strength of the end closure. Thus, in one embodiment of the present invention the distance between the inner and outer panel walls is between about 0.045 inches and 0.055 inches, and more preferably about 0.052 inches.
It is yet another aspect of the present invention to provide an end closure with a chuck wall with superior strength compared to a conventional container end closure and which can withstand significant internal pressure. Thus, in one embodiment of the present invention an end closure is provided with a chuck wall having an outwardly projecting concave arch, and which in one embodiment is positioned approximately mid-way between the countersink and the circular end wall prior to double seaming the can end to a container body. Preferably, the central chuck wall arch has a radius of curvature between about 0.020 inches and 0.080, and more preferably less than about 0.040 inches, and more preferably between 0.020–0.025 inches. In one embodiment, the upper chuck wall and lower chuck wall may be substantially linear, or have only a gradual radius of curvature.
Thus, in one aspect of the present invention, a metallic container end closure adapted for interconnection to a container body is provided, and comprises:
Referring now to
The chuck wall angle θ1 is defined herein as an angle diverging from a vertical plane as the chuck wall 6 extends downwardly toward a countersink 12. In various embodiments with an upper chuck wall 8 and a lower chuck wall 10 there may be lower chuck wall angle θ2, which is defined and used herein as the divergence from an imaginary vertical plane of the lower chuck wall 10. Thus, in some embodiments of the present invention there may be an upper chuck wall 8, a lower chuck wall 10 and a corresponding upper chuck wall angle θ1 and a lower chuck wall angle θ2.
Alternatively, where the upper chuck wall 8 and lower chuck wall 10 are comprised of substantially non-linear components, there may be a first radius of curvature Rc1 associated with the upper chuck wall 8, and a second radius of curvature Rc2 associated with the lower chuck wall 10. The pronounced chuck wall arch 30 has a radius of curvature which is defined herein and generally depicted in the drawings as “Rc.” As used herein, the term “inwardly” refers to a direction oriented toward the interior portion of the end closure, i.e., a central most portion of the central panel 14, while the term “outwardly” refers to a direction oriented toward the outer edge of the container body, the circular end wall 4 or double seam 32.
Additionally, an inner panel wall 16 typically interconnects a lowermost portion of a countersink 12 with the central panel 14, and is typically oriented at an angle φ1 which is shown in the drawings, and further represents an angle extending from an imaginary vertical plane. In some embodiments, a lower inner panel wall angle φ2 may additionally be present, and which defines the angle extending from an imaginary vertical plane of the lower inner panel wall.
Referring now to
Referring now to
Referring now to
In this drawing, the distinctions in the upper chuck wall of these three ends are readily apparent. More specifically, the upper end of the chuck wall on the end described in the '634 patent diverges inwardly at a very high angle of between 40–60 degrees, which creates significant separation between the upper chuck wall and neck of the can body as opposed to a standard 202 can end and consistent with the can end described in various embodiments of the present invention. As stated above, this distinction becomes problematic while double seaming the can end 2 to the neck 26 of the can body, where more metal movement is required in seaming the beverage can end disclosed in the '634 patent, as opposed to the reliable, time tested double seaming obtained with a standard 202 can end. As seen in
Referring now to
Referring now to
As seen in
The chuck wall arch 30 has a radius of curvature Rc of about 0.0404 inches in this particular embodiment. It should additionally be noted that the central panel 14 has a height no greater than about 0.090 inches from a lowermost portion of the countersink 12, while the distance from the uppermost portion of the circular end wall 4 is about 0.255 inches from the lowermost portion of the countersink 12. Additionally, the central panel 14 has a total diameter no greater than about 1.661 inches in this particular embodiment.
As seen in
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
As depicted in
Thus, as shown in
Referring now to
With regard to each of the various embodiments discussed herein, and as identified in
The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commenced here with the above teachings and the skill or knowledge of the relevant art are within the scope in the present invention. The embodiments described herein above are further extended to explain best modes known for practicing the invention and to enable others skilled in the art to utilize the invention in such, or other, embodiments or various modifications required by the particular applications or uses of present invention. It is intended that the dependent claims be construed to include all possible embodiments to the extent permitted by the prior art.
The present invention claims priority of U.S. Provisional Patent Application Ser. No. 60/347282, filed on Jan. 10, 2002, and is a Continuation-In-Part Application of U.S. patent application Ser. No. 10/153,364, filed on May 22, 2002, which is now issued U.S. Pat. No. 6,702,142, which was a Continuation Application of U.S. patent application Ser. No. 09/456,345, filed Dec. 8, 1999, which is now issued U.S. Pat. No. 6,499,622. The present invention is also a Continuation-In-Part Application of U.S. patent application Ser. No. 09/724,637, filed Nov. 28, 2000, which is now issued U.S. Pat. No. 6,561,004, which was a Continuation-In-Part Application of U.S. patent application Ser. No. 09/456,345, which is now issued U.S. Pat. No. 6,499,622. Each of these named applications or issued patents is incorporated herein in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
91754 | Lawernce | Jun 1869 | A |
163747 | Cummings | May 1875 | A |
706296 | Bradley | Aug 1902 | A |
766604 | Dilg | Aug 1904 | A |
801683 | Penfold | Oct 1905 | A |
818438 | Heindorf | Apr 1906 | A |
868916 | Dieckmann | Oct 1907 | A |
1045055 | Mittinger, Jr. | Nov 1912 | A |
2318603 | Erb | May 1943 | A |
D141415 | Wargel et al. | May 1945 | S |
2759628 | Sokoloff | Aug 1956 | A |
2894844 | Shakman | Jul 1959 | A |
3023927 | Ehman | Mar 1962 | A |
3105765 | Creegan | Oct 1963 | A |
3176872 | Zundel | Apr 1965 | A |
3208627 | Lipske | Sep 1965 | A |
3251515 | Henchert et al. | May 1966 | A |
3268105 | Geiger | Aug 1966 | A |
D206500 | Nissen et al. | Dec 1966 | S |
3397811 | Lipske | Aug 1968 | A |
3417898 | Bozek et al. | Dec 1968 | A |
3480175 | Khoury | Nov 1969 | A |
3650387 | Hornsby et al. | Mar 1972 | A |
3734338 | Schubert | May 1973 | A |
3744667 | Fraze et al. | Jul 1973 | A |
D229396 | Zundel | Nov 1973 | S |
3774801 | Gedde | Nov 1973 | A |
3814279 | Rayzal | Jun 1974 | A |
3836038 | Cudzik | Sep 1974 | A |
3843014 | Cospen | Oct 1974 | A |
3874553 | Schultz et al. | Apr 1975 | A |
3904069 | Toukmanian | Sep 1975 | A |
3967752 | Cudzik | Jul 1976 | A |
3982657 | Keller et al. | Sep 1976 | A |
3983827 | Meadors | Oct 1976 | A |
4015744 | Brown | Apr 1977 | A |
4024981 | Brown | May 1977 | A |
4030631 | Brown | Jun 1977 | A |
4031837 | Jordan | Jun 1977 | A |
4037550 | Zofko | Jul 1977 | A |
4043168 | Mazurek | Aug 1977 | A |
4093102 | Kraska | Jun 1978 | A |
4109599 | Schultz | Aug 1978 | A |
4127212 | Waterbury | Nov 1978 | A |
4148410 | Brown | Apr 1979 | A |
4150765 | Mazurek | Apr 1979 | A |
4210257 | Radtke | Jul 1980 | A |
4213324 | Kelley et al. | Jul 1980 | A |
4215795 | Elser | Aug 1980 | A |
4217843 | Kraska | Aug 1980 | A |
4271778 | Le Bret | Jun 1981 | A |
4276993 | Hassegaun | Jul 1981 | A |
4286728 | Fraze et al. | Sep 1981 | A |
4341321 | Gombas | Jul 1982 | A |
4387827 | Ruemer, Jr. | Jun 1983 | A |
4402419 | MacPherson | Sep 1983 | A |
4420283 | Post | Dec 1983 | A |
4434641 | Nguyen | Mar 1984 | A |
4448322 | Kraska | May 1984 | A |
4467933 | Wilkinson et al. | Aug 1984 | A |
D279265 | Turner et al. | Jun 1985 | S |
4530631 | Kaminski et al. | Jul 1985 | A |
D281581 | MacEwen | Dec 1985 | S |
4559801 | Smith et al. | Dec 1985 | A |
4571978 | Taube et al. | Feb 1986 | A |
4578007 | Diekhoff | Mar 1986 | A |
4606472 | Taube | Aug 1986 | A |
D285661 | Brownbill | Sep 1986 | S |
4641761 | Smith et al. | Feb 1987 | A |
4674649 | Pavely | Jun 1987 | A |
4681238 | Sanchez | Jul 1987 | A |
4685582 | Pulciani et al. | Aug 1987 | A |
4704887 | Bachmann et al. | Nov 1987 | A |
4713958 | Bulso, Jr. et al. | Dec 1987 | A |
4715208 | Bulso, Jr. et al. | Dec 1987 | A |
4716755 | Bulso, Jr. et al. | Jan 1988 | A |
4722215 | Taube et al. | Feb 1988 | A |
4735863 | Bachmann et al. | Apr 1988 | A |
4790705 | Wilkinson et al. | Dec 1988 | A |
4808052 | Bulso, Jr. et al. | Feb 1989 | A |
4809861 | Wilkinson | Mar 1989 | A |
D300607 | Ball | Apr 1989 | S |
D300608 | Taylor et al. | Apr 1989 | S |
4823973 | Jewitt et al. | Apr 1989 | A |
4832236 | Greaves | May 1989 | A |
4865506 | Kaminski | Sep 1989 | A |
D304302 | Dalli et al. | Oct 1989 | S |
4890759 | Scanga et al. | Jan 1990 | A |
4893725 | Ball | Jan 1990 | A |
4895012 | Cook et al. | Jan 1990 | A |
4919294 | Kawamoto | Apr 1990 | A |
RE33217 | Nguyen | May 1990 | E |
4930658 | McEldowney | Jun 1990 | A |
4934168 | Osmanski et al. | Jun 1990 | A |
4955223 | Stodd et al. | Sep 1990 | A |
4967538 | Leftault, Jr. et al. | Nov 1990 | A |
4991735 | Biondich | Feb 1991 | A |
4994009 | McEldowney | Feb 1991 | A |
5027580 | Hymes et al. | Jul 1991 | A |
5042284 | Stodd et al. | Aug 1991 | A |
5046637 | Kysh | Sep 1991 | A |
5064087 | Koch | Nov 1991 | A |
5066184 | Taura et al. | Nov 1991 | A |
5129541 | Voigt et al. | Jul 1992 | A |
5143504 | Braakman | Sep 1992 | A |
5145086 | Krause | Sep 1992 | A |
5149238 | McEldowney et al. | Sep 1992 | A |
D337521 | McNulty | Jul 1993 | S |
5289938 | Sanchez | Mar 1994 | A |
D347172 | Heynan et al. | May 1994 | S |
5309749 | Stodd | May 1994 | A |
5320469 | Katou et al. | Jun 1994 | A |
5356256 | Turner et al. | Oct 1994 | A |
D352898 | Vacher | Nov 1994 | S |
5381683 | Cowling | Jan 1995 | A |
D356498 | Strawser | Mar 1995 | S |
5494184 | Noguchi et al. | Feb 1996 | A |
5502995 | Stodd | Apr 1996 | A |
5527143 | Turner et al. | Jun 1996 | A |
5582319 | Heyes et al. | Dec 1996 | A |
5590807 | Forrest et al. | Jan 1997 | A |
5598734 | Forrest et al. | Feb 1997 | A |
5634366 | Stodd | Jun 1997 | A |
5636761 | Diamond et al. | Jun 1997 | A |
5653355 | Tominaga et al. | Aug 1997 | A |
5685189 | Nguyen et al. | Nov 1997 | A |
5829623 | Otsuka et al. | Nov 1998 | A |
5857374 | Stodd | Jan 1999 | A |
D406236 | Brifcani et al. | Mar 1999 | S |
5911551 | Moran | Jun 1999 | A |
5950858 | Sergeant | Sep 1999 | A |
5969605 | McIntyre et al. | Oct 1999 | A |
6065634 | Brifcani et al. | May 2000 | A |
6089072 | Fields | Jul 2000 | A |
6102243 | Fields et al. | Aug 2000 | A |
6126034 | Borden et al. | Oct 2000 | A |
6131761 | Cheng et al. | Oct 2000 | A |
D452155 | Stodd | Dec 2001 | S |
6419110 | Stodd | Jul 2002 | B1 |
6460723 | Nguyen et al. | Oct 2002 | B1 |
6499622 | Neiner | Dec 2002 | B1 |
6702142 | Neiner | Dec 2002 | B1 |
6516968 | Stodd | Feb 2003 | B1 |
6561004 | Neiner et al. | May 2003 | B1 |
6748789 | Turner et al. | Jun 2004 | B1 |
6877941 | Brifcani et al. | Jul 2004 | B1 |
6848875 | Brifcani et al. | Feb 2005 | B1 |
20020190071 | Neiner | Dec 2002 | A1 |
20040140312 | Neiner | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
327383 | Mar 1958 | CH |
734942 | May 1943 | DE |
G 92 11 788 | Feb 1993 | DE |
0 139 282 | May 1985 | EP |
153115 | Aug 1985 | EP |
0 340 955 | Nov 1989 | EP |
917771 | Jan 1947 | FR |
2 196 891 | May 1988 | GB |
2218024 | Nov 1989 | GB |
2 315 478 | Nov 1996 | GB |
49-096887 | Sep 1974 | JP |
50-144580 | Nov 1975 | JP |
54-074184 | Jun 1979 | JP |
55-122945 | Feb 1980 | JP |
S57-117323 | Jan 1981 | JP |
56-053835 | May 1981 | JP |
56-053836 | May 1981 | JP |
57-044435 | Mar 1982 | JP |
57-094436 | Jun 1982 | JP |
58-035028 | Mar 1983 | JP |
58-035029 | Mar 1983 | JP |
59-144535 | Aug 1984 | JP |
61-023533 | Feb 1986 | JP |
63-125152 | May 1988 | JP |
1-167050 | Jun 1989 | JP |
01-170538 | Jul 1989 | JP |
01-289526 | Nov 1989 | JP |
02-092426 | Apr 1990 | JP |
2-192837 | Jul 1990 | JP |
02-131931 | Nov 1990 | JP |
03-032835 | Feb 1991 | JP |
3275443 | Dec 1991 | JP |
5-32255 | Feb 1993 | JP |
H5-112357 | May 1993 | JP |
5 185170 | Jul 1993 | JP |
6-127547 | May 1994 | JP |
6-179445 | Jun 1994 | JP |
07-171645 | Jul 1995 | JP |
08-168837 | Jul 1996 | JP |
08-192840 | Jul 1996 | JP |
2000-109068 | Apr 2000 | JP |
62179828 | Jul 1962 | NL |
8910216 | Nov 1989 | WO |
9317864 | Sep 1993 | WO |
9637414 | Nov 1996 | WO |
9834743 | Aug 1998 | WO |
0012243 | Mar 2000 | WO |
5032953 | Apr 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20030173367 A1 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
60347282 | Jan 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10153364 | May 2002 | US |
Child | 10340535 | US | |
Parent | 09724637 | Nov 2000 | US |
Child | 10153364 | US | |
Parent | 09456345 | Dec 1999 | US |
Child | 09724637 | US |