The present invention relates to a metallic molded sheet which has corrugated irregularities formed therein and is suitable as a shielding cover which is disposed on a heat generating portion of such as a household electrical appliance, or an exhaust pipe, an engine, or the like of an automobile.
Since an automobile during engine operation produces exhaust gases at high temperatures of 900° C. or more, exhaust system parts, such as an exhaust manifold, a catalyst system, pipes, a muffler, and the like undergo high temperatures. Therefore, a large number of heat shielding covers are provided in their peripheries for the purposes of prevention of thermal damage and prevention of burn injury. Further, since these heat shielding covers are in many cases provided in narrow and extensive ranges in the vicinities of the high-temperature exhaust system parts, they often tend to be such complex and large-sized covers as to conform to the shape of matching members. In addition, control of CO2, which has its inception in the issue of global warming in recent years, is an important challenge, and, for automobiles, individual parts are required to be more lightweight. In particular, in the case of the heat shielding covers around automobile exhaust systems whose temperatures tend to be high, as described above, the number of places where they are used is ever increasing, and the light weight has been an extremely important task.
Conventionally, deep-drawn products of steel sheets (galvanized steel sheets, aluminized steel sheets, or the like are actually used due to problems in rust prevention) have been frequently used as these heat shielding covers. Since the steel sheets exhibit elongation required for deep drawing and have sufficient strength and rigidity, the steel sheets have satisfied shape retainability and durability against stone bounding and the like which are required as the heat shielding covers. However, large-sized heat shielding covers weigh as much as several tens of kilograms, and fixing portions for supporting them are also required to have strength and durability, so that tendencies toward greater size and heavier weight are naturally underway, which is contrary to the tendency toward lighter weight. In addition, even in sheets which excel in elongation such as steel sheets, low-length portions are partially present in deep drawing which is accompanied by reduced sheet thickness, and stress-concentrated portions where fracture can occur during deep drawing forming or which can be a cause of fracture are inherent. Hence, there are frequent defects in which these stress-concentrated portions lead to breakage in high-load environments (high temperature, high vibration, salt damage environment, long-time assurance, etc.) as in automobiles. The prevention of starters of these fractures is also an important task in providing a highly reliable heat shielding cover.
In order to overcome these problems, a number of inventions have already been made and put to practical use. For example, a heat shielding cover is known in which semispherical protrusions (embosses) having complex shapes and different diameters are imparted to a steel sheet or an aluminum sheet by drawing (refer to patent document 1). According to this publication, it is possible to provide high rigidity for a sheet of equal thickness by the portion of the protrusion, and since the shape retainability increases, the function of the heat shielding cover can be demonstrated, and light weight can also be realized. However, since the imparting of the protrusions is dependent upon drawing, the molding of the cover shape is dependent upon the material characteristics which the original sheet has. As long as a steel sheet having an elongation rate of several tens of percent is used, the case would be different, but in the case of an aluminum sheet several percent to ten-odd percent is a limit of its elongation rate, and it is difficult to say that sufficient deep drawability can be ensured. Furthermore, as for the protruding portions, the sheet thickness becomes thinner than the planar portions, so that the strength is low, and there are cases where cracks, pinholes, or the like are produced during the shape forming.
In addition, a sheet is also known in which ridges having inwardly curved side walls are regularly arranged in a two-dimensional plane by bending (refer to patent document 2). According to this publication, the shape retainability as a cover is improved by the rigidity which the ridges possess. In addition, as the material stored in the ridges having reentrant side walls returns to its original shape owing to the molding force during the molding of the cover, moldability similar to that of deep drawing is consequently demonstrated, and the percentage of the material stored in the ridges becomes equivalent to the elongation rate in principle. For this reason, moldability into a lightweight and complex shape is provided without producing a reduction in the sheet thickness within that range, and it becomes possible to ensure durability in a high-load environment. However, if the sheet is compressed in its thickness direction during the press molding of the cover, the material stored in the ridge portions is released and at the same time undergoes shrinkage in ridges in their vicinities, but an inverse folding force is loaded to the reentrant portions in the ridges. Since a metal sheet is ordinarily work hardened during machining such as side wall forming by strike bending, and the aluminum sheet or the like, in particular, has a small elongation rate, there is a possibility that the bent portion becomes fractured due to the inverse bending force loaded on the reentrant side wall, and it is apprehended that this fractured portion may become a flaw in a vibrational environment, and a very small fracture may progress and lead to the breakage of the cover. In addition, there are cases where a crack occurs along the ridge during molding.
Patent Document 1 JP-A-2000-136720
Patent Document 2 JP-T-2001-507282
Accordingly, an object of the invention is to provide a metallic molded sheet which is suitable as a heat shielding cover and which has moldability into a complex shape, has light weight and sufficient shape retainability, has high reliability against fracture and the like in a high-load environment, and is free of cracks and breakage during molding.
Accordingly, when a flat aluminum sheet was similarly worked by using the first corrugating rolls and the second corrugating rolls having different roll gaps, the present inventors found that the bent portions are not produced.
Namely, the present invention relates to the following item (1) to (5).
a metallic sheet having first ridges continuously formed along a first direction and second ridges continuously formed along a second direction which is perpendicular to the first direction,
in which the metallic molded sheet has cross-sectional shapes along the first direction and the second direction, each having an identical thickness and continuing sinusoidally, and
the metallic molded sheet has a planar shape being a corrugated surface in which ridge lines of first waveforms along the first direction and ridge lines of second waveforms along the second direction perpendicularly intersect each other.
passing a metallic sheet between a pair of first corrugating rolls having on their respective surfaces teeth with sinusoidal waveforms in their cross sections, to thereby obtain a metallic molded sheet having first waveforms, and
passing the metallic molded sheet having the first waveforms between a pair of second corrugating rolls having on their respective surfaces teeth with sinusoidal waveforms in their cross sections, so that ridge lines of the first waveforms and ridge lines of teeth of the second corrugating rolls perpendicularly intersect each other.
According to the invention, it is possible to obtain a metallic molded sheet having a corrugated surface in which two kinds of waveforms each having a sinusoidal cross section perpendicularly intersect each other without forming bent portions at the portions where the two kinds of waveforms perpendicularly intersect each other. In addition, it is possible to maintain the thickness of the starting metal sheet as it is over the entire surface, and the metallic molded sheet has high strength, has no unevenness in strength, and is free of the occurrence of cracks or pinholes during molding. For this reason, even if this metallic molded sheet is disposed by being molded into an arbitrary shape as a heat shielding cover, cracks do not occur at the portions where the two kinds of waveforms perpendicularly intersect each other, and the durability thereof becomes excellent. In addition, since reentrant side walls are absent, fracture at the time of unbending is difficult to occur, so that the durability is high in a vibratory environment. Furthermore, since ridges are formed by bending, it is possible to obtain performance equivalent to that of deep drawability based on unbending.
1 metallic molded sheet
2
a first waveform
2
b second waveform
100 metal sheet
200
a and 200b first corrugating rolls
210
a and 210b second corrugating rolls
D roll gap
Hereafter, the invention will be described in detail below with reference to the drawings.
In addition,
In order to prepare such a metallic molded sheet 1, two corrugating rolls are used. First, as shown in
Next, as shown in
As described above, in the present invention, corrugation is performed by using a pair of gear rolls whose cross-sectionally corrugated recessed portions and protruding portions are meshed with each other in the form of gears. In a method in which an emboss pattern is continuously transferred by using, instead of gear rolls, a pair of rollers which have grooves in respective roller shafts and mesh with each other, the metal sheet at the pattern portion is drawn, and since the sheet thickness becomes thin at that portion, cracks and pinholes are likely to occur.
In the above description, since the crossover between the first waveforms 2a and the second waveforms 2b is effected smoothly, and the deformation of the waveform is less, the roll gap between the second corrugating rolls 210a and 210b is preferably set to be 0.3 to 3-fold the roll gap between the first corrugating rolls 200a and 200b.
In addition, although the thickness of the metal sheet 100 is appropriately selected according to the application of the metallic molded sheet 1, a thickness of 0.2 to 0.5 mm is generally adopted in the case where the metallic molded sheet 1 is used as a heat shielding cover. In the invention, a steel sheet, an aluminum sheet, a stainless steel sheet, or the like is used as the metal sheet. Incidentally, the aluminum sheet includes an aluminum alloy sheet in addition to a pure aluminum sheet. For example, as shielding materials for the automobile, 3000 series aluminum alloy sheets based on AA or JIS Standards are frequently used in the light of the recycling characteristics and cost, and it is possible to use this 3000 series aluminum alloy sheet.
A 3004 aluminum alloy is known as a typical 3000 series aluminum alloy. This 3004 aluminum alloy is used for application to can containers and the like, and the amount of its production in Japan reaches as high as 300,000 tons per year. For this reason, the advantage in cost due to mass production is large, and the 3004 aluminum alloy is much more inexpensive than, for instance, a 5000 series aluminum alloy. As for the 3004 aluminum alloy, although strength thereof is generally lower than the 5000 series alloy, the amount of Mg added is about 1%, and rollability thereof is excellent. Therefore, the 3004 aluminum alloy is costwise advantageous in terms of production of sheets. In addition, the 3004 aluminum alloy has mechanical characteristics in which tensile strength thereof is 180 N/mm2, yield strength thereof is 80 N/mm2, and elongation thereof is 25%, and corrosion resistance thereof is also excellent. Therefore, the 3004 aluminum alloy is a suitable material for use as a heat shielding sheet. In addition, a 1000 series aluminum in which the purity of aluminum is high is preferable since it is easy to work. In particular, 1050 aluminum is preferable since it is generally commercially available.
The present invention also concerns a heat shielding cover including the metallic molded sheet 1 having a corrugated surface in which the first waveforms 2a and the second waveforms 2b perpendicularly intersect each other. Since the ridge lines of the first waveforms 2a and the ridge lines of the second waveforms 2b perpendicularly intersect each other, and the highest points T are arrayed in lattice form, the metallic molded sheet 1 can be easily curved and is excellent in workability. Moreover, since the metallic molded sheet 1 is free of bent portions such as those shown in
Hereafter, the invention will be further described by citing examples, but the invention is not limited to the same.
A specimen with sides each measuring 250 mm was cut out from a 1050 aluminum alloy sheet with a sheet thickness of 0.4 mm, and was passed between the pair of first corrugating rolls having a wave height of 2.8 mm, an interval between crests (pitch) of 6.0 mm, and a gap between upper and lower rolls (D) of 1.5 mm. Then, the specimen having the first waveforms formed therein was passed between the pair of second corrugating rolls having the same teeth profile as the first corrugating rolls and a gap between upper and lower rolls (D) of 1.0 mm, in such a way that the ridge lines of the first waveforms perpendicularly intersected ridge lines of the teeth, to thereby allow the second waveforms to cross over the first waveforms and form the corrugated surface shown in
Observations were made of a cross section (see A-A cross section in
In addition, the following evaluations were made of the corrugated aluminum alloy sheet. The results are shown in Table 1.
Flexural Rigidity
A three-point bending test was conducted by a universal testing machine (sample size: 50 mm×100 mm) to determine the maximum strength (flexural strength).
Drawability
Drawing was carried out by a mold to measure the drawing depth. In addition, the presence or absence of the occurrence of cracks and pinholes at the time of working was confirmed.
With respect to a 1050 aluminum alloy sheet with a thickness of 0.4 mm, evaluations were made of (1) flexural rigidity and (2) drawability mentioned above. The results are shown in Table 1.
With respect to a 1050 aluminum alloy sheet with a thickness of 0.8 mm, evaluations were made of (1) flexural rigidity and (2) drawability mentioned above. The results are shown in Table 1.
By using a 1050 aluminum alloy sheet with a thickness of 0.3 mm and a 1050 aluminum alloy sheet with a thickness of 0.125 mm, corrugation was provided in accordance with the method described in the patent document 2. The resultant aluminum alloy sheet exhibited a cross-sectional shape shown in
By using a 1050 aluminum alloy sheet with a thickness of 0.4 mm, a multiplicity of semispherical protrusions of two kinds whose cross sections were 3.7 mm and 4.6 mm in radius were formed by draw forming by a press in accordance with the method described in the patent document 1. With respect to this draw-formed aluminum alloy sheet, evaluations were made of (1) flexural rigidity and (2) drawability mentioned above. The results are shown in Table 1.
By using a 1050 aluminum alloy sheet with a thickness of 0.4 mm, a multiplicity of protrusions whose cross sections were trapezoidal (length of an opening, 8.0 mm; depth, 1.5 mm; and length of a bottom, 8.0 mm) were formed by draw forming by a press. With respect to this draw-formed aluminum alloy sheet, evaluations were made of (1) flexural rigidity and (2) drawability mentioned above. The results are shown in Table 1.
From Table 1, it can be appreciated that the corrugated aluminum alloy sheet of Example 1 in accordance with the invention excels in flexural rigidity and also excels in drawability.
The invention was detailed with reference specified embodiments. However, it is obvious to a person skilled in the art that the invention may be variously modified and corrected without deviating from the spirit of the invention.
This application is based on Japanese Patent Application No. 2008-029003 filed on Feb. 8, 2008 and an entirety thereof is incorporated herein by reference.
Furthermore, all references cited here are incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
P.2008-029003 | Feb 2008 | JP | national |
This application is a divisional of U.S. patent application Ser. No. 12/366,153, filed Feb. 5, 2009 now abandoned, which claims the benefit of Japanese Patent Application No. 2008-029003, filed Feb. 8, 2008, the entire contents of each of which are hereby incorporated by reference in this application.
Number | Name | Date | Kind |
---|---|---|---|
107752 | Barker | Sep 1870 | A |
662567 | Lipowska | Nov 1900 | A |
1150805 | Beran | Aug 1915 | A |
1185881 | Cooper | Jun 1916 | A |
2252209 | Schank et al. | Aug 1941 | A |
2290608 | Evans | Jul 1942 | A |
2441476 | Ewald | May 1948 | A |
2481046 | Scurlock | Sep 1949 | A |
3034212 | Reifers | May 1962 | A |
3956915 | Saunders | May 1976 | A |
3992835 | Saveker | Nov 1976 | A |
4044186 | Stangeland | Aug 1977 | A |
4092842 | Oser et al. | Jun 1978 | A |
4343866 | Oser et al. | Aug 1982 | A |
4986105 | Hoglund | Jan 1991 | A |
5207083 | Bongiovanni et al. | May 1993 | A |
5670264 | Sheridan | Sep 1997 | A |
5679479 | Young et al. | Oct 1997 | A |
5800905 | Sheridan et al. | Sep 1998 | A |
6139974 | Atkinson et al. | Oct 2000 | A |
6183879 | Deeley | Feb 2001 | B1 |
6197129 | Zhu et al. | Mar 2001 | B1 |
6280856 | Andersen et al. | Aug 2001 | B1 |
6497130 | Nilsson | Dec 2002 | B2 |
7516637 | Scamans et al. | Apr 2009 | B2 |
7785696 | Boatman et al. | Aug 2010 | B2 |
7947380 | Deeley et al. | May 2011 | B2 |
7958763 | Ligda | Jun 2011 | B2 |
8291742 | Haesemann et al. | Oct 2012 | B2 |
20070029073 | Teshima et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
124 012 | Feb 1976 | DE |
1 326 519 | Aug 1973 | GB |
2 279 596 | Jan 1995 | GB |
2 287 988 | Oct 1995 | GB |
2 316 028 | Feb 1998 | GB |
51-42069 | Nov 1976 | JP |
2-92401 | Apr 1990 | JP |
3-77730 | Apr 1991 | JP |
7-60371 | Mar 1995 | JP |
2000-136720 | May 2000 | JP |
2001-504393 | Apr 2001 | JP |
2001-507282 | Jun 2001 | JP |
3233364 | Sep 2001 | JP |
2001-347323 | Dec 2001 | JP |
3337222 | Aug 2002 | JP |
WO 9641691 | Dec 1996 | WO |
WO 9806517 | Feb 1998 | WO |
WO 9806567 | Feb 1998 | WO |
Entry |
---|
Great Britain Examination Report dated Oct. 10, 2011 issued in Great Britain Patent Application No. 0902035.5, 2 pp. |
Japanese Office Action dated Apr. 17, 2012 issued in Japanese Patent Application No. 2008-029003, 4 pp. |
Merriam-Webster, definition of the term “sinusoidal,” Dec. 1, 2011, one page. |
Office Action dated Jul. 26, 2011 issued in United Kingdom Patent Application No. 0902035.5, 3 pp. |
Notification and English translation in JP 2008-029003 dated Apr. 5, 2010. |
Notification and English translation in JP 2008-029003 dated Dec. 3, 2010. |
Office Action mailed Dec. 25, 2012 in Japanese Patent Application No. 2008-029003 and English Translation, 4 pp. |
Notification (third party's submission) mailed on Aug. 28, 2012 in connection with Japanese Patent Application No. 2008-29003 and English translation, 16 pp. |
Notification (third party's submission) mailed on Sep. 4, 2012 in connection with Japanese Patent Application No. 2008-29003 and English translation, 3 pp. |
Japanese Office Action mailed Aug. 13, 2013 in Japanese Patent Application No. 2008-029003 and English Translation, 4 pp. |
Third Party's Submission mailed May 20, 2013 in Japanese Patent Application No. 2008-29003 and English translation, 18 pp. |
Number | Date | Country | |
---|---|---|---|
20120192610 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12366153 | Feb 2009 | US |
Child | 13439985 | US |