This application is a national stage application filed under 35 U.S.C. § 371 of International Application No. PCT/M2017/051041, filed Feb. 23, 2017, which claims priority upon Italian Application No. 102016000018679, filed Feb. 23, 2016, the entire contents of each application herein being incorporated by reference.
The present invention relates to a metallic support or “backplate” that can be used to obtain by molding braking elements, such as brake pads, and to an associated brake pad provided with such a metal support.
It is known that a brake pad is a vehicle wheel braking element that is intended to cooperate with a wheel disc brake and comprises: a metallic support, known as a “backplate”, manufactured as a substantially flat plate; a block of friction material, which is molded integral to a first face of the metallic support, possibly together with the interposition of an isolating/damping layer arranged between the block of friction material and the metallic support and known by the term “underlayer;” and a damping element, known by the term “shim,” applied to a second face of the metallic support opposite the first face, and against said “shim” in use either a movable driving element or a fixed reaction surface of a brake caliper acts, designed to push in use the block of friction material against the brake disc.
The metallic support is commonly made of steel and is obtained by fine shearing of a sheet of metal of appropriate thickness.
In order to improve the adhesion between the block of friction material and the metallic support, the first face of the support may be provided with projecting parts or cavities, as provided, for example, in US2004016608A1 or in US2011220441A1.
However, such a solution can be relatively expensive to implement, insofar as it usually introduces at least one more plastic deformation operation into the metallic support manufacturing cycle. It can also be indecisive, insofar as it involves only a relatively small increase in adhesion, an increase that is not, furthermore, always uniform over the entire surface of the brake pad, and in that it introduces asymmetries into the arrangement of the mass of the metallic support that may give rise to an uncontrolled modification of the natural frequencies of resonant vibration thereof, possibly resulting in the generation of noise while in use.
GB2245667 relates to a metallic support for brake pads which has projecting parts on the first face obtained by means of plastic deformation imparted by the side of the second face, thus leaving cavities on the side of the second face; this does not therefore resolve any of the aforementioned problems.
The purpose of the present invention is to provide a metallic support for a vehicle braking element, in particular a brake pad, and a brake pad utilizing such a metallic support, which are free of the described disadvantages and which, in particular, are obtainable by means of a single fine shearing operation of the metallic support, that, at the same time, also improves adhesion of the block or layer of friction material and reduces dimensions, and that makes it possible to obtain effective mounting of the damping element or shim on the face of the metallic support opposite to that provided by the block or layer of friction material.
The invention therefore relates to a metallic support for a braking element, in particular a vehicle brake pad, and to a brake pad using such a metallic support as well as to a method for obtaining the metallic support by means of fine shearing, as defined in the appended claims.
Further characteristics and advantages of the present invention will become clear from the following description of an exemplary non-limiting embodiment thereof given purely by way of example and with reference to the figures within the accompanying drawings, wherein:
With reference to
The metallic support 1 according to the invention is designed for obtaining braking elements 2 that are compact, simple and economical to manufacture and have high reliability.
The metallic support 1 comprises a first face 3 designed to receive on one first portion 4 thereof a block or layer 5 of friction material and a second face 6, substantially parallel to the first face 3, designed to receive a dampening element or “shim” 7, both forming part, as shall be seen, of the brake pad or braking element 2, illustrated in
The first face 3 and the second face 6 are laterally delimited by a peripheral edge 8 of the metallic support 1; the edge 8 extending between the first face 3 and the second face 6 in one direction of a thickness S (
The first portion 4 of the face 3 extends partly along a perimeter profile P of the edge 8 and covers the entirety of the face 3 apart from respective opposite lateral portions 9 of the face 3 that delimit respective guide portions 10 of the metallic support 1. In the illustrated non-limiting example, the guide portions 10 are lug or hook shaped, as schematically illustrated with hatching in
According to a first aspect of the invention, the first portion 4 of the first face 3 is provided with at least one projecting part 11 (
According to the invention, in combination with that which has previously been described, within the at least one projecting part 11, there is provided at least one first cavity 13, defining on the first surface 12 a shallow recess 14 delimited by a bottom wall 15 substantially parallel to the first face 3.
According to a further aspect of the invention, in combination with that which has been previously described, the second face 6 is provided with at least one second cavity 16 defining on the second face 6 a second shallow recess 18 having a form and dimensions substantially identical to those of the at least one projecting part 11 and a depth, measured perpendicularly to the first and second faces 3 and 6, substantially identical to a height H (
Within the at least one cavity 16 and in correspondence with the at least one first cavity 13, there is present at least one relief 19 having a shape and dimensions substantially identical to those of the at least one first cavity 13 and a height substantially identical to a depth R (
According to a non-secondary aspect of the invention, the projecting part 11 and the corresponding cavity 16 are designed in such a way that the cavity 16 and the at least one relief 19, within the shallow recess 18 delimited by the cavity 16, define a seat 20 for receiving the damping element 7.
The metallic support 1 is manufactured from a sheared steel sheet, and the at least one relief 19, the at least one first and a second cavity 13 and 16 and the at least one projecting part 11 were obtained by plastic deformation with the same fine shearing operation by which the support 1 itself is obtained from the steel sheet, in such a way as to move the same steel mass from the second face 6 (creating the cavity 16) to the first face 3 (creating the projecting part 11); the steel mass part of the support 1 that is not moved consequently creates the at least one relief 19 within the cavity 16 and a corresponding at least one cavity 13 within the projecting part 11 and on the upper surface 12 thereof. It is also possible, depending upon the desired configuration to be obtained, by operating simultaneously or, alternatively, by doing the vice versa, moving part of the steel mass from the first face 3 (for example, by creating the cavities 13) to the second face (for example, by creating the reliefs 19).
According to the preferred embodiment of the invention, which is illustrated in
Here and hereinafter for “substantial part” of a face (3 or 6) or portion of a face (4) of the metallic support 1 it is intended a part of the faces 3 and 6 and/or of the portion 4 of the face 3 equal to or greater that 50% of the total superficial extension of such a face 3, 6 and/or of the portion 4 of the face 3.
According to the preferred embodiment of
The shallow recesses 14 and the corresponding reliefs 19 have in plan view, according to the illustrated non-limiting embodiment, a straight or half-moon form.
In particular, the at least one or single projecting part 11 is shaped in such a way as to reproduce the whole perimeter profile P1 of the first portion 4 of the first face 3 illustrated schematically with hatching in
The profile P1 is further shaped in such a way as to remain spaced apart from the perimeter profile P, radially on the inside, so that the at least one projecting part 11 is entirely embedded within the block or layer 5 of friction material.
Preferably, the faces 3, 6, the surface 12, the bottom walls 15 of the cavities 13, and a bottom wall 21 of the cavity 16 (
The metallic support 1 described is an integral part, as illustrated in
The brake pad 2 comprises: the metallic support 1 already described, which is in the form of a substantially flat plate delimited between the faces 3, 6, which are substantially flat and parallel to each other, and the peripheral edge 8 substantially perpendicular to the faces 3, 6 and which extends in the direction of the thickness S of the metallic support 1; a block or layer 5 of friction material applied in a known way, for example by molding, on the first portion 4 of the face 3 having profile P1 and which is therefore delimited at least in part by the peripheral edge 8; and a dampening element or “shim” 7 applied to the second face 6.
The portion 4 of the face 3 has the single projecting part 11 or, according to a possible embodiment not shown, a plurality of projecting parts 11 that occupy(ies) a substantial part of the portion 4 and that extend(s) in order to cantilever from the face 3 at least partly parallel to the peripheral edge 8 but is (are) removed from the peripheral edge 8, so that the at least one projecting part(s) 11 is (are) completely embedded within the block or layer 5 of friction material. The projecting part(s) 11 is (are) delimited at the top by the surface 12, which is substantially flat and parallel to the face 3.
Within the single projecting part 11, or within at least one or preferably all of the projecting parts 11 present is arranged at least one cavity 13 or preferably a plurality of cavities 13 that is filled by the block or layer 5 of friction material.
In this way, surprisingly strong adhesion of the block or layer of friction material 5 to the metallic support 1 is obtained, adhesion that, according to the process conditions, is greater than that obtained with the presence of single projecting parts or single cavities on the face 3, and also with the simultaneous presence of projecting parts and cavities on the face 3, but arranged side by side. The adhesion is even better than that achievable with current production standards, wherein the metallic support is smooth on both faces and has only holes that are filled with the friction material.
According to a fundamental aspect of the invention, the second face 6 is provided with the single cavity 16 or, according to one possible embodiment not shown, a plurality of cavities 16, which occupy(ies) a substantial part of the face 6, defining on the face 6 a shallow recess 18/plurality of shallow recesses 18 having shape and dimensions substantially identical to those of the single projecting part 11 or plurality of projecting parts 11 and a depth, measured perpendicularly to the faces 3, 6 substantially identical to the height H of the projecting part(s) 11 measured perpendicularly to the faces 3, 6.
Further, within the cavity(s) 16, there is (are) present, corresponding to the cavity(s) 13, at least one relief/a plurality of reliefs 19 having a shape and dimensions substantially identical to those of the cavity(s) 13 and a height substantially identical to a depth R of the cavity(s) 13 measured perpendicularly to the faces 3, 6.
In this way, the single cavity or plurality of cavities 16 and the relief/plurality of reliefs 19 there within define the seat 20 in which the entirety of the damping element 7 (in the case of a single cavity 15 and a corresponding projecting part 11) or part thereof (in the case of a plurality of cavities 16 and projecting parts 11) is located, according to the shape of the damping element 7.
According to the preferred embodiment, the damping element 7 is manufactured in the form of flat sheet and has at least one perforation 22, in this case a plurality of suitably shaped perforations 22, which has (have) a shape that is conjugated with that of the relief/plurality of reliefs 19 and that engages the same in order to hold the damping element 7 in position within the seat 20.
The cavity(s) 16 has (have) a depth substantially equal to or only slightly less than a thickness of the damping element 7 measured perpendicularly to the faces 3, 6, such that the thickness of the damping element 7 remains wholly or partly within the footprint of the thickness S and therefore compensated for by the thickness S of the metallic support 1. The same is true for the block of friction material 5 and the projecting part 11, whereby part of the thickness of the friction material is within the footprint of the thickness of the metallic support 1. In this way a reduction is obtained in the thickness of the brake pad 2 without a reduction in the overall mechanical resistance and an amount of materials used.
But, above all, the special geometry described makes it possible to obtain, according to the invention, the projecting parts 11 and 19 and the cavities 13 and 16 by means of a single fine shearing operation, while simultaneously obtaining the support 1 starting from a metallic sheet, particularly steel.
The invention thus relates to a method for obtaining a metallic support 1 intended for a vehicle braking element 2, comprising the step of subjecting a steel sheet (not shown for the sake of simplicity) to a fine shearing operation in order to separate from the steel sheet the metallic support 1 delimited between the faces 3 and 6 and the peripheral edge 8, wherein during the fine shearing operation a plastic deformation step of the steel sheet is performed within a perimeter profile P of the metallic support 1 defined by the peripheral edge 8 by means of which plastic deformation step the same mass of steel is moved from the second face 6 to the first face 3 in order to form, simultaneously:
In practice, the fine shearing mold is modified in order to obtain simultaneously and with a single operation, together with the shearing of the edge 8, also the formation of the projecting parts 11 and 19 and the cavities 16 and 13. But this is only possible due to the specific and particular geometry described, which makes it possible to balance the reaction forces generated on the various parts of the shearing mold, allowing therefore the whole complex figure of the support 1 to be obtained with a single operation.
The brake pad 2 finally also comprises a reaction spring 23 which is rendered integral to the support 1 by means of a suitable perforation 22b of the damping element 7; in particular, the spring 23 is secured to a projecting part 19b protruding partly cantilevered from the face 6 and outside of the shallow recess 18 and that was obtained by arranging a corresponding cavity 13b on the surface 12 of the projecting part 11 that is deeper than the other cavities 13.
The cavity 13 thickness and the height of the corresponding reliefs 19 is usually chosen such that the top of the reliefs 19 and the bottom wall 21 are substantially flush, respectively, with the face 6 and the face 3; but, according to the variant, illustrated only schematically with hatching in
This possibility provides an additional advantage according to the invention. In fact, depending upon the depth chosen for the cavities 13, 13b and depending upon the height chosen for the projecting part 11 and the reliefs 19, it is possible to modulate at will, based upon simple calculations, the natural vibration frequency of the support 1 and also the stiffness thereof. In this way the support 1 can be locally reinforced at those point that are most stressed, and/or unwanted noise or vibration can be avoided.
These possibilities are further enhanced by the possibility of obtaining further modulation by arranging through or blind holes 24 (
The objectives of the invention are therefore fully achieved.
Number | Date | Country | Kind |
---|---|---|---|
102016000018679 | Feb 2016 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/051041 | 2/23/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/145088 | 8/31/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3693764 | Anders | Sep 1972 | A |
4513844 | Hoffman, Jr. | Apr 1985 | A |
6267206 | Grimme | Jul 2001 | B1 |
6367600 | Arbesman | Apr 2002 | B1 |
8544618 | Klimt et al. | Oct 2013 | B2 |
9920807 | Borgmeier et al. | Mar 2018 | B2 |
20020125081 | Meyer | Sep 2002 | A1 |
20040016608 | Gutowski | Jan 2004 | A1 |
20050034940 | Roberts | Feb 2005 | A1 |
20070170023 | Yamamoto | Jul 2007 | A1 |
20110220441 | Zhang | Sep 2011 | A1 |
20130199880 | Jancer | Aug 2013 | A1 |
20130277159 | Borgmeier | Oct 2013 | A1 |
Number | Date | Country |
---|---|---|
10 2008 013 268 | Apr 2009 | DE |
10 2009 020 521 | May 2011 | DE |
10 2011 001 562 | Sep 2012 | DE |
2 245 667 | Jan 1992 | GB |
WO 2010128133 | Nov 2010 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT/IB2017/051041; dated Jun. 6, 2017; 12 pgs. |
Number | Date | Country | |
---|---|---|---|
20190063523 A1 | Feb 2019 | US |