This disclosure relates generally to designing and synthesizing novel matrix metalloproteinase (MMP) oligopeptide sequences to be used as therapeutic agents for treating extracellular matrix related diseases. More specifically, this disclosure relates to using the metalloproteinase oligopeptide from various species as a vaccine, a pharmaceutical composition, a therapeutic dose to treat extracellular matrix related diseases that use MMP's.
Matrix Metalloproteinases are a family of zinc dependent neutral endopeptidases that play an important role in tumor angiogenesis, tissue remodeling, and cell migration. In cancer, levels of some MMP's are abnormally elevated, enabling cancer cells to degrade the extracellular matrix (ECM), invade the vascular basement membrane, and metastasize to distant sites. A variety of pathological conditions are associated with an increased activity of metalloproteinases (MMP's), in particular MMP-9. These proteases are able to digest collagen and other extracellular matrix (ECM) proteins as a precondition for the spreading of the disease. Thus, there is a need for a therapeutic agent to effectively block these MMP's from digesting the ECM, thereby blocking the spread of cancer and other diseases.
Prevention and treatment of metastasis represents the major challenge in cancer therapy today. The current available treatments are toxic, non-specific and unpredictable for ECM protein affected diseases. There is a need for a therapeutic agent to effectively block the MMP molecules from digesting the ECM, thereby preventing ECM degradation and spreading of diseases.
The current disclosure discloses a sequence and a composition of MMP oligopeptide and a method of using the MMP oligopeptide as a vaccine, a pharmaceutical composition, a therapeutic dose and as a diagnostic for treating ECM related diseases.
In one embodiment, the oligopeptide analogs for MMP-9 sequences were designed and synthesized. In another embodiment, these oligopeptides were tested for generating immune response in mouse for MMP sequences.
In one embodiment, the following oligopeptide sequences were used to produce a vaccine. In another embodiment, a treatment dose may be designed for a person suffering from cancer comprising of SEQ ID 5-21 synthetic oligopeptide analogs.
In one embodiment, the sequence of oligopeptide may but is not limited to have mutations, deletions and substitutions.
In one embodiment, the MMP-9 oligopeptide may be used as a vaccine, a pharmaceutical composition, a therapeutic dose and as a diagnostic tool. In another embodiment, all seventeen oligopeptides may be combined to produce a vaccine.
The oligopeptide sequences, in one embodiment may be either be linear or circular in design. In another embodiment, the oligopeptide may be repeat of sequences.
In another embodiment, the oligopeptide may have either haptens or polyglycans attached to them for efficient delivery.
In another embodiment, a method of immunizing a mammal, such as rat, to raise antibodies for a specific MMP is disclosed. In one embodiment, a selection of an oligopeptide suitable for raising antigenicity is disclosed.
In one embodiment, the immunization of mammals may not be limited to cancer but may include all ECM degradation based disease treatment. In another embodiment, the vaccination may be done once or repeatedly by measuring the antibodies specific to the oligopeptide that was injected. In one embodiment, the specific species may be one of a mammal and/or a non mammal.
In one embodiment, a composition for an oligopeptide as a vaccine and a treatment dose comprising of oligopeptides comprising of SEQ ID 5-21 individually or combination thereof.
In one embodiment, the therapeutically effective amount may be rendered, but not limited to, as an injection. Other embodiments may include peroral, topical, transmucosal, inhalation, targeted delivery and sustained release formulations. The treatment dose may comprise of therapeutically effective and pharmaceutically acceptable combinations.
The composition, method, and treatment disclosed herein may be implemented in any means for achieving various aspects, and may be executed in a form suitable for the mammal. Other features will be apparent from the accompanying drawings and from the detailed description that follows.
Example embodiments are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Other features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.
Several sequences and methods for immunizing, treating ECM-MMP related pathogenicity and raising an immune response by vaccination are described herein. Although the present embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader spirit and scope of the various embodiments.
Cancer cells produce higher levels of matrix metalloproteinases (MMP's), particularly MMP-9. These enzymes are able to digest the extra cellular matrix (ECM) connective tissue surrounding the cancerous cells. MMP's bind to ECM via specific binding sites. Blocking these binding sites in the MMP's prevents the MMP's from binding to ECM. Inhibition of ECM destruction prevents the cancer progression and leads to tumor size reduction. In the current disclosure several potential binding sites were identified within MMP-9.
In another embodiment, substitution and omission may be carried out simultaneously. The oligopeptides may be further modified by repeating the sequences and combining more than one SEQ ID 5-21 for producing and formulating a vaccine. The peptidomimetic to the MMP's may be used to block the binding site of an overexpressed MMP in a specific disease.
In one embodiment, the oligopeptide may be used as feedback regulators to specifically prevent or reduce the synthesis rate of MMP-9 productions at the cellular level. In one embodiment process of blocking and inhibition of ECM destruction by antigens produced due to vaccination of mouse.
The design of the experiment was done such that Peptides are dissolved at concentration 1.1 mg/ml. Conjugate Streptavidin-HRP as a carrier protein was dissolved in PBS at concentration 0.8 mg/ml. Peptide solution was mixed with conjugate Streptavidin-HRP to achieve standard final concentrations for peptides and conjugate.
Conjugate Streptavidin-PolyHRP20 (#SP20C) as a carrier protein was purchased from SDT (Germany), dialysis tubing cellulose membrane D9777-100FT, Sigma (St. Louis, Mo.), glass vials ISO 8362-1 2R-CL-1 (Medical Glass, Bratislava, Slovakia) or PP Costar Microcentrifuge Tube (Cat. #3621, Corning Inc., USA), urea and salts were obtained from Fluka (Schweiz). All the reagents used were of analytical grade. All solutions were prepared using pyrogen free milliQ grade water. “SP-35” from gp41 env HIV-1 was used as a Reference peptide with biotin having the following sequence:
Testing of Peptide Solubility:
Data for peptide solubility are represented in Table 1 and 2. Peptides SEQ ID 5-21 was dissolved in 8M Urea to a final concentration of 1.1 mg/ml.
MMP 9 Peptide SEQ ID 12 was insoluble in 8M Urea hence equal volume of 0.1 M Na-carbonate buffer, pH 9.5 were added to dissolve it in a solution as shown in Table 2.
Preparation of Conjugate Streptavidin-PolyHRP20 as a carrier protein. Conventionally the conjugate Streptavidin-PolyHRP20 (Str-HRP 1 mg/ml) comes as solution containing 50% (v/v) glycerol. For removing the glycerol, Str-HRP was dialyzed against Phosphate buffer saline (PBS). Volume of conjugate increases after dialysis and it has to be concentrated to a final volume containing 1.25 (0.8 mg/ml) concentration.
Preparation of conjugate peptide with carrier protein.
Peptides were dissolved in appropriate volume 8M Urea and additional solution. Final concentration of peptide-Str-HRP solution was 0.8 mg/ml and 0.6 mg/ml for peptide and Str-HRP, respectively. After dissolving, 4 aliquotes in 0.2 ml portions were taken from each peptide solution, mixed with 0.6 ml Str-HRP and incubated over night at +4° C. Conjugate peptide with carrier protein (Str-HRP) was frozen and stored at −20° C. until further use. Final concentration of urea in peptide-Str-HRP solution was 2M for all peptides.
BALB/c female mouse, complete Freund's adjuvant (Calbiochem, USA), incomplete Freund's adjuvant (Calbiochem, USA), 2 ml syringe 22G×1½″ (BKMI, R. Korea), PP Costar Microcentrifuge Tube (Cat. #3621, Corning Inc., USA), Vortex Vibrofix VF1 (IKA-Werk, Germany), GP Centrifuge (Beckman, USA) were used as materials.
The pattern for immunization was as follows:
Day 0: Immunization with complete Freund's adjuvant
Day 7: Booster with incomplete Freund's adjuvant
Day 14: Booster with incomplete Freund's adjuvant
Day 28: Booster with incomplete Freund's adjuvant
Day 38: Terminal bleed
Method of Immunization:
Frozen 0.8 ml aliquotes of peptide+Str-HRP conjugate were thawed at room temperature (RT) and mixed with 0.8 ml of appropriate adjuvant. Adjuvant was added and mixed by vortexing immediately before injections were given. Immunization was done by using intra peritoneal injections with 100 μg peptide per animal in final volume 250 μl of 1:1 (v:v) peptide+Str-HRP:adjuvant. Five animals were used per peptide.
Preparation of Serum:
At 38 days, the mouse was bled. Blood was collected in 2-ml microcentrifuge tube and the blood was allowed to clot at room temperature for 1 hour. Centrifugation using the microcentrifuge tube with the clot inside was done for 15 min at 2500 g and serum was collected. Volume for each sample was no less than 400 μl. The serum was stored at −20° C.
Testing Immune Response to Individual Peptide:
Determination of mouse antibodies to peptide based on indirect solid-phase immunoenzymatic assay with avidin on solid-phase was performed. Materials used were 96-well polystyrene plates high binding (#9018 Costar, USA), all solution for ELISA: sample diluent (10 mM sodium phosphate, 500 mM NaCl, 0.5% BSA, 0.05% Tween-20, pH 7.4), conjugate diluent (10 mM sodium phosphate, 150 mM NaCl, 0.5% BSA, 0.05% Tween-20, pH 7.4), wash fluid (10 mM sodium phosphate, 300 mM NaCl, 0.05% Tween-20, pH 7.4), substrate buffer (50 mM sodium citrate and hydrogen peroxide, pH 5.0), TMB solution (3,3′,5,5′-tetramethylbenzidine), stop solution (2M sulphuric acid) were taken from EIA Kit for detection of antibody to HIV “Peptoscreen-2” (Amercard Ltd, Russia), conjugate of rabbit antibody to mouse IgG with HRPO (custom made), avidin from egg white (Imtek, Russia). Negative controls of 5 sera were pooled from the nonimmune BALB/c female mouse. Dispensing of solutions with Finnpipette digital adjustable volume pipettes 0.5-10 μl, 5-40 μl, 20-200 μl, 200-1000 μl, 1-5 ml and 12-channel pipettes 5-50 μl, 50-200 μl. Plate washer ZLE201 (Amersham Inc., UK), incubator at 37° C.—Imperial II (Lab-Line Instruments Inc., USA), EIA plate reader—Luminometer-Photometer LM01A (Immunotech, Beckman Coulter Company, USA).
Test Procedure:
Peptides for binding on the avidin-coated plate were taken from test-solution for determining the solubility of peptides (chapter 1.3., table 1 and 2) and were dissolved up to 2 mM in sample diluents immediately before the test procedure as shown in Table 3.
EIA plates were coated by adding to a well containing 100 μl of avidin dissolved 10 μg/ml in 50 mM carbonate buffer, pH 9.5 and incubated for 20 h at 20° C. The plates were washed 4 times with wash fluid. Peptides 2 mM, 100 ml/well in sample diluent and incubated 60 min at 37° C. Control wells contain avidin. The plates were washed 4 times with wash fluid. Serum from each mouse and negative control were diluted 1:100, 1:1000 and 1:10000 in sample diluents and were added to the wells, coated by the corresponding peptide (100 μl per well) and incubated for 1 h at 37° C. The plates were washed 4 times with wash fluid. Conjugates of rabbit anti-mouse IgG antibody with HRPO (dilution of 1:3000 in conjugate diluent) were added to the wells (100 μl per well). The plates were incubated for 0.5 h at 37° C. The plates were washed 4 times with wash fluid. 100 μl of freshly prepared substrate solution (1 v TMB solution+7 v substrate buffer) were added to each well, and the plates were left at room temperature for 15 minutes in a dark place. A blue color should develop in wells containing positive samples. 100 μl stop solution was added to each well in the same sequence as the addition of substrate solution. This causes the blue color to change to yellow. Plates were read within 50 minutes at 450 nm (A450) using a plate reader. The absorbance of each plate was read as well.
Testing results of immune response to individual peptide by immunoenzymatic assay of individual antiserum are presented as signal A450 in addendum table 4. The results are as follows: Nmouse—Negative control, Mouse #—signal of each individual antiserum, mean—average of signal of A450 for each dilution, mean−N—difference between mean and Nmouse, Avidin(A)—signal on avidin and mean−A—difference between mean and avidin. Analysis of the results shows that the most active of immune response were obtained with peptides SEQID #15 and 13.
Conclusion:
All 17 peptides tested fall in three groups. Group of relatively strong immunogenicity A450>1,0 for dilution 1:1000 (SEQ ID #A7, 10, 13, 15). Group of intermediate immunogenicity A450>2,0 for dilution 1:100 and A450<1,0 for dilution 1:1000 (SEQ ID #5, 12, 14, 16, 17, 19, 21). Group of weak immunogenicity A450<2,0 for dilution 1:100 remaining 6 peptides.
The oligopeptide therapeutically effective amount may be administered to the mammal in many different ways and may not be limited to injections. The various methods of administration are well known in the art and some of the methods are described below.
A “specific species” to be treated by the subject method may mean a human or non-human animal, such as mouse, farm animals, primates and vertebrates.
The specific diseases that would be target diseases for a treatment using MMP oligopeptide sequences and/or peptidomimetic are neoplastic diseases, inflammatory diseases, coronary artery diseases, occlusive cardiovascular diseases, degenerative diseases and infectious diseases. Some examples of neoplastic diseases may be, but not limited to, cancer, lymphoma, leukemia, and brain tumor. Some examples of inflammatory diseases may be, but not limited to, arthritis, asthma, atherosclerosis, Crohn's disease, colitis, dermatitis, lupus erythematous etc. Some examples of infectious diseases may include, but not limited to, are bacterial, viral, fungal, mycoplasmal, certain genetic diseases and other infections. In the instant application, signal oligopeptides within the selective MMP protein that mediate MMP protein's key pathological function, namely the digestion of the connective tissue, which is a precondition for cancer cells to migrate and metastasize were identified. The oligopeptides were synthesized, the animals were injected and antibodies were raised. The tumor size was significantly reduced using these oligopeptide raised vaccines. The degree of efficacy can be seen by the titer level caused by MMP oligopeptide vaccine which proves the vaccines were very effective.
One of the conventional methods of choice to increase the natural antigenicity of the oligopeptide sequence(s) of a given protein is a slight alteration in the amino acid sequence within the given oligopeptide, i.e. by substitutions, deletions, insertions etc. of individual amino acids. The SEQ ID 5-21 were identified and designed in such a way that it matches the hydrophobicity, hydrophylicity and the electrical charge of the amino acids oligopeptide sequences of SEQ ID A1-A3 (MMP) as shown in the previous application. It also maintains the signal characteristics and functionality as an epitope. Since these oligopeptides are very similar to the SEQ ID A1-A3 (MMP) that may be used as vaccine for the reduction of tumor growth. The instant application presents these sequences as a potential candidate for vaccine development to treat cancer. The SEQ ID's 5-21 may enhance the therapeutic efficacy for cross species immunization by enhancing natural antigenicity irrespective of whether the adjuvants are used.
Drug formulations suitable for these administration routes can be produced by adding one or more pharmacologically acceptable carriers to the agent and then treating the mixture through a routine process known to those skilled in the art. The mode of administration includes, but not limited to, are non-invasive peroral, topical (example transdermal), enteral, transmucosal, targeted delivery, sustained release delivery, delayed release, pulsed release and parenteral methods. Peroral administration may be administered both in liquid and dry state.
Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia), each containing a predetermined amount of a subject composition as an active ingredient. Subject compositions may also be administered as a bolus, electuary, or paste.
When an oral solid drug product is prepared, oligopeptide sequence of MMP and/or a peptidomimetic of the MMP's is mixed with an excipient (and, if necessary, one or more additives such as a binder, a disintegrant, a lubricant, a coloring agent, a sweetening agent, and a flavoring agent), and the resultant mixture is processed through a routine method, to thereby produce an oral solid drug product such as tablets, coated tablets, granules, powder, or capsules. Additives may be those generally employed in the art. Examples of the excipient include lactate, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, and silicic acid; examples of the binder include water, ethanol, propanol, simple syrup, glucose solution, starch solution, liquefied gelatin, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropyl starch, methyl cellulose, ethyl cellulose, shellac, calcium phosphate, and polyvinyl pyrrolidone; examples of the disintegrant include dried starch, sodium arginate, powdered agar, sodium hydrogencarbonate, calcium carbonate, sodium lauryl sulfate, monoglyceryl stearate, and lactose; examples of the lubricant include purified talc, stearic acid salts, borax, and polyethylene glycol; and examples of the sweetening agent include sucrose, orange peel, citric acid, and tartaric acid.
When a liquid drug product for oral administration is prepared, oligopeptide sequence of MMP and/or a peptidomimetic of MMP's is mixed with an additive such as a sweetening agent, a buffer, a stabilizer, or a flavoring agent, and the resultant mixture is processed through a routine method, to thereby produce an orally administered liquid drug product such as an internal solution medicine, syrup, or elixir. Examples of the sweetening agent include vanillin; examples of the buffer include sodium citrate; and examples of the stabilizer include tragacanth, acacia, and gelatin.
For purposes of transdermal (e.g., topical) administration, dilute sterile, aqueous or partially aqueous solutions (usually in about 0.1% to 5% concentration), otherwise similar to the above parenteral solutions, may be prepared.
Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing a subject composition with one or more suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated compound(s) and composition(s). Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams, or spray formulations containing such carriers as are known in the art to be appropriate.
A targeted release portion can be added to the extended release system by means of either applying an immediate release layer on top of the extended release core; using coating or compression processes or in a multiple unit system such as a capsule containing extended and immediate release beads.
When used with respect to a pharmaceutical composition or other material, the term “sustained release” is art-recognized. For example, a therapeutic composition which releases a substance over time may exhibit sustained release characteristics, in contrast to a bolus type administration in which the entire amount of the substance is made biologically available at one time. For example, in particular embodiments, upon contact with body fluids including blood, spinal fluid, mucus secretions, lymph or the like, one or more of the pharmaceutically acceptable excipients may undergo gradual or delayed degradation (e.g., through hydrolysis) with concomitant release of any material incorporated therein, e.g., an therapeutic and/or biologically active salt and/or composition, for a sustained or extended period (as compared to the release from a bolus). This release may result in prolonged delivery of therapeutically effective amounts of any of the therapeutic agents disclosed herein.
Current efforts in the area of drug delivery include the development of targeted delivery in which the drug is only active in the target area of the body (for example, in cancerous tissues) and sustained release formulations in which the drug is released over a period of time in a controlled manner from a formulation. Types of sustained release formulations include liposomes, drug loaded biodegradable microspheres and drug polymer conjugates.
Delayed release dosage formulations are created by coating a solid dosage form with a film of a polymer which is insoluble in the acid environment of the stomach, but soluble in the neutral environment of the small intestines. The delayed release dosage units can be prepared, for example, by coating a drug or a drug-containing composition with a selected coating material. The drug-containing composition may be a tablet for incorporation into a capsule, a tablet for use as an inner core in a “coated core” dosage form, or a plurality of drug-containing beads, particles or granules, for incorporation into either a tablet or capsule. Preferred coating materials include bioerodible, gradually hydrolyzable, gradually water-soluble, and/or enzymatically degradable polymers, and may be conventional “enteric” polymers. Enteric polymers, as will be appreciated by those skilled in the art, become soluble in the higher pH environment of the lower gastrointestinal tract or slowly erode as the dosage form passes through the gastrointestinal tract, while enzymatically degradable polymers are degraded by bacterial enzymes present in the lower gastrointestinal tract, particularly in the colon. Alternatively, a delayed release tablet may be formulated by dispersing tire drug within a matrix of a suitable material such as a hydrophilic polymer or a fatty compound. Suitable hydrophilic polymers include, but are not limited to, polymers or copolymers of cellulose, cellulose ester, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, and vinyl or enzymatically degradable polymers or copolymers as described above. These hydrophilic polymers are particularly useful for providing a delayed release matrix. Fatty compounds for use as a matrix material include, but are not limited to, waxes (e.g. carnauba wax) and glycerol tristearate. Once the active ingredient is mixed with the matrix material, the mixture can be compressed into tablets.
A pulsed release-dosage is one that mimics a multiple dosing profile without repeated dosing and typically allows at least a twofold reduction in dosing frequency as compared to the drug presented as a conventional dosage form (e.g., as a solution or prompt drug-releasing, conventional solid dosage form). A pulsed release profile is characterized by a time period of no release (lag time) or reduced release followed by rapid drug release.
The phrases “parenteral administration” and “administered parenterally” as used herein refer to modes of administration other than enteral and topical administration, such as injections, and include without limitation intravenous, intramuscular, intrapleural, intravascular, intrapericardial, intra-arterial, intrathecal, intracapsular, intraorbital, intracardiac, intradennal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intra-articular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.
Certain pharmaceutical compositions disclosed herein suitable for parenteral administration comprise one or more subject compositions in combination with one or more pharmaceutically acceptable sterile, isotonic, aqueous, or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic within the blood of the intended recipient or suspending or thickening agents.
When an injection product is prepared, oligopeptide sequence of MMP and/or a peptidomimetic of MMP's is mixed with an additive such as a pH regulator, a buffer, a stabilizer, an isotonicity agent, or a local anesthetic, and the resultant mixture is processed through a routine method, to thereby produce an injection for subcutaneous injection, intramuscular injection, or intravenous injection. Examples of the pH regulator or buffer include sodium citrate, sodium acetate, and sodium phosphate; examples of the stabilizer include sodium pyrosulfite, EDTA, thioglycollic acid, and thiolactic acid; examples of the local anesthetic include procaine hydrochloride and lidocaine hydrochloride; and examples of the isotonicity agent include sodium chloride and glucose.
Adjuvants are used to enhance the immune response. Various types of adjuvants are available. Haptens are used as adjuvants in this disclosure. Freund's adjuvants may also be used to produce water-in-oil emulsions of immunogens. Antigens in water-in-oil emulsions stimulate high and long-lasting antibody responses which can be attributed to the slow release of antigen. Antigens (preferably in saline) are typically mixed with an equal volume of the adjuvant to form an emulsion.
The phrase “pharmaceutically acceptable” is art-recognized. In certain embodiments, the term includes compositions, polymers and other materials and/or dosage forms which are within the scope of sound medical judgment, suitable for use in contact with the tissues of mammals, human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The phrase “pharmaceutically acceptable carrier” is art-recognized, and includes, for example, pharmaceutically acceptable materials, compositions or vehicles, such as a liquid or solid filler, diluent, solvent or encapsulating material involved in carrying or transporting any subject composition, from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of a subject composition and not injurious to the patient. In certain embodiments, a pharmaceutically acceptable carrier is non-pyrogenic. Some examples of materials which may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.
In certain embodiments, the pharmaceutical compositions described herein are formulated in a manner such that said compositions will be delivered to a mammal in a therapeutically effective amount, as part of a prophylactic, preventive or therapeutic treatment.
In certain embodiments, the dosage of the oligopeptide compositions, which may be referred as therapeutic composition provided herein may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials. For example, the blood samples may be tested for their immune response to their corresponding oligopeptides.
The therapeutic compositions provided by this application may be administered to a subject in need of treatment by a variety of conventional routes of administration, including orally, topically, parenterally, e.g., intravenously, subcutaneously or intramedullary. Further, the therapeutic compositions may be administered intranasally, as a rectal suppository, or using a “flash” formulation, i.e., allowing the medication to dissolve in the mouth without the need to use water. Furthermore, the compositions may be administered to a subject in need of treatment by controlled release dosage forms, site specific drug delivery, transdermal drug delivery, patch (active/passive) mediated drug delivery, by stereotactic injection, or in nanoparticles.
Expressed in terms of concentration, an active ingredient can be present in the therapeutic compositions of the present invention for localized use about the cutis, intranasally, pharyngolaryngeally, bronchially, intravaginally, rectally, or ocularly.
For use as aerosols, the active ingredients can be packaged in a pressurized aerosol container together with a gaseous or liquefied propellant, for example, dichlorodifluoromethane, carbon dioxide, nitrogen, propane, and the like, with the usual adjuvants such as cosolvents and wetting agents, as may be necessary or desirable.
The most common routes of administration also include the preferred transmucosal (nasal, buccal/sublingual, vaginal, ocular and rectal) and inhalation routes.
In addition, in certain embodiments, subject compositions of the present application maybe lyophilized or subjected to another appropriate drying technique such as spray drying. The subject compositions may be administered once, or may be divided into a number of smaller doses to be administered at varying intervals of time, depending in part on the release rate of the compositions and the desired dosage.
Formulations useful in the methods provided herein include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of a subject composition which may be combined with a carrier material to produce a single dose may vary depending upon the subject being treated, and the particular mode of administration.
The therapeutically acceptable amount described herein may be administered in inhalant or aerosol formulations. The inhalant or aerosol formulations may comprise one or more agents, such as adjuvants, diagnostic agents, imaging agents, or therapeutic agents useful in inhalation therapy. The final aerosol formulation may for example contain 0.005-90% w/w, for instance 0.005-50%, 0.005-5% w/w, or 0.01-1.0% w/w, of medicament relative to the total weight of the formulation.
Examples of suitable aqueous and non-aqueous carriers which may be employed in the pharmaceutical compositions include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity may be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. The therapeutic acceptable dosage may be combined with other drugs and may be treated as a combination drug.
In addition, it will be appreciated that the various sequences, immunization processes, and methods of treatment disclosed herein may be embodied using means for achieving the various combinations of therapeutic dosage and delivery methods to treat a specific disease such as cancer. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
The instant application is a continuation-in-part application and claims priority to pending PCT application PCT/US11/42948, filed on Jul. 5, 2011. The disclosure is hereby incorporated by this reference in its entirety for all of its teachings. This application contains sequence listing that has been submitted as an ASCII file named RIPLLC018003CIP2_ST25, the date of creation Jun. 19, 2012, and the size of the ASCII text file in bytes is 4 kb.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US11/42948 | Jul 2011 | US |
Child | 13549329 | US |