This is a national stage application filed under 35 USC 371 based on International Application No. PCT/FI2010/051074 filed Dec. 22, 2010, and claims priority under 35 USC 119 of Finnish Patent Application No. FI 20096386 filed Dec. 22, 2009.
Not Applicable.
Not Applicable.
Not Applicable.
Not Applicable.
Not Applicable.
By a metallurgical furnace is here generally meant a metallurgical furnace unit comprising a furnace vessel and auxiliary equipment for supporting, turning and tilting of the furnace vessel of the metallurgical furnace unit. Such a metallurgical furnace unit is for example presented in publication U.S. Pat. No. 3,838,849. The auxiliary equipment for supporting, turning and tilting of the furnace vessel in this previously known metallurgical furnace unit comprises a trunnion ring in which the furnace vessel is arranged and supported by means of a connection structure arranged between the furnace vessel and the trunnion ring. The connection structure comprising a bearing arrangement for providing for said rotating movement of the furnace vessel in relation to the trunnion ring about a rotation axis. The auxiliary equipment for supporting, turning and tilting of the rotatable and tiltable furnace vessel of the metallurgical furnace unit of this previously known metallurgical furnace unit comprises additionally a pedestal structure to which the trunnion ring is connected by means of a pair of diametrically arranged horizontal trunnion pins for providing for said tilting movement of said furnace vessel about a horizontal tilting axis.
One problem with the metallurgical furnace presented in publication U.S. Pat. No. 3,838,849 is the bearing arrangement between the furnace body and the trunnion ring. In publication U.S. Pat. No. 3,838,849 the bearing arrangement is a slewing bearing which means that the bearing arrangement comprises a first annular bearing means secured to the trunnion ring, a second annular bearing means secured to the furnace vessel and surrounding the furnace vessel, a set of radial thrust bearings interposed between said first and second annular bearing means, and at least one set of axial thrust bearings interposed between said first and second annular bearing means for bearing the load of said vessel. A bearing arrangement of this type is difficult to adjust due to its complicated structure. Such a complicated bearing arrangement also has a considerable need for maintenance. Also thermal expansion of the furnace body puts considerable stress on the bearing arrangement which contributes to considerable wear of the bearing arrangement. It can furthermore in this context be generally said about slewing bearing arrangements of this type that they have a moderate axial stiffness and that the diameter is large compared to the cross section. A slewing bearing arrangement of this type has to be mounted in a sufficient bending-stiff and torsion-stiff companion structure so that the sides i.e. the annular bearing means of the slewing bearing cannot be displaced in relation to each other, but also a structure that is flexible in the meaning that both sides of the slewing bearing is allowed to “follow” each other is possible so that there will be no local spots with considerably higher local loads on the rollers between the sides.
Not Applicable.
The object of the invention is to provide a metallurgical furnace having a new and innovative supporting arrangement between the trunnion ring and the furnace body for connecting the trunnion ring and the furnace body that solves the above-identified problem with the bearing arrangement of the supporting arrangement of the metallurgical furnace presented in U.S. Pat. No. 3,838,849 but which also can be used in connection with such metallurgical furnaces having bearing arrangements comprising other types of bearings than slewing bearings.
The invention is based on using between the furnace body and the trunnion ring a supporting arrangement comprising a first connection frame means and a second connection frame means and on connecting the first connection frame means to the furnace body and to the bearing arrangement and on connecting the second connection frame means to the bearing arrangement and to the trunnion ring so that the second connection frame means is connected to the trunnion ring by a first attachment providing for movements between the second connection frame means and the trunnion ring. By doing this, the supporting arrangement that is connected to the furnace body is allowed to move in relation to the trunnion ring for example as a result of thermal expansion of the furnace body at the same time as the bearing arrangement is not affected by such thermal expansion. In other words, the first attachment provides for a floating connection between the supporting arrangement and the trunnion ring. In other words, the floating connection between the supporting arrangement and the trunnion ring by means of the first attachment allows the rotating side and the stationary side of the bearing arrangement to follow each other, because the first connection frame means, which the rotating side of the bearing arrangement means is secured to, can follow the second connection frame means to which the stationary side of the bearing arrangement is secured.
In a preferred embodiment of the invention the first connection frame means between the furnace body and the bearing arrangement comprises a closed mantle which surrounds the furnace body and which is connected to the furnace body by a second attachment providing for movements between the bearing arrangement and the furnace body caused by thermal expansion of the furnace body. Such a closed mantle may have at least partly a cylindrical or conical configuration. Such an arrangement is presented in document EP 0 887 607.
In a preferred embodiment of the invention the bearing arrangement of the supporting arrangement between the furnace body and the trunnion ring comprises a slewing bearing that surrounds the furnace body and that comprises a first annular bearing means secured to the first connection frame means and a second annular bearing means secured to the second connection frame means, and a set of radial thrust bearings interposed between the first annular bearing means and the second annular bearing means, and a set of axial thrust bearings interposed between the first annular bearing means and the second annular bearing means for bearing the load of the furnace body and for bearing the load of the furnace charge. In such an embodiment the invention provided for such a flexible structure that the first annular bearing means secured to the first connection frame means and the second annular bearing means secured to the second connection frame means can “follow” each other so that possible local spots with higher load on the radial trust bearings and annular trust bearings between the first annular bearing means and the second annular bearing means can be reduced or even eliminated. In other words, the floating connection between the supporting arrangement and the trunnion ring by means of the first attachment allows the first annular bearing means and the second annular bearing means of the bearing arrangement to follow each other because the first connection frame means, which the first annular bearing means is secured to, can follow the second connection frame means to which the second annular bearing means is secured.
In a preferred embodiment of the invention the second connection frame means has preferably an essentially circular outer configuration and the trunnion ring has preferably a corresponding essentially circular inner configuration. In this preferred embodiment of the invention the outer diameter of the second connection frame means is smaller than the inner diameter of the trunnion and the second connection frame means is surrounded by the trunnion ring so that there is a gap between an inner surface of the trunnion ring and an outer surface of the second connection frame means so as to allow thermal expansion of the second connection frame means in relation of the trunnion ring.
In the following the invention will be described in more detail by referring to the figures, of which
The metallurgical furnace shown in
The furnace body 1 is arranged for rotating movement in the trunnion ring 2 about a rotation axis A by means of a supporting arrangement 4 between the trunnion ring 2 and the furnace body 1 for connecting the trunnion ring 2 and the furnace body 1. The supporting arrangement 4 comprises a bearing arrangement 5 between the trunnion ring 2 and the furnace body 1 for allowing for said rotating movement.
The trunnion ring 2 is pivotably connected to the support structure for tilting movement of the furnace body 1 about a pivoting axis. In
The supporting arrangement 4 comprises a first connection frame means 7 between the furnace body 1 and the bearing arrangement 5, and a second connection frame means 8 between the bearing arrangement 5 and the trunnion ring 2.
The first connection frame means 7 and the second connection frame means 8 surround the furnace body 1.
The first connection frame means 7 is connected to the furnace body 1 and to the bearing arrangement 5.
The second connection frame means 8 is connected to the bearing arrangement 5 and to the trunnion ring 2 so that the second connection frame means 8 is connected to the trunnion ring 2 by a first attachment 9 providing for movements between the second connection frame means 8 and the trunnion ring 2.
The first connection frame means 7 between the furnace body 1 and the bearing arrangement 5 may comprise a closed mantle 10 which surrounds the furnace body 1 and which is connected to the furnace body 1 by a second attachment 11 providing for movements between the closed mantle 10 and the furnace body 1 caused by thermal expansion of the furnace body 1. Such a possible closed mantle 10 may have at least partly a cylindrical or conical configuration. Such an arrangement is presented in document EP 0 887 607.
The bearing arrangement 5 of the supporting arrangement 4 between the furnace body 1 and the trunnion ring 2 comprises preferably as shown in the figures, but not necessarily, a slewing bearing 12 that surrounds the furnace body 1. The slewing bearing 12 shown in the figures, see especially
In
The flange means 17 is preferably as shown in
The arrangement shown in
In an arrangement as the one shown in
The trunnion ring 2 may comprise an inner surface 23 facing an outer surface 24 of the second connection frame means 8, wherein at least one of the inner surface 23 and the outer surface 24 comprising at least one guide means 25 projecting into the other of the inner surface 23 and the outer surface 24 carrying load for preventing the trunnion ring 2 and the second connection frame means 8 from rotating with respect to each other. In
The second connection frame means 8 has preferably an essentially circular outer configuration and the trunnion ring 2 has preferably a corresponding essentially circular inner configuration so that the outer diameter of the second connection frame means 8 is smaller than the inner diameter of the trunnion ring 2 so that there is a gap between an inner surface 23 of the trunnion ring 2 and an outer surface 24 of the second connection frame means 8 so as to allow thermal expansion of the second connection frame means 8 in relation of the trunnion ring 2.
The second connection frame means 8 can alternatively have an essentially oval outer configuration and the trunnion ring 2 has preferably a corresponding, but smaller, essentially oval inner configuration so that there is a gap between an inner surface 23 of the trunnion ring 2 and an outer surface 24 of the second connection frame means 8 so as to allow thermal expansion of the second connection frame means 8 in relation of the trunnion ring 2. It is clear to a person skilled in the art that other forms than circular and oval are possible.
It is apparent to a person skilled in the art that as technology advances, the basic idea of the invention can be implemented in various ways. The invention and its embodiments are therefore not restricted to the above examples, but they may vary within the scope of the claims.
Not Applicable.
Number | Date | Country | Kind |
---|---|---|---|
20096386 | Dec 2009 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2010/051074 | 12/22/2010 | WO | 00 | 6/18/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/077009 | 6/30/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3381951 | Gaines | May 1968 | A |
3838849 | Alexander | Oct 1974 | A |
4055335 | Fisher | Oct 1977 | A |
4385748 | Murakami | May 1983 | A |
6060015 | Kagstrom et al. | May 2000 | A |
20120256360 | Kagstrom et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
1134645 | Jan 2004 | CN |
1844818 | Oct 2006 | CN |
0887607 | Dec 1998 | EP |
1533389 | May 2005 | EP |
2002005300 | Jan 2002 | JP |
2002005300 | Jan 2002 | JP |
Entry |
---|
Marko Keranen, International Search Report for PCT/FI2010/051074, Mar. 29, 2011. |
Teppo Falt, Finnish Search Report for FI 20096386, Oct. 26, 2010. |
Chinese Office Action issued Dec. 9, 2013 including Chinese Search Report for Chinese Application No. 201080058359.4 (with English translation), 11 pages. |
Number | Date | Country | |
---|---|---|---|
20120256360 A1 | Oct 2012 | US |