This application relates to metamaterial structures.
The propagation of electromagnetic waves in most materials obeys the right handed rule for the (E,H,β) vector fields, where E is the electrical field, H is the magnetic field, and β is the wave vector. The phase velocity direction is the same as the direction of the signal energy propagation (group velocity) and the refractive index is a positive number. Such materials are “right handed” (RH). Most natural materials are RH materials. Artificial materials can also be RH materials.
A metamaterial (MTM) has an artificial structure. When designed with a structural average unit cell size p much smaller than the wavelength of the electromagnetic energy guided by the metamaterial, the metamaterial can behave like a homogeneous medium to the guided electromagnetic energy. Unlike RH materials, a metamaterial can exhibit a negative refractive index with permittivity ε and permeability μ being simultaneously negative, and the phase velocity direction is opposite to the direction of the signal energy propagation where the relative directions of the (E,H,β) vector fields follow the left handed rule. Metamaterials that support only a negative index of refraction with permittivity ε and permeability μ being simultaneously negative are pure “left handed” (LH) metamaterials.
Many metamaterials are mixtures of LH metamaterials and RH materials and thus are Composite Right and Left Handed (CRLH) metamaterials. A CRLH metamaterial can behave like a LH metamaterial at low frequencies and a RH material at high frequencies. Designs and properties of various CRLH metamaterials are described in, for example, Caloz and Itoh, “Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications,” John Wiley & Sons (2006). CRLH metamaterials and their applications in antennas are described by Tatsuo Itoh in “Invited paper: Prospects for Metamaterials,” Electronics Letters, Vol. 40, No. 16 (August, 2004).
CRLH metamaterials can be structured and engineered to exhibit electromagnetic properties that are tailored for specific applications and can be used in applications where it may be difficult, impractical or infeasible to use other materials. In addition, CRLH metamaterials may be used to develop new applications and to construct new devices that may not be possible with RH materials.
Techniques and apparatus based on metamaterial structures are provided for antenna and transmission line devices, including multilayer metallization metamaterial structures with one or more conductive vias connecting conductive parts in two different metallization layers.
In one aspect, a metamaterial device includes a substrate, a plurality of metallization layers associated with the substrate and patterned to have a plurality of conductive parts, and a conductive via formed in the substrate to connect a conductive part in one metallization layer to a conductive part in another metallization layer. The conductive parts and the conductive via form a composite right and left handed (CRLH) metamaterial structure. In one implementation of the device, the conductive parts and the conductive via of the CRLH metamaterial structure are structured to form a metamaterial antenna and are configured to generate two or more frequency resonances. In another implementation, two or more frequency resonances of the CRLH metamaterial structure are sufficiently close to produce a wide band. In another implementation, the parts and the conductive via of the CRLH metamaterial structure are configured to generate a first frequency resonance in a low band and a second frequency resonance in a high band, the first frequency resonance being a left-handed (LH) mode frequency resonance and the second frequency resonance being a right-handed (RH) mode frequency resonance. In yet another implementation, the parts and the conductive via of the CRLH metamaterial structure are configured to generate a first frequency resonance in a low band, a second frequency resonance in a high band, and a third frequency resonance which is substantially close in frequency to the first frequency resonance to be coupled with the first frequency resonance, providing a combined mode resonance band that is wider than the low band.
In another aspect, a metamaterial device includes a substrate, a first metallization layer formed on a first surface of the substrate and patterned to comprise a cell patch and a launch pad that are separated from each other and are electromagnetically coupled to each other, and a second metallization layer formed on a second surface of the substrate parallel to the first surface and patterned to comprise a ground electrode located outside a footprint of the cell patch, a cell via pad located underneath the cell patch, a cell via line connecting the ground electrode to the cell via pad, an interconnect pad located underneath the launch pad, and a feed line connected to the interconnect pad. This device also includes a cell via formed in the substrate to connect the cell patch to the cell via pad and an interconnect via formed in the substrate to connect the launch pad to the interconnect pad. One of the cell patch and the launch pad is shaped to include an opening and the other of the cell patch and the launch pad is located inside the opening. The cell patch, the cell via, the cell via pad, the cell via line, the ground electrode, the launch pad, the interconnect via, the interconnect via and the feed line form a composite right and left handed (CRLH) metamaterial structure.
In another aspect, a wireless communication device includes a printed circuit board (PCB) comprising a portion that is structured to form an antenna. The antenna includes a CRLH metamaterial cell comprising a top metal patch on a first surface of the PCB, a bottom metal pad on a second, opposing surface of the PCB and a conductive via connecting the top metal patch and the bottom metal pad; and a grounded co-planar waveguide (CPW) formed on the top surface of the PCB at a location to be spaced from the CRLH metal material cell and comprising a planar waveguide (CPW) feed line, a top ground (GND) around the CPW feed line. The CPW feed line has a terminal located close to and capacitively coupled to the top metal patch of the CRLH metalmaterial cell. The antenna also includes a bottom ground metal patch formed on the bottom surface of the PCB below the grounded CPW formed on the top surface of the PCB; and a bottom conductive path that connects the bottom ground metal path to the bottom metal pad of the CRLH metamaterial cell. In one implementation, the antenna is configured to have two or more resonances in different frequency bands, which may, for example, include a cellular band from 890 MHz to 960 MHz and a PCS band from 1700 MHz to 2100 MHz.
In yet another aspect, a wireless communication device includes a printed circuit board (PCB) comprising a portion that is structured to form an antenna. This antenna includes a CRLH metamaterial cell comprising a top metal patch on a first surface of the PCB; a grounded co-planar waveguide (CPW) formed on the top surface of the PCB at a location to be spaced from the CRLH metal material cell and comprising a planar waveguide (CPW) feed line, a top ground (GND) around the CPW feed line, wherein the CPW feed line has a terminal located close to and capacitively coupled to the top metal patch of the CRLH metalmaterial cell; and a top ground metal path formed on the top surface of the PCB to connect to the top ground and the top metal patch of the CRLH metamaterial cell. In one implementation, the antenna is configured to have two or more resonances in different frequency bands, which may, for example, include a cellular band from 890 MHz to 960 MHz and a PCS band from 1700 MHz to 2100 MHz.
These and other aspects and implementations and their variations are described in detail in the attached drawings, the detailed description and the claims.
a)-13(d) show an example of a one-cell two-layer MTM antenna structure with a via, illustrating the 3D view, side view, top view of the top layer and the top view of the bottom layer, respectively.
a) shows the simulated return loss of the MTM antenna structure shown in
b) shows the simulated input impedance of the MTM antenna structure shown in
a) and 15(b) shows the measured efficiency of the MTM antenna structure shown in
a)-16(c) show an example of a two-cell two-layer MTM antenna structure with a via and via line extension, illustrating the 3D view, top view of the top layer and top view of the bottom layer, respectively.
a) shows the simulated return loss of the MTM structure shown in
b) shows the simulated input impedance of the MTM antenna structure shown in
a)-18(f) show an example of a two-cell two-layer MTM antenna structure with a via and via line extension as shown in
a) shows the simulated return loss of the MTM antenna structure shown in
b) shows the simulated input impedance of the MTM antenna structure shown in
a) shows the photos of a fabricated sample of the MTM antenna structure (planar version) shown in
b) shows the photos of a fabricated sample of the MTM antenna structure (3D version) shown in
a)-23(c) show an example of a two-antenna array with a low-band MTM antenna and high-band MTM antenna, illustrating the 3D view, top view of the top layer and top view of the bottom layer, respectively.
a) and 25(b) show the measured efficiency of the two-antenna array shown in
a) shows the measured return loss of the reduced size two-antenna array shown in
b) shows the measured coupling of the reduced size two-antenna array shown in
a)-29(c) show an example of a receive-diversity antenna array with three MTM antennas, Antenna 1, Antenna 2 and Antenna 3, illustrating the 3D view, top view of the top layer and top view of the bottom layer, respectively.
a)-31(c) show an example of a two-cell two-layer two-spiral MTM antenna structure with one via, illustrating the 3D view, top view of the top layer and top view of the bottom layer, respectively.
a) shows the simulated return loss of the MTM antenna structure shown in
b) shows the simulated input impedance of the MTM antenna structure shown in
a)-35(d) show an example of a two-cell two-layer two-spiral MTM antenna structure with two vias, illustrating the 3D view, side view, top view of the top layer and top view of the bottom layer, respectively.
a)-36(d) show an example of a semi single-layer MTM antenna structure with a cell patch extension and meander extension with connecting vias, illustrating the 3D view, side view, top view of the top layer and top view of the bottom layer, respectively.
a) shows the simulated return loss of the MTM antenna structure shown in
b) shows the simulated input impedance of the MTM antenna structure shown in
a) and 39(b) show the measured efficiency of the MTM antenna structure shown in
a) and 40(b) show photos of a fabricated sample of a reduced-size one-cell two-layer MTM antenna structure with a meander line on the same side as the cell patch, illustrating the top view of the top layer and bottom view of the bottom layer, respectively.
a)-43(c) show an example of a small one-cell two-layer MTM antenna structure with a split spiral, illustrating the 3D view, top view of the top layer and top view of the bottom layer, respectively.
a)-46(d) show an example of an MTM antenna structure with a launch pad surrounded by a cell patch, illustrating the 3D view, side view, top view of the top layer and top view of the bottom layer, respectively.
a) and 47(b) show photos of a fabricated sample of the MTM antenna structure shown in
a)-50(d) show an example of a two-antenna array with each MTM antenna as shown in
a) and 51(b) show photos of a fabricated sample of the two-antenna array shown in
a) and 56(b) show photos of a fabricated sample of the two-antenna array shown in
a)-59(f) show an example of a three-layer MTM antenna structure with vertical coupling, illustrating the 3D view, top view of the top layer, top view of the middle layer, top view of the bottom layer, top view of the top and middle layer overlaid, and side view, respectively.
a) shows the simulated return loss of the MTM antenna structure shown in
b) shows the simulated input impedance of the MTM antenna structure shown in
a)-61(c) shows an example of a one-cell two-layer MTM antenna structure with a meander line on the other side of the cell patch, illustrating the 3D view, top view of the top layer and top view of the bottom layer, respectively.
a) and 62(b) show the MTM structure as shown in
a) and 63(b) show the MTM structure as shown in
a) and 64(b) show the MTM structure as shown in
a)-65(d) show the simulated return loss of the MTM antenna structure shown in
Metamaterial (MTM) structures can be used to construct antennas and other electrical components and devices, allowing for a wide range of technology advancements such as functionality enhancement, size reduction and performance improvements. The MTM structures can be fabricated on various circuit platforms, including circuit boards such as a FR-4 Printed Circuit Board (PCB) or a Flexible Printed Circuit (FPC) board. Examples of other fabrication techniques include thin film fabrication techniques, system on chip (SOC) techniques, low temperature co-fired ceramic (LTCC) techniques, and monolithic microwave integrated circuit (MMIC) techniques.
The examples and implementations of MTM structures described in this document include multilayer MTM antenna structures that have conductive components of the MTM structure, including a ground electrode, in two or more metallization layers. These multiple metallization layers can be formed on two or more parallel surfaces in a substrate or a plate structure where two adjacent metallization layers are separated by an electrically insulating material (e.g., a dielectric material). Two or more substrates may be stacked together with or without spacing to provide multiple surfaces for the multiple metallization layers to achieve certain technical features or advantages. Such multilayer MTM structures can have at least one conductive via to connect one conductive component in one metallization layer to another conductive component in another metallization layer. The described multilayer MTM structures with at least one via and their implementations can be structured in various configurations and may be coupled with other MTM or non-MTM circuits and circuit elements on the circuit boards.
The multilayer MTM antenna structures described in this document can be designed to generate multiple frequency bands for various applications, including cell phone applications, handheld communication device applications (e.g., PDAs and smart phones), WiFi applications, WiMax applications and other wireless mobile device applications, in which the antenna is expected to support multiple frequency bands with adequate performance under limited space constraints. These MTM antenna structures can be adapted and designed to provide one or more advantages over other antennas such as compact sizes, multiple resonances based on a single antenna solution, resonances that are stable and do not shift substantially with the user interaction, and resonant frequencies that are substantially independent of the physical size. Furthermore, elements in the present MTM antenna structure can be configured to achieve desired bands and bandwidths based on the CRLH properties.
An MTM antenna or MTM transmission line (TL) is an MTM structure with one or more MTM unit cells. The equivalent circuit for each MTM unit cell includes a right-handed series inductance (LR), a right-handed shunt capacitance (CR), a left-handed series capacitance (CL), and a left-handed shunt inductance (LL). LL and CL are structured and connected to provide the left-handed properties to the unit cell. This type of CRLH TLs or antennas can be implemented by using distributed circuit elements, lumped circuit elements or a combination of both. Each unit cell is smaller than ˜λ/4 where λ is the wavelength of the electromagnetic signal that is transmitted in the CRLH TL or antenna.
A pure LH metamaterial follows the left-hand rule for the vector trio (E,H,β), and the phase velocity direction is opposite to the signal energy propagation direction. Both the permittivity ε and permeability μ of the LH material are negative. A CRLH metamaterial can exhibit both left-hand and right-hand electromagnetic modes of propagation depending on the regime or frequency of operation. Under certain circumstances, a CRLH metamaterial can exhibit a non-zero group velocity when the wavevector of a signal is zero. This situation occurs when both left-hand and right-hand modes are balanced. In an unbalanced mode, there is a bandgap in which electromagnetic wave propagation is forbidden. In the balanced case, the dispersion curve does not show any discontinuity at the transition point of the propagation constant β(ωo)=0 between the left- and right-hand modes, where the guided wavelength is infinite, i.e., λg=2π/|β|→∞, while the group velocity is positive:
This state corresponds to the zeroth order mode m=0 in a TL implementation in the LH region. The CRLH structure supports a fine spectrum of low frequencies with the dispersion relation that follows the negative β parabolic region. This allows a physically small device to be built that is electromagnetically large with unique capabilities in manipulating and controlling near-field around the antenna which in turn controls the far-field radiation patterns. When this TL is used as a Zeroth Order Resonator (ZOR), it allows a constant amplitude and phase resonance across the entire resonator. The ZOR mode can be used to build MTM-based power combiners and splitters or dividers, directional couplers, matching networks, and leaky wave antennas.
In the case of RH TL resonators, the resonance frequency corresponds to electrical lengths θm=βml=mπ (m=1, 2, 3 . . . ), where l is the length of the TL. The TL length should be long to reach low and wider spectrum of resonant frequencies. The operating frequencies of a pure LH material are at low frequencies. A CRLH MTM structure is very different from an RH or LH material and can be used to reach both high and low spectral regions of the RF spectral ranges. In the CRLH case θm=βml=mπ, where l is the length of the CRLH TL and the parameter m=0, ±1, ±2, ±3 . . . ±∞.
Examples of specific MTM antenna structures are described below. Certain technical information associated with the these examples is described in U.S. patent application Ser. No. 11/741,674 entitled “Antennas, Devices, and Systems Based on Metamaterial Structures,” filed on Apr. 27, 2007, and U.S. patent application Ser. No. 11/844,982 entitled “Antennas Based on Metamaterial Structures,” filed on Aug. 24, 2007, which are incorporated by reference as part of the specification of this document.
Each individual unit cell can have two resonances ωSE and ωSH corresponding to the series (SE) impedance Z and shunt (SH) admittance Y. In
The two unit cells at the input/output edges in
To simplify the computational analysis, a portion of the ZLin′ and ZLout′ series capacitor is included to compensate for the missing CL portion, and the remaining input and output load impedances are denoted as ZLin and ZLout, respectively, as seen in
In matrix notations,
where AN=DN because the CRLH MTM TL circuit in
In
Since the radiation resistance GR or GR′ can be derived by either building or simulating the antenna, it may be difficult to optimize the antenna design. Therefore, it is preferable to adopt the TL approach and then simulate its corresponding antennas with various terminations ZT. The relationships in Eq. (1) are valid for the circuit in
The frequency bands can be determined from the dispersion equation derived by letting the N CRLH cell structure resonate with nπ propagation phase length, where n=0, ±1, ±2, . . . ±N. Here, each of the N CRLH cells is represented by Z and Y in Eq. (1), which is different from the structure shown in
The dispersion relation of N identical CRLH cells with the Z and Y parameters is given below:
where Z and Y are given in Eq. (1), AN is derived from the linear cascade of N identical CRLH unit cells as in
Table 1 provides χ values for N=1, 2, 3, and 4. It should be noted that the higher-order resonances |n|>0 are the same regardless if the full CL is present at the edge cells (
The dispersion curve β as a function of frequency ω is illustrated in
In addition,
where χ is given in Eq. (4) and ωR is defined in Eq. (1). The dispersion relation in Eq. (4) indicates that resonances occur when |AN|=1, which leads to a zero denominator in the 1st BB condition (COND1) of Eq. (7). As a reminder, AN is the first transmission matrix entry of the N identical unit cells (
As previously indicated, once the dispersion curve slopes have steep values, then the next step is to identify suitable matching. Ideal matching impedances have fixed values and may not require large matching network footprints. Here, the word “matching impedance” refers to a feed line and termination in the case of a single side feed such as in antennas. To analyze an input/output matching network, Zin and Zout can be computed for the TL circuit in
which has only positive real values. One reason that B1/C1 is greater than zero is due to the condition of ═AN|≦1 in Eq. (4), which leads to the following impedance condition:
0≦−ZY=χ≦4.
The 2nd broadband (BB) condition is for Zin to slightly vary with frequency near resonances in order to maintain constant matching. Remember that the real input impedance Zin′ includes a contribution from the CL series capacitance as stated in Eq. (3). The 2nd BB condition is given below:
Different from the transmission line example in
which depends on N and is purely imaginary. Since LH resonances are typically narrower than RH resonances, selected matching values are closer to the ones derived in the n<0 region than the n>0 region.
One method to increase the bandwidth of LH resonances is to reduce the shunt capacitor CR. This reduction can lead to higher ωR values of steeper dispersion curves as explained in Eq. (7). There are various methods of decreasing CR, including but not limited to: 1) increasing substrate thickness, 2) reducing the cell patch area, 3) reducing the ground area under the top cell patch, resulting in a “truncated ground,” or combinations of the above techniques.
The MTM TL and antenna structures in
The equations for the truncated ground structure can be derived. In the truncated ground examples, the shunt capacitance CR becomes small, and the resonances follow the same equations as in Eqs. (1), (5) and (6) and Table 1. Two approaches are presented.
where Zp=jωLp and Z, Y are defined in Eq. (2). The impedance equation in Eq. (11) provides that the two resonances ω and ω′ have low and high impedances, respectively. Thus, it is easy to tune near the ω resonance in most cases.
The second approach, Approach 2, is illustrated in
The above exemplary MTM structures are formed in two metallization layers, and one of the two metallization layers is used to include the ground electrode and is connected to the other metallization layer by conductive vias. Such two-layer CRLH MTM TLs and antennas with vias can be constructed with a full ground electrode as shown in
Variations in the MTM structure can be introduced to comply with PCB real-estate factors, device performance requirements and other specifications. Examples of various MTM antenna structures with at least one via interconnecting conductive components on two different metallization layers are described below. The cell patch can have a variety of geometrical shapes and dimensions such as but not limited to rectangular, polygonal, irregular, circular, oval, or combination of different shapes. The via line and the feed line can have a variety of geometrical shapes and dimensions such as but not limited to rectangular, polygonal, irregular, zigzag, spiral, meander or combination of different shapes. A launch pad can be added at the distal end of the feed line to enhance coupling. The launch pad can have a variety of geometrical shapes and dimensions such as but not limited to rectangular, polygonal, irregular, circular, oval, or combination of different shapes. The gap between the launch pad and cell patch can take a variety of forms such as but not limited to straight line, curved line, L-shaped line, zigzag line, discontinuous line, enclosing line, or combination of different forms. Some of the feed line, launch pad, cell patch and via line can be formed in different layers from the others. Some of the feed line, launch pad, cell patch and via line can be extended to a different layer. The antenna portion can be placed a few millimeters above the main substrate. A non-planar substrate can be used to accommodate various parts in different planes for footprint reduction. Multiple cells may be cascaded in series creating a multi-cell 1D structure. Multiple cells may be cascaded in orthogonal directions generating a 2D structure. A single feed line may be configured to deliver power to multiple cell patches. An additional conductive line may be added to the feed line or launch pad. This additional conductive line can have a variety of geometrical shapes and dimensions such as but not limited to rectangular, irregular, zigzag, spiral, meander, or combination of different shapes, and can be placed in the top, mid or bottom layer, or a few millimeters above the substrate.
The multilayer MTM antenna structures described in this document can be configured to generate multiple frequency bands including a “low band” and a “high band.” The low band includes at least one left-handed (LH) mode resonance and the high band includes at least one right-handed (RH) mode resonance. The present device structures can be implemented to use a LH mode to excite and better match the low frequency resonances as well as improve impedance matching at high frequency resonances. Identification of the LH mode can be made by observing that the LH mode resonance disappears from the input impedance and return loss when one of the following techniques is used: (i) the gap between the launch pad and cell patch is closed, which corresponds to an inductively loaded monopole antenna; (ii) the via line connecting the cell patch to the ground electrode is removed; and (iii) the via line is removed and the gap is closed, which provides a printed monopole resonance.
The MTM antennas described in this document can be designed to operate in various bands, including frequency bands for cell phone and mobile device applications, WiFi applications, WiMax applications and other wireless communication applications. Examples of the frequency bands for cell phone and mobile device applications are: the cellular band (824-960 MHz) which includes two bands, CDMA (824-894 MHz) and GSM (880-960 MHz) bands; and the PCS/DCS band (1710-2170 MHz) which includes three bands, DCS (1710-1880 MHz), PCS (1850-1990 MHz) and AWS/WCDMA (2110-2170 MHz) bands. A quad-band antenna can be used to cover one of the CDMA and GSM bands in the cellular band and all three bands in the PCS/DCS band. A penta-band antenna can be used to cover all five bands with two in the cellular band and three in the PCS/DCS band. Examples of frequency bands for WiFi applications include two bands: one ranging from 2.4 to 2.48 GHz, and the other ranging from 5.15 GHz to 5.835 GHz. The frequency bands for WiMax applications involve three bands: 2.3-2.4 GHZ, 2.5-2.7 GHZ, and 3.5-3.8 GHz.
a)-13(d) show an example of a one-cell two-layer MTM antenna with a conductive via connecting the two metallization layers, illustrating the 3D view, side view, top view of the top metallization layer and top view of the bottom metallization layer, respectively. The top metallization layer is formed on the top surface of a substrate 1344 and is patterned to form some elements of the one-cell two-layer MTM antenna and a top ground electrode 1340. The bottom metallization layer is formed on the bottom surface of the substrate 1344 and is patterned to form other elements of the one-cell two-layer MTM antenna and a bottom ground electrode 1341. A via 1320 penetrates through the substrate 1344 and connects the top and bottom metallization layers.
More specifically, the top and bottom metallization layers are patterned into various metal parts for the MTM antenna: the top ground electrode 1340, the bottom ground electrode 1341, a cell patch 1316 which is spaced from the top ground electrode 1340, a launch pad 1312 separate from the cell patch 1316 by a coupling gap 1328, the via 1320 connecting the cell patch 1316 to a via pad 1348 on the bottom metallization layer, and a via line 1324 that connects the bottom ground electrode 1324 to the via pad 1348 and hence to the cell patch 1316. A feed line 1308 is formed in the top metallization layer and is connected to the launch pad 1304 to direct a signal to or receive a signal from the cell patch 1316 through the coupling gap 1328. The locations of a PCB hole 1332 and a PCB component 1336 are indicated also in the figures for reference. The width of the coupling gap 1328 can be set based on the design, such as a few mils in one implementation.
The top ground electrode 1340 is formed above the bottom ground electrode 1341 so that a co-planer waveguide (CPW) feed 1304 can be formed in the top electrode ground 1340. This CPW feed 1304 is connected to the feed line 1308 to deliver power. Therefore, in this example, the CPW ground is formed by the top and bottom ground electrodes 1340 and 1341. Alternatively, the antenna can be fed with a CPW feed that does not require a ground plane on a different layer, a probed patch or a cable connector.
In the illustrated example, the cell patch 1316 formed in the top metallization layer is located above the portion of the bottom surface that includes the via pad 1348 and the via line 1324 and is not above the bottom ground electrode 1341. Thus, this one-cell two-layer MTM antenna structure has the shunt capacitance CR with a small value associated with the cell patch 1308 in the top metallization layer and the via pad 1348 and via line 1324 in the bottom metallization layer. This MTM antenna structure also has the shunt inductance LL associated with the via 1320, and the series inductance Lp associated with the via line 1324. Therefore, this structure has a truncated ground electrode and does not use a full ground electrode plane. Some examples of MTM structure with a truncated ground electrode are shown in
Table 2 provides a summary of the elements of the one-cell two-layer MTM antenna structure with a via shown in
The one-cell two-layer MTM antenna structure with a via shown in
The HFSS EM simulation software is used to simulate the antenna performance with the above parameter values. Both the simulated return loss in
Some samples are fabricated and characterized by measurements. The measured efficiency of a fabricated sample is shown in
The above one-cell two-layer MTM antenna structure with at least one via can be extended to include two or more cell patches.
The monopole resonance frequency of this antenna can be controlled by the total length of the feed line, launch pad and cell patch combined. The longer the total length is, the lower the resonance frequency is. For example, the position of the feed line 1608 can be moved away from the cell patch 1 (1616-1) to improve matching, adjust bandwidth, and lower the low-band center frequency. Furthermore, by having the secondary cell patch, a second monopole mode can be generated at a low frequency. The secondary cell patch may be directly connected to the launch pad resulting in a large launch pad. Therefore, this low-frequency monopole resonance that can be mainly controlled by the total length of the feed line 1604, launch pad 1612, and cell patches 1616-1 and 1616-2 can be tuned to a frequency region close to the LH-mode resonance frequency so that the two modes can be combined to create a low-frequency wide-band resonance. This resultant low-frequency wide-band resonance is referred to as a combined monopole-mode and LH-mode resonance in this document. The penta-band coverage for cell phone applications can thus be achieved based on this scheme of generating both the monopole and LH modes close enough to be combined to support the cellular band (824-960 MHz) with a bandwidth of approximately 150 MHz. The via line extension 1648, which has a spiral shape formed directly below the cell patch 21616-2, serves to further improve matching in this example.
a) and 17(b) show the simulated return loss and input impedance of the two-cell two-layer MTM antenna with a via in
In some applications, it may be desirable to increase the separation between the antenna and the main PCB. One of reasons for doing this is to avoid interference between the antenna and components. The separation can be increased by physically moving the antenna along the Z-direction perpendicular to the main substrate plane. This may be achieved by using two different substrates with one for forming the MTM antenna and the other for forming the main PCB. The two substrates are stacked over each other and separated by a middle dielectric insulation layer. An example of such an MTM structure with an elevated antenna portion at height h with respect to the main substrate plane is illustrated in
In
The simulated return loss and impedance of the two-cell MTM structure with the elevated antenna in
In a different implementation, the via line 2 (1824-2) may be located on the top surface of the main substrate 1850 instead of the bottom surface to terminate the via 3 (1820-3) at the top surface of the main substrate 1850, so that the via line 2 (1824-2) can be connected to the top ground electrode 1840 instead of the bottom ground electrode 1841.
Sample antennas based on the two-cell two-layer MTM structure shown in
To evaluate the effect of a cell phone enclosure, each of these antennas was placed inside of a cell phone housing for measurements.
In some cell phone applications, it may be desirable to have control of the low-band bandwidth. Since the low frequency resonances of MTM antennas are excited by LH modes, the bandwidth of a low frequency resonance may be limited unless the distance between the antenna and ground is increased. However, in some situations it can be difficult or even prohibitive to increase the planar size of the antenna or the elevation of the antenna from the main substrate. In such cases, a two-port solution can be employed, where one antenna is configured to provide a low frequency resonance, thus generating a low band, and the other antenna is configured to provide a high frequency resonance, thus generating a high band. The low-band bandwidth can be widened by lowering the monopole mode resonance to be coupled with the low frequency resonance that is excited by the LH mode. The coupling between the two antennas can be decreased by widening the separation between the low band and high band in frequency.
a)-23(c) show an example of a two-antenna array having one MTM antenna serving as a low-band antenna and the other serving as a high-band antenna, illustrating the 3D view, top view of the top layer and top view of the bottom layer, respectively. In this example, each of the two antennas has a single cell patch. The top metallization layer is formed on the top surface of the substrate and includes a top ground electrode 2340. The bottom metallization layer is formed on the bottom surface of the substrate and includes a bottom ground electrode 2341. The top ground electrode 2340 is formed above the bottom ground electrode 2341 so that a CPW feed 1 (2304-1) and CPW feed 2 (2304-2) can be formed in the top electrode ground 2340. Therefore, in this example, the CPW ground is formed by the top and bottom ground electrodes 2340 and 2341. The low-band and high-band MTM antennas are formed with separate ports coupled to the CPW feed 1 (2304-1) and CPW feed 2 (2304-2), respectively.
The high-band MTM antenna structure is similar to the previous example of the one-cell two-layer MTM antenna structure with a via shown in
The low-band MTM antenna structure is also similar to the previous example of the one-cell two-layer MTM antenna structure with a via shown in
Samples of the two-antenna array having the low-band MTM antenna and high-band MTM antenna were fabricated and are illustrated in
The measured efficiency is shown in
A reduced-size two-antenna array having the low-band and high-band MTM antennas is fabricated as shown in the photo of
The measured return loss is depicted in
Receive (Rx) diversity is one of wireless diversity schemes that utilize two or more antennas, affording a receiver several observations of an incoming signal to obtain a robust link. Due to the use of multiple antennas, compactness of the antenna device is desired. High efficiency is not normally required for Rx diversity antennas, and the efficiency requirement may range 30-40% in some cases. MTM antenna structures described in this document can be implemented to construct an MTM antenna array for providing the receive diversity while allowing a compact antenna package.
a)-29(c) show an example of a Rx diversity MTM antenna array with three different antennas designed to resonate at the following three different bands for cell phone applications: US Cell Rx 869-894 MHz (Antenna 1), GPS1570-1580 MHz (Antenna 2) and PCS Rx 1930-1990 MHz (Antenna 3). The antenna area, indicated as (a×b) in
Three separate CPW feeds 1 (2904-1), 2 (2904-2) and 3 (2904-3) are formed in a top ground electrode 2940 to guide antenna signals for Antennas 1, 2 and 3, respectively. The CPW feed 1 (2904-1) for Antenna 1 is partially formed in the extended portion of the top ground, top ground extension 2950. Each antenna structure is basically a one-cell two-layer MTM antenna structure with a via as shown in
The measured return loss is shown in
An example of a two-cell two-layer two-spiral MTM antenna structure with one via is illustrated in
Specifically, the top metallization layer has a top ground electrode 3140, a CPW feed 3104 formed in the top ground electrode 3140, a top launch pad 3112-1, a top spiral 3152-1 attached to the top launch pad 3112-1, a feed line 3108 connecting the CPW feed 3104 and the top launch pad 3112-1, and a top cell patch 3116-1. The antenna signal is directed to and received from the top cell patch 3116-1 through a top coupling gap 3128-1, and the top cell patch 3116-1 is conductively connected to a bottom cell patch 3116-2 by a via 3120 penetrating through the substrate. The bottom metallization layer has the bottom cell patch 3116-2, a bottom ground electrode 3141, a bottom launch pad 3112-2 capacitively coupled to the bottom cell patch 3116-2 through a bottom coupling gap 3128-2, a bottom spiral 3152-2 attached to the bottom launch pad 3112-2, and a via line 3124 connecting the bottom cell patch 3116-2 to the bottom ground electrode 3141. The top and bottom spirals 3152-1 and 3152-2 are substantially identical in shape and size and positioned to overlay with each other. The top and bottom cell patches 3116-1 and 3116-2 are also substantially identical in shape and size, except that the small portion of the bottom cell patch 3116-2, where the via line 3124 is connected, is extended out slightly as compared to the top cell patch 3116-1.
The bottom cell patch 3116-2 effectuates a truncated ground and the shape and size of the truncated ground (bottom cell patch 3116-2) directly underneath the top cell patch 3116-1 are similar to those of the top cell patch 3116-1. The RH shunt capacitance CR in this example is larger than that in the one cell version of the truncated ground structures shown in
The simulated return loss and input impedance are shown in
To improve matching to cover all five bands, modifications are made to the two-cell two-layer two-spiral MTM antenna structure with one via shown in
The following table provides a summary of the antenna elements of this two-cell two-layer two-spiral MTM antenna structure with two vias. This modified design improves the impedance matching.
a)-36(d) show an example of a semi single-layer MTM structure, showing the 3D view, side view, top view of the top layer and top view of the bottom layer, respectively. This is an example for an MTM antenna structure designed for penta-band cell phone applications.
More specifically, this semi single-layer MTM antenna has a launch pad 3604, a meander line 3652 and a cell patch 3608, all of which are in the top metallization layer on the top surface of the substrate. The cell patch 3608 is extended to a cell patch extension 3644 in the bottom metallization layer on the bottom surface of the substrate by using one or more vias 3648 to connect the cell patch 3608 on the top surface and the cell patch extension 3644 on the bottom surface. The meander line 3652 is extended to a meander extension 3653 in the bottom metallization layer on the bottom surface of the substrate by using one or more vias 3640 to connect the meander line 3652 on the top surface and the meander extension 3653 on the bottom surface. The respective vias are referred to as meander connecting vias 3640 and cell connecting vias 3648 in the figures. Such extensions can be made to comply with the space requirements while maintaining a certain performance level. The antenna is fed by a grounded CPW feed 3620 with a characteristic impedance of 50Ω. A feed line 3616 connects the CPW feed 3620 to the launch pad 3604, and has the added meander line 3652. The low-frequency monopole mode resonance is generated by the addition of the meander line 3652. The length of the meander line 3652 can be adjusted to create a resonance at a frequency higher than, but close to the LH resonance so that the resulting bandwidth of the two modes (the combined monopole-mode and LH-mode resonance) is sufficient to cover the low band with a bandwidth of ˜150 MHz. The cell patch extension 3644 helps improve matching of the LH mode resonance, whereas the meander extension 3653 helps improve matching of the monopole mode resonance. The cell patch 3608 has a polygonal shape, and capacitively coupled to the launch pad 3604 through a coupling gap 3628. The cell patch 3608 is shorted to the top ground electrode 3624 on the top surface through a via line 3612. The via line route is optimized for matching. The substrate 3632 can be made of a suitable dielectric material, e.g., an FR4 material with a dielectric constant of 4.4.
Table 4 provides a summary of the elements of the semi single-layer MTM antenna structure in this example.
The design parameters are selected to cover the penta band for cell phone applications. The HFSS EM simulation software is used to simulate the antenna performance. The simulated return loss is shown in
As evidenced in
A reduced-size one-cell two-layer MTM antenna with a meander line is designed and fabricated as shown in the photos of
The meander line 4052 is formed on the same side as the cell patch 4016 from the feed line 4008. This geometry is determined to utilize the available area between the cell patch 4016 and the edge of the top ground electrode 4040 with respect to the location of the CPW feed 4004. As a result, the area occupied by the antenna portion, i.e., (a×b) in
The measured return loss of a fabricated sample of this reduced-size one-cell two-layer MTM antenna with the meander is shown in
a)-43(c) show an example of a small one-cell two-layer MTM antenna with a split spiral, illustrating the 3D view, top view of the top layer and top view of the bottom layer, respectively. This is an MTM antenna designed for CDMA single band applications, characterized by a small size (e.g., 8 mm×22 mm) and a split spiral. This structure is similar to the reduced-size one-cell two-layer MTM antenna with a meander line shown in
More specifically, a top ground electrode 4340 is formed above a bottom ground electrode 4341 so that a CPW feed 4304 can be formed in the top electrode ground 4340. Therefore, as in the aforementioned examples, the CPW ground is formed by the top and bottom ground electrodes 4340 and 4341 in this small one-cell two-layer MTM antenna structure with the split spiral. Alternatively, the antenna can be fed with a CPW feed that does not require a ground plane on a different layer, a probed patch or a cable connector. The CPW feed 4304 is connected to a feed line 4308, which is further connected to a launch pad 4312 to direct a signal to or receive a signal from a cell patch 4316 through a coupling gap 4328. The gap width can be a few mils in some implementations. A spiral line is attached to the launch pad 4312. The spiral line is split into a top spiral 4352-1 and bottom spiral 4352-2, which are connected by a via 2 (4320-2). The cell patch 4316 is connected to the bottom ground electrode 4341 through a via line 4324 on the bottom surface of the substrate. The cell patch 4316 and the via line 4324 are connected through a via 1 (4320-1). Table 7 provides a summary of the elements of the small one-cell two-layer MTM antenna structure with the split spiral.
The dimensions of the elements in the small one-cell two-layer MTM antenna with the split spiral are selected to generate the CDMA single band resonances. Examples of the design parameters in one exemplary implementation are provided below. The substrate is 42 mm wide, 100 mm long and 1 mm thick. The material is FR4 with a dielectric constant of 4.4. The gap between the launch pad 4312 and the cell patch 4316 is 0.2 mm. The size of the cell patch 4316 is 15.45 mm long and 4 mm wide. The via line is 46.2 mm long and 0.3 mm wide. The spiral line has a total length of 83 mm combining the top and bottom spirals 4352-1 and 4352-2, and its width is 0.3 mm. The antenna area is 8 mm×22 mm.
The measured return loss of a fabricated sample of this MTM antenna is shown in
In the aforementioned antenna structures, the coupling gap between the launch pad and cell patch is formed to be a slim and straight or right-angled gap between a straight edge portion of the launch pad and an aligned straight edge portion of the cell patch. The gap width can be 4-8 mils, for example, in some applications. The coupling geometry, which is determined by the layout of the launch pad and cell patch, can be designed to have more complex geometries. For example, the launch pad can be formed to completely surround the cell patch, or vice versa. The analysis presented in the previous sections still holds for this geometry in that the series LH capacitance CL is similarly induced between the launch pad and cell patch but with more complex dependencies on the gap geometry.
a)-46(d) show an example of an MTM antenna structure in which the launch pad is completely surrounded by the cell patch, illustrating the 3D view, side view, top view of the top layer and top view of the bottom layer, respectively. The cell patch 4616 in the bottom metallization layer is shaped to include an opening region in which the launch pad 4612 is formed and is completely surrounded by the cell patch 4616. This MTM antenna structure is featured by a three-dimensional power feeding structure that comprises two strips connected by a via: one strip in the top metallization layer (feed line 4608), the other strip in the bottom metallization layer (launch pad 4612) and a via 1 (4620-1) connecting the two strips. A via line 4624 is formed in the top metallization layer and connects a top ground electrode 4640 and the top portion of a via 2 (4620-2), which further connects to the cell patch 4616 in the bottom metallization layer.
The top ground electrode 4640 is formed above a bottom ground electrode 4641 so that a CPW feed 4604 can be formed in the top ground electrode 4640. Therefore, as in the aforementioned examples, the CPW ground is formed by the top and bottom ground electrodes 4640 and 4641 in the present MTM antenna structure. Alternatively, the antenna can be fed with a CPW feed that does not require a ground plane on a different layer, a probed patch or a cable connector. The CPW feed 4604 is connected to the feed line 4608, which is further connected to the launch pad 4612 to direct a signal to or receive a signal from the cell patch 4616 through a coupling gap 4628, which is surrounded by the cell patch 4616. This MTM antenna structure is different from a slot antenna because the feed structure and cell patch are completely separated by the gap, providing capacitive coupling CL.
A possible design variation is to have a via line in the bottom metallization layer, directly connecting the cell patch 4616 with the bottom ground electrode 4641. Another variation is to have the via line and another ground electrode in a third metallization layer and have the via connecting the cell patch 4616 in the bottom metallization layer and the via line in the third metallization layer. The third metallization layer can be formed on the bottom surface of a second substrate which is stacked underneath the original substrate 4632, thus providing a multi-layer structure. The bottom ground electrode 4641, which is in the bottom metallization layer, can be moved to the third metallization layer instead of forming another ground electrode in the third metallization layer. The top and bottom metallization layers are interchangeable in the MTM antenna structure shown in
Table 8 provides a summary of the elements of the MTM antenna structure having the launch pad surrounded by the cell patch shown in
The dimensions of the elements in the MTM antenna structure having the launch pad surrounded by the cell patch as shown in
Two frequency bands can be observed in the measured return loss shown in
An example of a two-antenna array based on the MTM antenna structure having a launch pad surrounded by a cell patch is illustrated in
The dimensions of the elements in the two-antenna array based on the MTM antenna structure having the launch pad surrounded by the cell patch illustrated in
Each antenna in this two-antenna array has two frequency resonances as shown by the measured return loss in
The measured coupling between the two antennas (S12) is also plotted in
The measured efficiency associated with each antenna of the two-antenna array is plotted in
A coupling gap can be formed by having a cell patch surrounded by a launch pad, instead of the launch pad surrounded by the cell patch as in the above examples.
As shown in
The top ground electrode 5540 is formed above a bottom ground electrode 5541 so that the CPW feed 1 (5504-1) can be formed in the top ground electrode 5540. Therefore, as in the aforementioned examples, the CPW ground is formed by the top and bottom ground electrodes 5540 and 5541 in the present MTM antenna structure. Alternatively, the antenna can be fed with a CPW feed that does not require a ground plane on a different layer, a probed patch or a cable connector.
A possible design variation is to have the via line and another ground electrode in a third metallization layer, and have the via connecting the cell patch in the bottom metallization layer and the via line in the third metallization layer. The third metallization layer can be formed on the bottom surface of a second substrate which is stacked underneath the original substrate 5532, thus providing a multi-layer structure. The bottom ground electrode 5541, which is in the bottom metallization layer, can be moved to the third metallization layer instead of forming another ground electrode in the third metallization layer. The top and bottom metallization layers are interchangeable in the MTM antenna structure shown in
The dimensions of the elements in the two-antenna array based on the MTM antenna structure having the cell patch surrounded by the launch pad illustrated in
The measured return loss of the two-antenna array based on the MTM antenna having the cell patch surrounded by the launch pad as shown in
In the MTM antenna examples described above, the coupling geometry for capacitive coupling between the launch pad and cell patch is implemented in a planar fashion where both the launch pad and cell patch are located on the same metallization layer and thus the coupling gap between the two is formed in the same plane. However, the coupling gap can be formed vertically, that is, the launch pad and cell patch can be located on two different layers, thereby forming a vertical, non-planar coupling gap in between.
An example of a three-layer MTM antenna with the vertical coupling between a cell patch and launch pad at different layers is illustrated in
The top layer includes a feed line 5916 that connects a CPW feed 5920 to a launch pad 5904. The CPW feed 5929 can be formed in a CPW structure that has a top ground electrode 5924 and a bottom ground electrode 5925. Both the feed line 5916 and launch pad 5904 have a rectangular shape with dimensions of 6.7 mm×0.3 mm and 18 mm×0.5 mm, respectively. The middle layer includes an L-shaped cell patch 4808 which may, in one implementation, have one section with dimensions of 6.477 mm×18.4 mm and the other section with dimensions of 6.0 mm×6.9 mm. A vertical coupling gap 5952 is formed between the launch pad 5904 in the top layer and the cell patch 5908 in the middle layer. A via 5940 is formed in the bottom substrate to couple the cell patch 5908 in the middle layer to a via line 5912 in the bottom layer. The via line 5912 in the bottom layer is shorted to the bottom ground electrode 5925 with two bends, as can be seen from
A possible design variation is to have the via line in the top layer connected to the top ground electrode 5924 and the via connecting the cell patch in the middle layer and the via line in the top layer. Another variation is to have the via line in the middle layer directly connecting the cell patch 5908 to another ground electrode formed in the middle layer. The bottom (third) layer and the bottom substrate can be eliminated in these variations. The top, middle and bottom metallization layers are interchangeable in the three-layer MTM antenna structure in this example.
Design parameters for the three-layer MTM antenna with the vertical coupling shown in
The simulated input impedance of this MTM antenna with the vertical coupling is plotted in
Various practical implementations may pose space constraints that require a certain routing of traces in the antenna structure. An MTM antenna can be compacted by using lumped circuit elements, such as capacitors or inductors, to augment the inductance and capacitance involved in the MTM structure. The MTM antenna structure with a conductive meander line shown in
In the MTM antenna structure shown in
In the MTM antenna structure shown in
In the MTM antenna structure shown in
a)-65(d) show the simulated return loss results for several MTM structures.
Lumped components can be added to various parts of the MTM antenna structure to achieve certain desired effects. For example, an inductor can be added to the meander line, and the length of the meander line can be reduced. In this example, the reduced inductance due to the shortened meander line is compensated for by the addition of the inductor while maintaining the similar antenna performance. Since lumped components do not radiate, they can be placed at locations where there is little radiation to minimize the impact on the radiation efficiency of the antenna. For example, it is possible to obtain the same resonance by adding an inductor at the beginning or end of the meander line. However, adding the inductor at the end of the meander line may significantly reduce the radiation efficiency because the end of the meander line has the highest radiation. It should be noted that these lumped-component loading techniques can be combined to achieve further miniaturization.
While this specification contains many specifics, these should not be construed as limitations on the scope of an invention or of what may be claimed, but rather as descriptions of features specific to particular embodiments of the invention. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or a variation of a subcombination.
Only a few implementations are disclosed. However, it is understood that variations and enhancements may be made.
This application claims the benefits of the following U.S. Provisional Patent Applications: 1. Ser. No. 60/987,750 entitled “Antennas for Cell Phones, PDAs and Mobile Devices Based on Composite Right-Left Handed (CRLH) Metamaterial” and filed on Nov. 13, 2007; 2. Ser. No. 61/024,876 entitled “Antennas for Mobile Communication Devices Based on Composite Right-Left Handed (CRLH) Metamaterials” and filed on Jan. 30, 2008; 3. Ser. No. 61/028,457 entitled “Antennas for Cell Phones, PDAs and Mobile Devices Based on Composite Right-Left Handed (CRLH) Metamaterial” and filed on Feb. 13, 2008; and 4. Ser. No. 61/091,203 entitled “Metamaterial Antenna Structures with Non-Linear Coupling Geometry” and filed on Aug. 22, 2008. The disclosures of the above applications are incorporated by reference as part of the specification of this application.
Number | Date | Country | |
---|---|---|---|
60987750 | Nov 2007 | US | |
61024876 | Jan 2008 | US | |
61028457 | Feb 2008 | US | |
61091203 | Aug 2008 | US |