It is common for electronic documents to be rigorously categorized into types: word processing documents containing mostly text; spreadsheets containing mostly numbers and formulae organized into a grid; slideshow documents organized into a sequence of slides having room for minimal content based on the typical need for them to be legible at a distance; business drawings in which text is associated with shapes connected in a particular configuration, etc. This rigorous categorization is related to the fact that different documents of different types are typically created and edited using different, monolithic applications. For example, word processing documents tend to be created and edited using a different application than spreadsheet documents.
A facility for presenting document contents is described. The facility receives input denoting selection of one of a plurality of visualization forms. The facility renders the document contents in accordance with the visualization form whose selection is denoted by the received input, and causes the rendered document contents to be displayed.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key factors or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The inventors have recognized significant disadvantages in conventional electronic documents. In particular, the inventors have noted that, while different ways of visualizing electronic content each have their own advantages, by limiting each document type in many cases to a single visualization form, conventional documents preclude obtaining the advantages that would attend other visualization forms.
The inventors have further recognized that conventional techniques available to transform an electronic document from its initial visualization form to other visulation forms are in many ways problematic: each such transformation can be a difficult process; the resulting separate documents must be stored separately, incurring redundant storage resources, and siloing these separate documents representing different visualization forms such that revisions to one of these documents have no effect on the other documents.
In order to overcome these disadvantages, the inventors have conceived and reduced to practice a software and/or hardware facility for allowing each user accessing a document to select any of a number of diverse visualization forms available for presenting the document (“the facility”).
A visualization form specifies a manner of transforming document contents into a particular visualization for presentation. For example, in various embodiments, the facility makes available various combinations of visualization forms such as a word processing visualization form; a spreadsheet visualization form; a chart visualization form; a slideshow visualization form; a calendar visualization form; an organizational, graph-based visualization form; an outline visualization form; a table of contents; etc. The facility is extensible, in that new visualization forms may be added over time. For example, a newly created visualization form may be added to allow existing document contents to be viewed in a new way.
In some embodiments, at least some of the visualization forms made available by the facility explicitly denote the organizational structure of the documents that they are used to present. A user can edit a document in one of these visualization forms in order to alter the organizational structure of the document, such as by inserting a new node in the organizational structure of the document, relocating a node within the organizational structure of the document, deleting a note in the organizational structure of the document, etc.
Each visualization form may specify certain document content for presentation. For example, a word processing visualization form may present all document content, while a slideshow visualization form may present a subset of the document content (e.g., headings, topic sentences, images) more suitable for display in a slide presentation.
In some embodiments, any user may select the visualization form that they use to present a document, and may switch to a new visualization form at any point. For example, a user may begin with a structural organization visualization form that as well-suited to navigating a document; then switch to a filmstrip visualization form in which it is easy to insert new images; then switch to a word processing visualization form in which it is easy to edit text; then switch to a slideshow visualization form visualization form in which most users of the document will view it.
Different users can use different visualization forms to present the same document, even concurrently. Many visualization forms provided by the facility enable the user to edit a document in a manner that alters the underlying content of the document, and accordingly the contents of the document being presented to users using different visualization forms.
In some embodiments, the facility stores documents using a construct called a “document fragment,” or simply “fragment,” which is a unit of document content represented separately by the facility. The document is comprised of a single “root fragment,” which can directly contain content, as well as containing fragment references referring to other fragments. Those fragments referred to by the root fragment can themselves directly contain content and fragment references to other fragments, and so on. When a document is opened, the facility typically collects and synthesizes its contents by retrieving the root fragment, retrieving other fragments referred to by fragment references in the root fragment, retrieving further fragments referred to by fragment references in those fragments, and so on. In some embodiments, any fragment can be treated as a document, in the sense that it can be opened by an editing or presentation application as the root fragment.
In some embodiments, the facility stores the fragments making up users' documents in a cloud-based service, where they can be accessed from virtually any location. In some embodiments, this cloud-based service uses a technique called “erasure coding” in which it decomposes, or “shreds,” a fragment defined by a document author into multiple smaller constituent pieces, or “shreds,” each of which the facility stores on multiple storage devices in different data centers in different geographic locations to provide disaster and outage survivability. When the cloud-based service receives a request for a fragment, it retrieves and combines these shreds to reconstitute the fragment.
In some embodiments, the facility stores a new version of a fragment to reflect each editing action performed on the fragment, each identified by the date and time at which the editing action was performed. For example, in some embodiments, the facility creates a new fragment version for each character or group of characters that is inserted in the fragment—such as by a keystroke or a text block paste—and for each character or group of characters that is deleted—such as by a backspace keypress or a select-and-delete operation. In some embodiments, each fragment version identifies the author that took the editing action reflected by the fragment version. In some embodiments, after being written, these fragment versions cannot be altered, and are said to be “immutable.”
In some embodiments, over time, the facility deletes some of the versions of a fragment, so as to collapse two or more editing actions into an undeleted version of the fragment. In some embodiments, in doing so, the facility deletes only contiguous fragment versions all reflecting editing actions by the same author and immediately preceding an undeleted fragment version also reflecting an editing action by the same author.
In some embodiments, where the content is incorporated from a fragment-aware source document, the facility ensures that the incorporated content corresponds precisely to one or more whole fragments; that is, where the selected content spans only a portion of a fragment in the source document, the facility breaks that fragment in the source document into two fragments, a first that contains only the content from the original fragment that was selected, a second containing the content from the original fragment that was not selected, so that the first can be incorporated into the target document while the second is not. Where the content is incorporated from a fragment-unaware source document, the facility creates a new fragment to contain the incorporated content.
In response to the incorporation operation, the facility creates a fragment reference in the target document at the position in the target document where the content was incorporated to represent the incorporated content in the target document. In some embodiments, the fragment reference contains multiple components, such as a current fragment ID component and/or an original component. The current fragment ID component of the created fragment reference identifies the fragment to which the reference refers, such as by containing a fragment ID for this fragment that can be used to retrieve this fragment. The origin component, where used by the facility, maintains in the fragment reference state the fragment ID of the fragment in which the incorporated content originated, which can serve as a basis for changing the mode in which the incorporated content is used in the target document throughout the life of the fragment reference, and for tracking the provenance of the fragment. In some embodiments, the facility stores an ordered list of fragment IDs in the origin component to reflect the series of fragments from which the referenced fragment has been forked.
In various embodiments, at the time the user performs the incorporation operation, the user can specify an initial mode for the incorporated content in the target document by, for example, holding down a certain keyboard key during the drag interaction, using a varying control key combination to paste the incorporated content into the target document, responding to a context menu or dialog displayed by the facility in response to the incorporation operation, etc. In some embodiments, each mode has two characteristics: (1) whether the contents of the fragment are editable in the context of the incorporating document or fragment (“editable in context”) and (2) how a version of the referenced fragment is chosen for inclusion in the incorporating document or fragment (“version selection”). In some embodiments, the following kinds of version selection options are available: (a) “latest”—the version of the fragment with the most recent time is incorporated by the reference; (b) “time-specified”—a particular version of the fragment associated with a particular time is incorporated by the reference (e.g., in some embodiments, an arbitrarily specified time causes selection of the fragment version whose time is the latest among the fragments that are not later than the specified time); (c) “special”—special rules are used to specify which version of the fragment is selected for incorporation. Examples of special rules are the latest document approved by a qualified approval authority, or the earliest version embodying an edit by a particular author.
In various embodiments, the facility supports some or all of the following incorporation modes: live mode, follow mode, forkable mode, pinned mode, special forkable mode, and special follow mode.
Live mode (1) is editable in context and (2) uses “latest” version selection. Thus, in live mode, an author can change the content of the fragment, which results in a new version of the fragment being created to reflect each such change. These changes will appear in any other containing fragments that incorporate the same fragment, and whose version selection option ends up selecting this version, either (a) latest, or (b) special with a selection rule that selects this version. Live mode is typically used for a reference included to both revise the referenced fragment, and reflect the revisions of others. By virtue of using the latest version selection option, a reference in live mode incorporates the latest version of the fragment, no matter its content or which authors' revision it reflects. Where live mode is selected, the facility populates a current fragment ID component of the fragment reference with the same fragment ID as the origin component. The current component of the fragment reference identifies the fragment whose contents are to be retrieved for inclusion in the target document.
Follow mode (1) is not editable in context, and (2) uses latest version selection. In follow mode, the latest version of the fragment is always incorporated, but can't be edited in the context of the document or fragment containing the follow mode reference. Follow mode is typically used to incorporated dynamic content maintained by one or more other authors, in a centralized manner.
Forkable mode (1) is editable in context, and (2) uses time-specified version selection. In forkable mode, the fragment can be edited in the context of the reference from the fragment's state at the specified time. Performing such an edit transforms the reference from forkable mode to live mode; reflects the edit in the first version of a new fragment ID; stores the new fragment ID in the context of the reference; and stores the original fragment ID in the reference's origin component. Forkable mode is typically used where a particular state of a fragment is to be the basis for a new set of edits that won't affect documents or fragments incorporating the original fragment. Similarly, the forkable and resulting live reference aren't affected by edits to the original fragment subsequent to the forkable reference version selection time.
Pinned mode (1) is not editable in context, and (2) uses time-specified version selection. While the fragment reference is in pinned mode, the incorporated content cannot be changed, either by a user editing the document or fragment containing the pinned reference (because not editable in context precludes editing by such an author), or by a user editing the fragment in the context of a different containing document or fragment (because such edits will be reflected in a new version of the fragment, which will not be selected by the time-specified selection logic of this reference). Where pinned mode is selected, the facility populates the current component of the fragment reference with the fragment ID of the origin fragment. Pinned mode is typically used to preserve a particular state of the fragment in the referring document.
Special forkable mode (1) is editable in context, and (2) specifies a special version selection rule. The incorporated fragment will, at any given time, show the content of the version of the source fragment that is selected by the special version selection rule at the time. When an author edits the fragment in context, the forking process described above occurs. Special forkable mode can be used, for example, to use an evolving template whose edits are subject to periodic approval as a basis for creating instances of new content.
Special follow mode (1) is not editable in context, and (2) specifies a special version selection rule. Thus, a special follow reference shows the version of the fragment that satisfies the version selection rule at any given time, which is not editable in context. This mode can be used, for example, to pull into a document or fragment centrally-authored content that is periodically rereleased by its authors to reflect all edits occurring since the last release.
A user may at any subsequent time change the mode of the incorporated content via various user interface techniques, such as by right-clicking on the incorporated content and selecting an item from a resulting context menu, selecting incorporated content and choosing a menu-bar menu item, interacting with a specialized control that is displayed when the mouse cursor hovers over the incorporated content, etc. In some embodiments, the facility incorporates or interoperates with a system of authority and access controls and other content governance measures limit the actions that can be taken by a particular user with respect to a particular document or fragment in various circumstances, including changing the mode of an existing fragment reference.
In some embodiments, when retrieving the time-specified fragment version for content incorporated in pinned mode, the facility notifies the user if a version of the origin fragment that is more recent than the read-only fragment to enable the user to switch the mode to live, or remain in pinned mode but replace the time specified for the version in the reference with the time corresponding to the latest version.
In some embodiments, the facility maintains metrics on the incorporation of fragments into documents to be able to report on various “hot fragments” measures, which identify fragments that are incorporated into the most total documents, or fragments that have been incorporated into the most documents during a recent period of time, across an organization or another group of users, among a group or category of documents, etc.
By operating in some or all of the ways described above, the facility enables users to create, revise, collaborate on, and present documents in diverse and powerful ways.
While various embodiments are described in terms of the environment described above, those skilled in the art will appreciate that the facility may be implemented in a variety of other environments including a single, monolithic computer system, as well as various other combinations of computer systems or similar devices connected in various ways. In various embodiments, a variety of computing systems or other different devices may be used as clients, including desktop computer systems, laptop computer systems, automobile computer systems, tablet computer systems, smart phones, personal digital assistants, televisions, cameras, etc.
Where the user incorporates the letterhead content in pinned mode, the letterhead content will remain unchanged in the target document unless and until the incorporation is changed to a different mode. Where the user incorporates the letterhead content in forked mode, the user can change the letterhead content in the context of the target document; such changes will not affect the letterhead content in the source document, and any changes to letterhead content in the source document will not be reflected in the target document. Where the user incorporates the letterhead content in live mode, the user can, subject to any applicable permissions, change the letterhead content in the context of the target document, and doing so will change the letterhead content in the source document and any other document that incorporates the letterhead content in live mode. Similarly, changes to the letterhead content via the source document or any other document that incorporates the letterhead content in live mode will be reflected in the target document.
In step 602, the facility creates a fragment reference in the target document. In step 603, the facility populates both the origin component of the fragment reference and its current component with the fragment ID of the fragment added to the document. In step 604, the facility receives a user interaction specifying a mode for incorporating the fragment in the target document. In some embodiments, a single interaction or a related sequence of interactions can both add the fragment to the document and specify a mode. If the user action received in step 604 specifies the live mode, then the facility continues in step 605; if it specifies the follow mode, then the facility continues in step 606; if it specifies the forkable mode, then the facility continues in step 607; if it specifies the pinned mode, then the facility continues in step 612; if it specifies the special forkable mode, then the facility continues in step 613; and if it specifies the special follow mode, then the facility continues in step 614.
In step 605, where the live mode is specified, the facility sets edit in context to yes for the reference, and sets version selection to latest. After step 605, the facility continues in step 604 to permit the user to, at a later time, specify a new mode for this fragment. In step 606, where the follow mode is specified, the facility sets edit in context to no for the reference, and sets version selection to latest. After step 606, the facility continues in step 604. In step 607, where the forkable mode is specified, the facility sets edit in context to yes for the reference, and sets version selection to the current time, or an earlier time selected by the user. In step 608, if the user chooses to edit the fragment in the context of the reference, then the facility continues in step 609, else the facility continues in step 604. In step 609, the faculty creates a new fragment that reflects application of the edit of step 608 to the added fragment. The new fragment has a different fragment ID than the added fragment. In step 610, the facility populates the current component of the fragment reference with the new fragment's fragment ID. In step 611, the facility changes the reference's mode to live. After step 611, the facility continues in step 605. In step 612, where the pinned mode is specified, the facility sets edit in context to no for the reference, and sets version selection to the current time, or to an earlier time selected by the user. After step 612, the facility continues in step 604. In step 613, where the special forkable mode is specified, the facility sets edit in context to yes, and sets version selection to a version selection rule, such as a version selection rule specified via additional user interactions, a default version selection rule, an inferred version selection rule, etc. After step 613, the facility continues in step 608. In step 614, where the special follow mode is specified, the facility sets edit in context to no, and sets version selection to a version selection rule in a manner similar to step 613. After step 614, the facility continues in step 604.
Those skilled in the art will appreciate that the steps shown in
While
In some embodiments, where fragment versions are used, some fragment versions are writeable, such that an author can change the content at a time after it is created, at least in the case of fragment versions that are not referenced by any pinned fragment references. However, in some embodiments, every fragment version is read-only, and any revision of content contained by an existing fragment version causes the facility to create a new fragment version. In various embodiments, the creation of a new fragment version occurs at various levels of granularity, including a new fragment version for each editing session, a new fragment version for each keystroke, or at some level in between, such as every five seconds, every minute, every 15 minutes, etc.
In some embodiments, rather than storing each fragment version instance as a single entity as shown in
In step 1201, the facility accesses the contents of the document, such as in the manner above described with respect to the fragment management system. In step 1202, the facility solicits from the user an indication of a document visualization form to use to present and interact with the document. In various embodiments, the facility provides various sets of document visualization forms to the user for selection, such as via a user interface. In some embodiments, the facility initially automatically selects a document visualization form for the user based upon a variety of factors, but that form can subsequently be altered by the user. For example, in some embodiments, the facility automatically selects a document visualization form based on the last form used by the user, for this or another document; a default visualization form set by the user, a document author, or the facility; etc. In step 1203, the facility displays the document in the user-selected visualization form. Step 1203 is discussed in greater detail below in connection with
It will be appreciated that
It will be appreciated that
In some embodiments, the facility provides a computing system for presenting document contents. The computing system comprises: an input subsystem configured to receive input denoting selection of one of a plurality of visualization forms; a rendering subsystem configured to render the document contents in accordance with the visualization form whose selection is denoted by input received by the input subsystem; and a display subsystem configured to cause the rendered document contents to be displayed. Each of these subsystems is a computing-related entity, comprising either hardware, a combination of hardware and software, software, or software in execution on a computer.
In some embodiments, the facility provides a method for presenting document contents. The method comprises: receiving input denoting selection of one of a plurality of visualization forms; rendering the document contents in accordance with the visualization form whose selection is denoted by the received input; and causing the rendered document contents to be displayed.
In some embodiments, the facility provides a computer-readable medium having contents configured to cause a computing system to, in order to collaboratively author a document: cause a portion of the document to be displayed to a first user in a first form; and, in response to receiving first input from the first user specifying a change to the portion of the document displayed to the first user in the first form: cause to be displayed to the first user in the first form the portion of the document changed in accordance with the first input, cause a persistent representation of the document to be altered in accordance with the first input, and cause to be displayed to a second user in a second form distinct from the first form a portion of the document changed in accordance with the first input.
In some embodiments, the facility provides a method for collaboratively authoring a document. The method comprises: causing a portion of the document to be displayed to a first user in a first form; and, in response to receiving first input from the first user specifying a change to the portion of the document displayed to the first user in the first form: causing to be displayed to the first user in the first form the portion of the document changed in accordance with the first input, causing a persistent representation of the document to be altered in accordance with the first input, and causing to be displayed to a second user in a second form distinct from the first form a portion of the document changed in accordance with the first input.
In some embodiments, the facility provides a computer-readable medium storing a data structure representing a document. The data structure comprises: a plurality of entries, each entry corresponding to a different one of a plurality of visualization forms, each entry comprising: first information identifying the visualization form to which the entry corresponds; and second information specifying a manner of transforming document contents into visualized document contents in accordance with the visualization form to which the entry corresponds, such that the contents of the data structure are usable to (a) solicit user input selecting one of the plurality of visualization forms to use in presenting distinguished document contents, and (b) transform the distinguished document contents into visualized document contents in accordance with the selected visualization form.
It will be appreciated by those skilled in the art that the above-described facility may be straightforwardly adapted or extended in various ways. While the foregoing description makes reference to particular embodiments, the scope of the invention is defined solely by the claims that follow and the elements recited therein.