Embodiments herein generally relate to surfaces and structures formed upon surfaces to guide light.
Many modern technological systems and/or methods implement some form of photonics. For example, many modern technological systems and/or methods implement some form of light (e.g., photon) generation, light detection, and/or light manipulation. Silicon photonic applications rely heavily on waveguides to guide light. However, forming lenses, prisms, or other structures from waveguides can be problematic.
One application of photonics is in head mounted displays, virtual reality display, or augmented reality displays. However, conventional displays implemented as head mounted, virtual, or augmented displays typically have a much narrower field of view than the user. However, as displays are magnified to cover larger fields of view, what is referred to as the “screen door effect” becomes more prevalent. The screen door effect refers to dark spaces between pixels that become noticeable to a user as the perceived image is magnified.
Another application of photonics is stereo and structured light projectors. Such projectors typically rely on a combination of lasers and refractive or diffractive optics. However, these optics add bulk as well as additional components to the projectors, increasing their complexity and cost. Another application of photonics is to filter some portion of light. However, conventional filtering techniques require additional lenses, prisms, or waveguides to filter light, thereby increasing bulk and cost of the devices.
Various embodiments may be generally directed to forming nanostructures on a surface to manipulate light incident upon the surface. Such nanostructures and surfaces may be referred to as “metasurfaces” or “photonic metasurfaces” (PMs). These metasurfaces can be arranged as lenses, prisms, or the like. Furthermore, multiple PMs can be combined to form optical multiplexers and/or optical demultiplexers.
Some embodiments provide metasurfaces combined and/or integrated onto surfaces where filtering of light might be desired. For example, nanoparticles can be formed directly on solar cells and arranged to block unwanted light (e.g., infrared or the like) from the light spectrum to increase the efficiency of the solar cells. As another example, nanoparticles can be formed directly on transparent surfaces (e.g., windows, eye-glass lenses, or the like) and arranged to block unwanted light (e.g., infrared light, ultra-violet (UV) light, or the like). Such filtering can be implemented to increase energy efficiency of the windows themselves, energy efficiency of the structure in which the windows are installed, or block unwanted light components (e.g., UV rays) from being transmitted through the transparent surface.
In some embodiments, metasurfaces can be combined with and/or integrated onto LEDs (e.g., OLEDs, μLEDs, or the like) and arranged to diffuse light emitted from the LEDs. For example, a display comprising a combination of red, green, and blue LEDs combined with metasurfaces can be arranged to diffuse light corresponding to sub-pixels in a projected image to reduce the screen door effect.
Some embodiments can provide metasurfaces implemented in a head-mounted or head worn display (HWD). The present disclosure provides HWDs comprising flat mirrors implemented by metasurface materials and/or diffractive optical technology. For example, a HWD can be implemented with an image generation device (e.g., a light emitting diode (LED) display, an organic light emitting diode (OLED) display, a micro (μ) LED display, or the like) and a metasurface mirror to reflect and enlarge images, generated by the image generation device, to be viewed in an enlarged scale by a user of the HWD.
With some embodiments, HWDs can be provided with metasurfaces arranged to redirect light (e.g., from a projector) within the HWD. For example, the present disclosure can provide HWDs comprising metasurface materials arranged to replace conventional prisms within the HWD.
In some embodiments, metasurfaces can be combined and/or integrated with a laser, such as, a vertical cavity surface emitting laser (VCSEL) or an array of lasers (e.g., an array of VCSELs) and arranged to re-image the light emitted from the laser or laser array into a specific pattern. Such metasurfaces and lasers can be implemented to form a structured light projector.
Reference is now made to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding thereof. It may be evident, however, that the novel embodiments can be practiced without these specific details. In other instances, known structures and devices are shown in block diagram form to facilitate a description thereof. The intention is to provide a thorough description such that all modifications, equivalents, and alternatives within the scope of the claims are sufficiently described.
Additionally, reference may be made to variables, such as, “a”, “b”, “c”, which are used to denote components where more than one component may be implemented. It is important to note, that there need not necessarily be multiple components and further, where multiple components are implemented, they need not be identical. Instead, use of variables to reference components in the figures is done for convenience and clarity of presentation.
In some examples, meta-atom 91 can be cylindrical, for example a cylindrical post as depicted. In other examples, meta-atom 91 can be rectangular, square, pyramid shaped, dome shaped, or another arbitrary shape. The shape of meta-atom 91 can be arranged, designed, formed, or the like to provide a desired manipulative effect on incident light. For example, some implementations can comprise rectangular dielectric cuboid meta-atoms, which induce birefringence and have an optical response that may be sensitive to the polarization of the incident radiation. As another example, some implementations can comprise pillars or cylinders, which can be configured to operate on unpolarized light, particularly when centrosymmetric subwavelength features of the radiation are involved. Meta-atom 91 can be formed on substrate 93, which can be a transparent substrate, a reflective substrate, an opaque substrate or a substrate having other light or photonic properties. In some examples, substrate 93 can be a dielectric material.
Turning to
In general, the geometric properties of the metasurface 100, such as, for example, spacing 101 between meta-atoms 91 and geometric properties (e.g., diameter 103) of meta-atom 91 can be selected to provide a desired optical response from the metasurface 100. For example, the amplitude and phase of light transmitted from metasurface 100 can depend on the ratio D/λ, where D is the diameter 103 and λ, is the wavelength of incident light. In some examples, the maximum value of spacing 101 is the lattice constant above which higher diffraction orders will be propagating in the substrate 93 and is given by 2λ/√{square root over (3)}ng, where ng is the refractive index of the substrate 93 (e.g. ng=1.452 for silica substrate).
In general, a metasurface (e.g., metasurface 100) operates as follows: Radiation (or light) is incident on the metasurface 100, and particularly the meta-atoms 91 of the metasurface 100. Electric and magnetic responses, typically of comparable strengths, is manifest due to the meta-atoms 91. For example, the incident radiation is coupled to the electric field's circular displacement current, which results in a strong magnetic dipole resonance. The magnetic resonance occurs when the wavelength inside the particle becomes comparable to its spatial dimension. That is, when D≈λ/n, where n is the refractive index of the material of the meta-atom 91.
With some examples, metasurface 217 can be patterned onto waveguide 213 and configured (e.g., nano-structures 91 of metasurface 217 arranged, or the like) as a collimating lens. Such a function can be beneficial for minimizing optical loss between waveguide 213 and the optical transmission medium 203. For example, metasurface 203 can be implemented to relax alignment tolerances between waveguide 213 and the optical transmission medium 203. More specifically, in conventional optical transceivers, the bulk optical assembly must be actively aligned in all 6 axes. However, with optical transceiver 200, metasurface 217 may be configured to output a collimated output beam. As such, alignment between waveguide 213 and optical the optical transmission medium 203 may be simplified. Thus, yield and manufacturing throughput can be increased while assembly cost can be reduced. Furthermore, due to the flat nature of metasurface 217, the interface between the waveguide 213 and the optical transmission medium 203 may be more robust than conventional interfaces.
With some examples, optical component 201 can be arranged to emit light or detect light. For example, optical component 201 could include a laser, an LED, a photodiode, or the like. It is noted, that the optical transceiver 200 of
In general, metasurfaces rely on subwavelength structures to shape the optical wavefront (e.g., incident light 201, light beams 203, or the like). As such, they are highly wavelength dependent. Thus, metasurfaces can be used to fabricate prisms to split light based on wavelength. A challenge with conventional silicon photonics is that silicon-based demultiplexers are highly temperature sensitive, so discrete silica demultiplexers, which are expensive, are often used in real-world applications.
Demultiplexer 300 can be implemented with metasurfaces that rely on chromatic dispersion of the photonic metasurface to split (e.g., via metasurface 310) incident light 301 into lights beams 303 based on constituent wavelengths (e.g., 4 light beams of constituent wavelengths, 8 light beams of constituent wavelengths, etc.). These light beams 303 can then be directed (e.g., via metasurface 320) into separate photodetectors. For example, this figure depicts metasurface 310 splitting incident light 301 into four (4) separate light beams 303 and metasurface 320 directing these light beams 303 to respective photodetectors 330-1, 330-2, 330-3, and 330-4.
With some examples, metasurface 310 and 320 can use a transparent material to maximize the efficiency (e.g., minimize optical loss). For example, metasurfaces 310 and 320 can be formed from silicon. In such an example, demultiplexer 300 can have >90% optical efficiency.
In some embodiments, the transmission angle from the first metasurface 310 can be given by:
where ∂Φ/∂x is the gradient of the phase along the plane of the metasurface 310 and λ is the wavelength of incident light 301. The metasurface 310 can be arranged such that the gradient achieves the desired transmission angle. The second metasurface 320 can be arranged to steer the light beams 303 into photodetectors 330-1 to 330-4, respectively. Each of photodetector 330-1 to 330-4 can be tuned to detect a specific wavelength of light. It is important to note; a multiplexor could be implemented using the same principles and components as described above for the demultiplexer 300. For example, light from separate outputs can be directed toward a photonic metasurface, which combines them into a single beam.
The present disclosure and example optical devices with metasurfaces can provide an advantage over conventional optical devices. For example, expensive discrete optical components can be replaced by metasurfaces as detailed herein. Thus, the example optical devices of the present disclosure can simplify optical alignment, thereby reducing manufacturing cost. Furthermore, the present disclosure can provide optical devices having independent control of the shape and optical function enabling improved mechanical and optical interfaces.
It is to be appreciated, to provide an immersive VR experience, images presented on a display may be magnified to cover a large field of view, for example, between 90 and 120 degrees. As such, the pixels from the presented images are also magnified. However, conventional display technologies have portions of the pixel that are inactive or dark. For example,
Turning more specifically to
In general, each metasurface lens 422 receives light from one subpixel and directs the resulting ray to an eye of the wearer or user of the VR system 800. For example, lens 422-R receives light from sub-pixels 412-R, lens 422-G receives light from sub-pixels 412-G, and lens 422-B receives light from sub-pixels 412-B. Accordingly, a coherent image can be formed on the user's retina and perceived by the user. Metasurface lenses 422 can be configured to have an optical function to steer the light from the sub-pixel emitters into the eye at a desired angle, which can depend on the position on the display. Note that while the metasurface lenses 422 and sub-pixels 412 are drawn as the same size in this illustration, in some embodiments the sizes and shapes may be different. As an example, the sub-pixel 412 may be much smaller than the metasurface lenses 422.
In some examples, the meta-atoms (e.g., meta-atoms 91) of metasurface lenses 422 can be formed from titanium oxide and can be fabricated and integrated with the underlying display panel as depicted in
The present disclosure provides a display arranged to mitigate at least some portions of the screen door effect manifest in conventional displays.
In general, each metasurface diffuser 622 is configured to diffuse light from a corresponding sub-pixel 612 to reduce, blur, or eliminate the perceived dark space between subpixels 612. Metasurface diffusers 622 can also, like metasurface lenses 422 magnify and/or steer the light emitted from sub-pixels 612 (e.g., as described above with respect to VR display 400).
Continuing to block 820 “manipulate the light to provide an optical function corresponding to an optical device in which the metasurface is disposed” the metasurface can manipulate the received light. For example, metasurface 210 can manipulate incident light to increase a coupling between waveguide 203 and optical component 220.
Examples of a computer readable or machine readable storage medium may include any tangible media capable of storing electronic data, including volatile memory or non-volatile memory, removable or non-removable memory, erasable or non-erasable memory, writeable or re-writeable memory, and so forth. Examples of computer executable instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, object-oriented code, visual code, and the like. The examples are not limited in this context.
As depicted, I/O device 3006, RAM 3008, and ROM 3010 are coupled to processor 3002 by way of chipset 3004. Chipset 3004 may be coupled to processor 3002 by a bus 3012. Accordingly, bus 3012 may include multiple lines.
Processor 3002 may be a central processing unit comprising one or more processor cores and may include any number of processors having any number of processor cores. The processor 3002 may include any type of processing unit, such as, for example, CPU, multi-processing unit, a reduced instruction set computer (RISC), a processor that have a pipeline, a complex instruction set computer (CISC), digital signal processor (DSP), and so forth. In some embodiments, processor 3002 may be multiple separate processors located on separate integrated circuit chips. In some embodiments processor 3002 may be a processor having integrated graphics, while in other embodiments processor 3002 may be a graphics core or cores.
Some embodiments may be described using the expression “one embodiment” or “an embodiment” along with their derivatives. These terms mean that a feature, structure, or characteristic described in relation to the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment. Further, some embodiments may be described using the expression “coupled” and “connected” along with their derivatives. These terms are not necessarily intended as synonyms for each other. For example, some embodiments may be described using the terms “connected” and/or “coupled” to indicate that two or more elements are in direct physical or electrical contact with each other. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, yet still co-operate or interact with each other. Furthermore, aspects or elements from different embodiments may be combined.
It is emphasized that the Abstract of the Disclosure is provided to allow a reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing description, various features are grouped together in a single embodiment to streamline the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the description, with each claim standing on its own as a separate embodiment. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein,” respectively. Moreover, the terms “first,” “second,” “third,” and so forth, are used merely as labels, and are not intended to impose numerical requirements on their objects.
The following examples pertain to further embodiments, from which numerous permutations and configurations will be apparent.
An apparatus, comprising: a waveguide arranged to guide light beams from a first end of the waveguide to a second end of the waveguide; and a metasurface lens coupled to the first end of the waveguide, the first metasurface lens arranged to manipulate the light beams to increase an optical coupling between the first end of the waveguide and an optical transmission medium.
The apparatus of example 1, the waveguide comprising a reflective surface arranged to reflect the light between the first end and the second end.
The apparatus of example 1, comprising a substrate, the waveguide formed on the substrate.
The apparatus of example 3, comprising an optical component formed on the substrate, the optical component coupled to the second end of the waveguide.
The apparatus of example 4, the optical component a light emitting diode, a laser, or a photodiode.
The apparatus of example 1, comprising the optical transmission medium, the optical transmission medium coupled to the first end of the waveguide.
The apparatus of example 1, the metasurface lens comprising a plurality of nano-structures, each nano-structure comprising a meta-atom arranged into a geometric structure to manipulate a wavefront associated with the light beam.
The apparatus of example 7, the plurality of nano-structures disposed on the first end of the waveguide.
A system comprising: an optical component arranged to emit a light beam; an optical transmission medium interface arranged to couple to an optical transmission medium; a waveguide coupled to the optical component and the optical transmission medium interface, the waveguide arranged to transmit the light beam from the optical component to the optical transmission medium; and a metasurface lens disposed between an end of the waveguide and the optical transmission medium interface, the metasurface lens arranged to increase an optical coupling between the waveguide and the optical transmission medium.
The system of example 9, the metasurface lens arranged to collimate the light beam.
The system of example 9, the waveguide comprising a reflective surface arranged to reflect the light between the first end and the second end.
The system of example 9, comprising a substrate, the waveguide formed on the substrate.
The system of example 12, the optical component formed on the substrate.
The system of example 9, the optical component a light emitting diode, a laser, or a photodiode.
The system of example 9, comprising the optical transmission medium.
The system of example 15, the optical transmission medium a fiber optic cable.
The system of example 9, the metasurface lens comprising a plurality of nano-structures, each nano-structure comprising a meta-atom arranged into a geometric structure to manipulate a wavefront associated with the light beam.
The system of example 17, the plurality of nano-structures disposed on the first end of the waveguide.
A display to reduce screen door effect, comprising: a plurality of light emitting elements, each of the plurality of light emitting elements arranged to emit a light beam; and a plurality of metasurface lenses, each of the plurality of metasurface lenses arranged to manipulate the light beam emitted by a respective one of the plurality of light emitting elements.
The display of example 19, comprising: a transparent dielectric disposed on the plurality of light emitting elements, the plurality of metasurface lenses disposed on the transparent dielectric.
The display of example 20, the metasurface lens comprising a plurality of nano-structures, each nano-structure comprising a meta-atom arranged into a geometric structure to manipulate a wavefront associated with the respective one of the plurality of light beams.
The display of example 19, the metasurface lenses arranged to diffuse the light beams, steer the light beams, or both diffuse and steer the light beams.
The display of example 19, the plurality of light emitting elements comprising light emitting diodes.
The display of example 19, wherein a width of each of the plurality of metasurface lenses is wider than a width of each of the plurality of light emitting elements.
The display of example 24, wherein adjacent ones of the plurality of metasurface lenses substantially abut each other in a first plane.
A method comprising receiving light at a metasurface comprising a number of meta-atoms arranged in a geometric array; and manipulating the light to provide an optical function corresponding to an optical device in which the metasurface is disposed.
The method of example 26, the optical device comprising: a waveguide arranged to guide light beams from a first end of the waveguide to a second end of the waveguide, the optical function to increase an optical coupling between the first end of the waveguide and an optical transmission medium.
The method of example 26, the waveguide comprising a reflective surface arranged to reflect the light between the first end and the second end.
The method of example 26, comprising a substrate, the waveguide formed on the substrate.
The method of example 29, comprising an optical component formed on the substrate, the optical component coupled to the second end of the waveguide.
The method of example 30, the optical component a light emitting diode, a laser, or a photodiode.
The method of example 26, comprising the optical transmission medium, the optical transmission medium coupled to the first end of the waveguide.
The method of example 26, the metasurface lens comprising a plurality of nano-structures, each nano-structure comprising a meta-atom arranged into a geometric structure to manipulate a wavefront associated with the light beam.
The apparatus of example 33, the plurality of nano-structures disposed on the first end of the waveguide.
An apparatus comprising means to perform the method of any one of examples 26 to 33.