The apparatus according to the present invention relates generally to building entrance surge protectors and, more particularly, to a building entrance power meter-base surge protector connected between a building entrance power meter and the power meter base and to the display of surge protection status of the apparatus.
The field of surge protectors connected between electrical AC power lines and building entrances has focused on the use of a surge protector circuit, or a plurality of sub-circuits, each comprised of a plurality of electrically parallel metal oxide varistors (MOV) connected in series to a gas discharge tube (GDT). One such surge protector is the building entrance surge protector disclosed in U.S. Pat. No. 6,778,375, entitled “Hybrid MOV/Gas-Tube AC Surge Protector For Building Entrance”, issued on Aug. 17, 2004 to Gerald B. Hoopes and assigned to Panamax, Petaluma, Calif., hereinafter referred to as “the Hoopes patent”. The Hoopes patent utilizes a surge protector circuit or plural sub-circuits connected between single-phase or multi-phase AC power lines, at the MOV side of each protector circuit or sub-circuit, and the building ground, at the GDT side of each protector circuit or sub-circuit. With this type of arrangement, multiple surge protection circuit paths between the same AC power line and the building ground are available through any one of a plurality of MOV and GDT combinations. In such a multi-phase arrangement, each of the multi-phase power lines are connected to the building ground through a plurality of separate and distinct gas discharge tubes in which a breakdown on at least one of the multi-phase lines will not cause a breakdown on any of the other multi-phase power lines.
The Hoopes patent, however, does not disclose a building entrance power meter-base multi-phase surge protector in which each multi-phase power line is connected, at the building entrance, to a neutral line through an MOV in series with a single GDT, wherein each MOV is connected to an electrode of the GDT and a separate electrode of the GDT is connected to the neutral line. The Hoopes patent also does not disclose a device that monitors the voltage status of the surge protector circuit, or sub-circuits, to determine a protector malfunction and displays a non-surge protection condition.
In addition, the Hoopes patent discloses a thermal fuse connected between each of the MOVs and their respective AC power line to limit surge voltage. One distinct disadvantage of thermal fuses is that once they have been disabled they must be replaced. Although the Hoopes patent teaches the use of multiple thermo fuses to protect each AC power line, the surge protector disclosed thereby is only functional for a limited number of over voltage occurrences.
Another type of surge protector is shown in U.S. Pat. No. 4,455,586, entitled, “High Voltage Filtering And Protection Circuit”, issued Jun. 19, 1984, to Thomas McCartney, and assigned to ONEAC Corporation, Bannockburn, Ill., hereinafter referred to as “the McCartney patent”. The McCartney patent discloses a multi-phase surge protection circuit connecting each AC power line and neutral line to ground via various protection circuits. In one embodiment of the McCartney patent, each AC power line and the neutral line is connected to ground via a series of two protection circuits made up of transient voltage suppressors, such as, high voltage rated silicon p-n junction devices, in parallel with capacitors. In another embodiment of the McCartney patent, an arrangement formed using a series of transient voltage suppressors in parallel with a series of capacitors is utilized to connect the AC power lines to ground. A further embodiment of the McCartney patent uses parallel transient voltage suppressors directly connected in series with a common transient voltage suppressor that is connected in series with a gas discharge tube. An additional embodiment of McCartney utilizes parallel bi-directional transient voltage protectors directly connected to a common bi-directional transient voltage protector that connects to ground via a gas discharge tube.
Still another type of surge protector is shown in U.S. Pat. No. 5,428,494, entitled, “Power Line Protector, Monitor And Management System”, issued Jun. 27, 1995, to Om Ahuja, and assigned to Omtronics Corporation, Bellaire, Tex., hereinafter referred to as “the Ahuja patent”. The Ahuja patent discloses a multi-stage, multi-function power line based power protection, monitoring, and management system, which includes over voltage protection utilizing a three-electrode GDT, MOVs for providing line to ground and line to line transient protection and voltage limiting across the line connected equipment, ground fault circuit interrupter, fuses, and positive temperature coefficient resistors integrated with the GDT, MOV, and transient suppressor. The Ahuja patent also includes a stage that includes, for example, a microcontroller, or microprocessor, that continually monitors and responds to power line and power load conditions, and in accordance with other predetermined internal/external hardware or software conditions switching on or off power sources or other loads.
Neither the McCartney patent nor the Ahuja patent discloses a building entrance power meter-base multi-phase surge protector in which each multi-phase power line is connected, at the building entrance, to a neutral line through an MOV in series with a single GDT, wherein each MOV is connected to an electrode of the GDT and a separate electrode of the GDT is connected to the neutral line. Likewise, neither the McCartney patent nor the Ahuja patent discloses a device that monitors the voltage status of the surge protector circuit, or sub-circuits, to determine a protector malfunction and displays a non-surge protection condition.
The present invention overcomes the disadvantages of the prior art surge protectors as exemplified by the patents already discussed. The present invention discloses a meter-base surge arrestor/protector that mounts between a residential meter and meter base at the building entrance. The present invention discloses a novel and improved building entrance power meter-base multi-phase surge protector in which each multi-phase power line is connected at the building entrance to a neutral line through an MOV in series with a single GDT, wherein each MOV is connected to an electrode of the GDT and a separate electrode of the GDT is connected to the neutral line. The GDT and MOV combination surge protector circuit of the invention has a reduced capacitance, which enables high speed broadband data transmission over power lines without significant attenuation, and leakage current though the MOVs is reduced ensuring a long service life for the meter-base surge protector.
The GDT and MOV combination surge protector circuit also includes thermal cut-offs (TCO) connected in series and thermal communication with the MOVs. The use of TCOs in lieu of fuses allows the surge protector to operate at higher temperatures and loads. Each TCO is physically positioned within the surge protector circuit so as to be in at least thermal communication with its respective MOV. Such thermal communication includes any relative physical positioning between the TCOs and the MOVs that allows heat dissipated by the MOVs to be received by the TCOs, including placement of the TCOs in actual physical contact with the MOVs. With this arrangement, heat buildup in the MOVs will be distributed to the TCOs.
The present invention overcomes the functional limitations of the prior art fuses by utilizing TCOs which protect the surge protector circuit through an increase in resistance with an increase in temperature. During a surge condition that exceeds the electrical capabilities of the surge protector of the present invention, the TCOs will eliminate current flow therethrough due to excessive heat build-up in the TCO. When the excessive surge condition has subsided, current flow is reestablished through the TCOs once the TCOs have cooled to an operating temperature.
The GDT and MOV combination surge protector circuit of the present invention also includes a microcontroller, or microprocessor, for monitoring the voltage status at various monitoring point locations within the surge protector circuit itself to determine whether or not the surge protector circuit is providing surge protection. The microcontroller receives negligible operating power via the AC power lines. In the event one or more of the components of the surge protector circuit fails, or otherwise malfunctions, the microcontroller will sense a voltage status change at one or more of the monitoring points within the circuit and signal the premises owner, via a blinking light emitting diode, audible alarm, or other warning mechanism, that surge protection has been interrupted and is currently not available. The microcontroller also sends low frequency signals over the power lines, or other means, to alert the power utility of the surge protection circuit failure or malfunction.
The foregoing specific objects and advantages of the invention are illustrative of those that can be achieved by the present invention and are not intended to be exhaustive or limiting of the possible advantages which can be realized. Thus, these and other objects and advantages of this invention will be apparent from the description herein or can be learned from practicing the invention, both as embodied herein or as modified in view of any variations which may be apparent to those skilled in the art.
The accompanying figures illustrate the details of the preferred meter-base surge arrestor/protector of the present invention. Like reference numbers and designations used herein refer to like elements.
As shown in
The unique configuration of the surge protector circuit of the invention wherein each AC power line is connected at the building entrance to a neutral line through an MOV in series with a single GDT, and wherein each MOV is in thermal contact with a TCO, enables high speed broadband data transmission over power lines to pass through without significant attenuation. The GDT and MOV combination surge protector circuit preferably has an effective capacitance as low as about 15 pF. In addition, the use of TCOs instead of fuses enables the surge protector of the invention to operate at higher temperatures and loads preferably greater than 20 KAmps.
The surge protector circuit 100, as shown in
Microcontroller 150, as shown in
During operation of surge protector circuit 100, microcontroller 150 draws negligible power from conductors 111 and 112 through conductors 155 and 156, as shown in
However, when surge protector circuit 100 experiences a malfunction, such as, for example, when one or more of the surge protector circuit components malfunction or completely fail, or otherwise fails to provide surge protection, microcontroller 150 detects a change in the voltage status at one or more of the monitoring points MP. During a malfunction, no surge protection along either, or both, of AC power lines in 114 and 115 may be available. In that instance, CPU 157 of microcontroller 150, during step 203, determines that no surge protection is available; a signal is sent in step 203 to activate the non surge protection status indicator, such as, for example, LED 152, as shown in
In step 205 of
Although illustrative embodiments have been described herein in detail, it should be noted and understood that the descriptions and drawings have been provided for purposes of illustration only, and that other variations both in form and detail can be added thereupon without departing from the spirit and scope of the invention. The terms and expressions have been used as terms of description and not terms of limitation. There is no limitation to use the terms or expressions to exclude any equivalents of features shown and described or portions thereof.