The present invention relates to a dispenser and, in particular, a closure for dispensing metered dosages of a powder.
Powdered beverages come packaged in various containers, depending on consumer preference and use. Conventional containers for powdered beverage mixes include single serving packets, as well as bulk containers. With regard to single serving packets, a user opens a packet and pours its contents into a liquid container, such as a bottle, glass or pitcher, and then adds water to form a liquid beverage. With regard to bulk containers, a user scoops out a desired quantity of the powder and adds it to the liquid container to mix with water therein to form the liquid beverage.
One disadvantage with conventional single serving powder packets is that one is not able to easily customize the amount of powder to be added to the liquid container in order to adjust to a particular container size or a personal taste preference. Further, the single serving packet contains a predetermined amount of powder for a specific serving size, such as the required amount of powder for a 0.5 liter beverage. However, should one wish to make a beverage larger or smaller than 0.5 liters, one either has to estimate and use less than the single serving size packet when making a smaller sized beverage and use more than one packet when making a larger sized beverage. With regard to bulk powder containers, although they provide the flexibility of measuring a varying amount of powder to add to various sized liquid containers, they lack the portability and convenience that single serving packets provide.
Mechanical dispensers have to be used to dispense and meter various powders, such as laundry powder, fertilizer and medicinal powder. One recent powder dispenser is disclosed in U.S. Patent Application Publication No. 2007/0164059, which discloses a powder delivery device for dispensing a clotting agent. The dispenser comprises a housing; a plunger contained in the housing; a gating component comprising a first gate having a closed end, an open end and a second gate; and a metering area between the first gate and the second gate. The gating component permits a predetermined quantity of powdered material to be metered and dispensed.
U.S. Pat. No. 5,154,212 discloses a dispenser for metering and dispensing laundry detergent. The device includes a container with a valve assembly mounted therein. The valve assembly has a valve body including a closure member that is enlarged and conical and that closes the valve aperture of the container. The operating rod is encircled by a sealed spring that holds the valve body in position to close the valve aperture. When the spring is forced into a compressed position, e.g., by bringing the activating knob into contact with a measuring cup, the valve aperture opens and permits laundry agent within the container to flow into the measuring cup when dispensing is desired.
U.S. Pat. No. 3,232,498 discloses a dispenser for metering pre-measured quantities of material, such as tea, sugar and coffee, from a container. Dispensing of the material is controlled by a valve member which is normally biased by a spring. Force against the top of a container causes the valve member to assume a second position, permitting the material to flow into a chamber, but not out of it. Upon return of the valve to the original position, a chamber outlet is opened and the material is free to flow out of the dispenser.
U.S. Pat. No. 2,722,345 discloses a dispenser comprising a container body holding a granular product, a measuring chamber below the container body, and a valve between a container body and the measuring chamber, biased in an open position to allow product to flow into the measuring chamber. The valve selectively opens and closes two passages into and out of the measuring chamber. In its initial position, the valve is biased to open the passage between the container body and the measuring chamber and to close the passage between the measuring chamber and the exterior. Inversion of the dispenser causes a granular product to flow from the container body into the measuring chamber. While inverted, depressing a rod (actuator) attached to the valve closes the opening between the measuring chamber and the container body, preventing additional granular product from flowing into the measuring chamber from the container body from above, and simultaneously opens the passage from the measuring chamber to the exterior, permitting the product in the measuring chamber to be dispensed from the dispenser.
There is a need in the powdered beverage dispensing art for new and improved dispensers for dispensing and metering powdered beverages.
The present invention relates to a new and improved dispenser for dispensing metered dosages of a powder, such as a powdered beverage. The dispenser is designed to allow a user to controllingly dispense a desired quantity of powder into a liquid container, such as a glass, bottle or pitcher. Advantageously, the dispenser is of a small enough diameter, i.e. “palm sized,” to allow one to easily store the dispenser in one's pocket, bag or the like. The dispenser comprises a valve and an actuator attached to the valve which biases the valve in a closed position. The actuator has a center opening. Powder is dispensed from the dispenser by inverting the dispenser and resting the actuator on a rim of a liquid container, such as a glass, bottle or pitcher, with the valve in its biased, closed position over the actuator opening, thus preventing powder from exiting the dispenser. With the actuator opening over the mouth of the liquid container, pressing downward on the actuator moves the valve away from the opening, thereby opening the valve and allowing powder to flow continuously from the dispenser through the actuator opening and into the liquid container disposed below. Metering of the amount of powder dispensed is provided by counting or timing how long the powder is being dispensed (the “flow time”) and correlating a known flow rate with the flow time to calculate how much powder has been dispensed. Thus, one can meter a precise amount of powder by dispensing the powder for a predetermined amount of time. Further, one can precisely vary the amount of powder dispensed by dispensing the powder for various preset flow times which correspond with various predetermined powder amounts.
The present invention, in one form thereof, relates to a dispensing device for a container. The dispensing device comprises an opening of the container and an annular ring having a central portion with at least one aperture. The annular ring is attached to a valve dimensioned to close the opening. The valve has a top surface and a side surface; and is operatively associated with the opening and biased in a closed position. Depressing the annular ring causes the valve to move inward, into the container and away from the opening, thereby allowing the contents to be dispensed from the container in a continuous flow, over the top surface of the valve, and through the at least one aperture of the annular ring when the dispenser is inverted.
In one advantageous form, the opening of the container is formed by a mouth of the container and the annular ring surrounds the opening, wherein when the annular ring is depressed inwardly, the annular ring slides down around the mouth of the container, thereby exposing the mouth of the container. The mouth of the container may comprise a pair of channels and the annular ring may comprise a transverse member spanning the central portion of the annular ring, wherein the transverse member is disposed in the pair of channels of the mouth of the container.
In another advantageous form, the annular ring has an exterior wall with a surface abutting an interior facing surface of the container, forming a bearing surface therebetween.
The present invention, in another form thereof, relates to a dispensing container which comprises a container body having an opening at its top and an annular ring surrounding the opening. A plug is disposed in and closes the opening. The plug has a top surface and a side surface. The plug is attached to the annular ring and is biased in a closed position. Depressing the annular ring moves the valve inwardly towards a center of the container, thereby moving the plug away from the opening, allowing the contents of the container to be dispensed in a continuous flow, over the top surface of the plug, through the opening and out through a center portion of the annular ring.
Advantageously, the container is dimensioned to be easily grasped and held in one's hand. For example, the container may have dimensions of one to ten inches in height and a width and depth of one to four inches.
The present invention, in another form thereof, relates to a method for dispensing contents from a container. The method comprises inverting a dispenser having a depressible actuator attached to a valve which closes an opening, pressing the actuator on a surface to open the valve, thereby starting the flow of the contents from the container through the opening, and metering the amount of contents from the dispenser, based on knowing the flow rate of the contents from the container.
In one specific form, metering the amount dispensed comprises timing how long the contents are dispensed from the container and correlating the time to how much of the contents are dispensed, based on a known flow rate.
In one advantageous form, the method comprises pressing the actuator, in the form of an annular ring with center bore, on the mouth of a liquid container therebelow, with the center bore over the liquid container, so that the contents will flow from the dispenser through the center bore of the annular ring and into the liquid container below.
a is a side elevational view of a container with dispensing closure with a cap over the dispensing closure, in accordance with the present invention;
b is the container of
a is a cross-sectional view of the container of
b is a cross-sectional view of the container of
a is a partial cross-section of the container of
b is a partial cross-section of the container and bottle of
Referring now to the drawings and, in particular,
Advantageously, container 10 has a height of one to ten inches and a diameter of one to four inches. In alternative forms, if the container is not in the form of a cylindrical body, the width and depth of the container ranges from one to four inches.
Referring now to
Although base 22 of closure 20 is depicted as an independent component from the container body 11, alternatively, the base 22 may be integrally formed with, and a part of, the container body 11, and thus not a separate component threadingly engaged with the container body 11. Further, the dispensing closure 20 can be disposed on container bodies having shapes other than cylindrical forms.
Referring now to
A spring 50 is disposed between the annular ring 30 and the base 22 of the closure 20. Specifically, the spring 50 is in contact with uppermost inner facing surface 39 of the wall of the annular ring 30. In its assembled form, the annular ring 30 fits over and is disposed around the spout 26 with the plug 34 disposed in the bore formed by spout 26 and spout 26 extending up from a top surface of annular ring 30. The spring 50 biases the annular ring 30 so as to force the plug 34 to its closed position, completely closing the opening 28. The transverse member 31 is disposed in the pair of channels 29 and slides within the channels 29 when the annular ring 30 is depressed inward towards the base 22 against the biasing force of spring 50.
Advantageously, exterior wall surface 52 of annular ring 30 abuts interior facing wall surface 54 of base 22, forming a bearing surface therebetween. The bearing surface between the annular ring 30 and the base 22 resists rotation of the annular ring 30 about any horizontal axis relative to the base 22.
Referring now to
The annular ring 30 acts as an actuator, whereby pressing the annular ring 30 inward towards the container body 11 forces the plug 34 inward and away from the entrance to spout 26, as shown by the arrows in
Referring now to
Referring now to
It will now be apparent to one of ordinary skill in the art that container 10 can be used to dispense a powder into an appropriate liquid container, including different sizes of glasses, bottles and pitchers.
The present closure 20 can be used to meter the amount of powder which is dispensed. By knowing the flow rate (the amount of time it takes for a predetermined amount of powder to be dispensed through the opening), one can meter the amount of powder that is dispensed by timing how long the powder is dispensed. Using the flow rate, one can dispense the powder for a predetermined amount of time which is correlated to a desired quantity. For example, a flow time of two seconds may be correlated to the amount of powder needed for a 0.5 liter beverage and a flow time of four seconds may be correlated to the amount of powder needed for a 1 liter beverage.
It will now be clear to one of ordinary skill in the art that the present dispenser has features and advantages over prior dispensers for powdered beverages. The present invention allows for controlled dispensing of a powder into a bottle without spilling the powder, since the powder can only be dispensed when the container is over the mouth of a bottle and the container is depressed to start the flow of the powder. The flow stops when the container is removed from the top of the bottle. In addition, the present dispenser allows for metering a controlled amount of powder which is dispensed by knowing the flow rate and timing how long the powder is dispensed into a bottle or other vessel disposed below. As a result, the present dispenser dispenses a desired amount of powdered beverage depending on the vessel, e.g., bottle, glass or pitcher to which the powder is being dispensed. Consequently, the present container can be used to dispense the exact amount of powder that is needed into whatever size vessel one wishes.
It may at times be convenient to describe the container and its dispensing device in its upside down, inverted position wherein, for example, the normal “top” of the container may be referred to as the “bottom” of the container.
Although the invention has been described above in relation to preferred embodiments thereof, it will be understood by those skilled in the art that variations and modifications can be effected in these preferred embodiments without departing from the scope and spirit of the invention.
Number | Name | Date | Kind |
---|---|---|---|
538561 | Upton | Apr 1895 | A |
689468 | Dobbyn | Dec 1901 | A |
966270 | Van Leir | Aug 1910 | A |
1698732 | Pasnik | Jan 1929 | A |
2182878 | Pipenhagen | Dec 1939 | A |
2186326 | Casorotti | Jan 1940 | A |
2437589 | Bink | Mar 1948 | A |
2547744 | Burger | Apr 1951 | A |
2585299 | Cook | Feb 1952 | A |
2603397 | Olson | Jul 1952 | A |
2722345 | Van Buren | Nov 1955 | A |
2828893 | Stewart et al. | Apr 1958 | A |
3061152 | Safianoff et al. | Oct 1962 | A |
3232498 | Bennett | Feb 1966 | A |
3446403 | Serio | May 1969 | A |
3731851 | Rauh | May 1973 | A |
3844454 | Buchtel | Oct 1974 | A |
3910467 | Nilson | Oct 1975 | A |
4728011 | Schuster et al. | Mar 1988 | A |
4993600 | Tucker et al. | Feb 1991 | A |
5037007 | Deussen | Aug 1991 | A |
5154212 | Weber | Oct 1992 | A |
5186367 | Hickerson | Feb 1993 | A |
5649643 | Ridgeway | Jul 1997 | A |
6131774 | Thomas et al. | Oct 2000 | A |
6276572 | Evans | Aug 2001 | B1 |
7093738 | Evans et al. | Aug 2006 | B1 |
7228993 | Yang | Jun 2007 | B2 |
20070164059 | Rosiello et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 2007039223 | Apr 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20090200342 A1 | Aug 2009 | US |