The current business model for computer hardware and software relies on a user purchasing a computer with hardware and software that is suited to the most demanding applications that the user expects to encounter. Therefore, a user may buy a multi-core processor with a significant amount of memory and advanced video support for gaming applications that are only used on the weekend, while the user's day-in, day-out activities may involve little more than word processing or web-browsing.
The business model extends to other technology areas. An in-vehicle mapping and directions appliance may be invaluable during a trip to unfamiliar territory, but for normal trips for shopping and school-related activities, the appliance may not even be turned on.
Similarly, software purchased for specific work or recreational activities may lie dormant for extended periods of time when the user is occupied with other activities. An advanced graphics package may lie unused until it is time for a graduation invitation or an annual Christmas letter with integrated photos and seasonal graphics.
For hardware and software manufacturers and resellers, this business model requires more or less a one chance at the consumer kind of mentality, where elasticity curves are based on the pressure to maximize profits on a one-time sale, one-shot-at-the-consumer mentality.
A different business model may allow a more granular approach to hardware and software sales. A computer may have individually metered hardware and software components that a user can select and activate based on current need. Beyond simple activation, the user may be able to select a level of performance related to processor, memory, graphics power, etc. that is driven not by a lifetime maximum requirement, but rather by the need of the moment. When the need is browsing, a low level of performance may be used and when network-based interactive gaming is the need of the moment, the highest available performance may be made available to the user.
As may be expected, when the user has minimal resource needs, the cost associated with use should be minimal, and a higher cost may be associated with a ‘pull out the stops’ level of performance. Because the user only pays for the performance level of the moment, the user may see no reason to not acquire a device with a high degree of functionality, in terms of both hardware and software, and experiment with a usage level that suits different performance requirements.
Because hardware yields and software duplication costs allow very low cost on the margin of increased performance, manufacturers and software developers may see an overall increase in revenues when their product is available to users on a per-access or subscription basis that reflects actual consumption. Certainly the overall technology experience is that when given an opportunity to have increased capability, users migrate to it. Thus, users get the performance they want and sellers get incremental sales from a greatly-expanded user base that would have never considered a one-time purchase of a fairly exotic-looking and high-price hardware or software component.
To make this model successful, a mechanism must be in place that supports a highly secure method of adjusting performance coupled with a secure, auditable measurement and payment scheme to allow a variety of pre-paid and post-paid mechanisms for capturing and settling highly granular, infinitely adjustable, performance variations. Such a mechanism may include selected performance-adjustable components and a secure execution environment that can manage policies, usage metering, and secure communications with the performance-adjustable components. The secure execution environment may also include a stored value capability for self-contained billing of operation under different performance profiles. Conversely, the secure execution environment may also store billing information for uploading to a billing system in a post-paid business model.
In practice, operation at different levels of performance may be selected for individual components or operation of the computer at different overall levels may be presented as a ‘bundle.’ Other options may be supported, such as development of a custom bundle. One or more performance characteristics of each component may be individually tunable in one embodiment. In another embodiment, performance characteristics may only be available in quantized steps. For each level of performance, a value per unit of usage may be assigned.
Accounting for usage at a given level may be according to different criteria. For example, value associated with usage may accounted for by elapsed time, active time, actual use of the component, etc. Billing may be through a local pre-paid mechanism, such as a stored value account, a remote post-paid account, or other known payment types. In one embodiment, the billed value is accumulated according to both usage time and a composite of performance characteristics for scalable components.
This model, and the mechanisms that support it, are different from those associated with preview, or demo-mode graphics. In a demo or preview, a limited-function application is presented for use. In some cases, features are permanently disabled while in other cases, the ability to save results is restricted. Other methods of presenting a limited-function application may also be used. What such applications have in common is the ability to buy a one-time license that either downloads a full-function version of the application or removes a block on the demo to allow full function of the application. Usage of the application is neither metered nor reversible.
Although the following text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth at the end of this disclosure. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.
It should also be understood that, unless a term is expressly defined in this patent using the sentence “As used herein, the term ‘______’ is hereby defined to mean . . . ” or a similar sentence, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to in this patent in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term by limited, by implication or otherwise, to that single meaning. Finally, unless a claim element is defined by reciting the word “means” and a function without the recital of any structure, it is not intended that the scope of any claim element be interpreted based on the application of 35 U.S.C. §112, sixth paragraph.
Much of the inventive functionality and many of the inventive principles are best implemented with or in software programs or instructions and integrated circuits (ICs) such as application specific ICs. It is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation. Therefore, in the interest of brevity and minimization of any risk of obscuring the principles and concepts in accordance to the present invention, further discussion of such software and ICs, if any, will be limited to the essentials with respect to the principles and concepts of the preferred embodiments.
The system 10 may include a number of pay-per-use computers, such as a first computer 12, a second computer 14, and a representative last computer 16. The computers may be connected over individual local access connections 18, 20, 22 to a wide area network 24, such as the Internet, and from there to a fulfillment center 26. The local access connection may be wired or wireless and may include additional routers or connections, both public and private. The fulfillment center 26 may process requests for add-value packets and may be connected to financial institutions or other service providers and underwriters (not depicted). The underwriters may provide the computers for a subsidized price in exchange for a financial commitment from a system operator. The fulfillment center 26 may have cryptographic keys for supporting authentication and value-add transactions with the pay-per-use computers 12, 14, 16. The fulfillment center 26 may also support connections to financial institutions associated with owners/operators of the individual computers 12, 14, 16.
Each computer 12, 14, 16 may have a respective security module 28, 30, and 32. The security module is discussed in more detail with respect to
Several different instantiations of operating mode management and recharging are discussed below to illustrate a few of the possible variations. In one embodiment, each computer's respective security module 28, 30, 32 may consume value packets during operation. When usage value reaches a low limit, the security modules 28, 30, 32 may initiate a process that allows purchase more time from the fulfillment center 26. Further discussion of scalable-use operation and charging/billing follows.
With reference to
A series of system busses may couple various system components including a high speed system bus 123 between the processor 120, the memory/graphics interface 121 and the I/O interface 122, a front-side bus 124 between the memory/graphics interface 121 and the system memory 130, and an advanced graphics processing (AGP) bus 125 between the memory/graphics interface 121 and the graphics processor 190. The system bus 123 may be any of several types of bus structures including, by way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus and Enhanced ISA (EISA) bus. As system architectures evolve, other bus architectures and chip sets may be used but often generally follow this pattern. For example, companies such as Intel and AMD support the Intel Hub Architecture (IHA) and the Hypertransport architecture, respectively.
The computer 110 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by computer 110. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer readable media.
The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132. The system ROM 131 may contain permanent system data 143, such as identifying and manufacturing information. In some embodiments, a basic input/output system (BIOS) may also be stored in system ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processor 120. By way of example, and not limitation,
The I/O interface 122 may couple the system bus 123 with a number of other busses 126, 127 and 128 that couple a variety of internal and external devices to the computer 110. A serial peripheral interface (SPI) bus 126 may connect to a basic input/output system (BIOS) memory 133 containing the basic routines that help to transfer information between elements within computer 110, such as during start-up.
In some embodiments, a security module 129 may be incorporated to manage metering, billing, and enforcement of policies. The security module is discussed more below, especially with respect to
A super input/output chip 160 may be used to connect to a number of ‘legacy’ peripherals, such as floppy disk 152, keyboard/mouse 162, and printer 196, as examples. The super I/O chip 160 may be connected to the I/O interface 122 with a low pin count (LPC) bus, in some embodiments. The super I/O chip 160 is widely available in the commercial marketplace.
In one embodiment, bus 128 may be a Peripheral Component Interconnect (PCI) bus, or a variation thereof, may be used to connect higher speed peripherals to the I/O interface 122. A PCI bus may also be known as a Mezzanine bus. Variations of the PCI bus include the Peripheral Component Interconnect-Express (PCI-E) and the Peripheral Component Interconnect-Extended (PCI-X) busses, the former having a serial interface and the latter being a backward compatible parallel interface. In other embodiments, bus 128 may be an advanced technology attachment (ATA) bus, in the form of a serial ATA bus (SATA) or parallel ATA (PATA).
The computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180 via a network interface controller (NIC) 170. The remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 110. The logical connection between the NIC 170 and the remote computer 180 depicted in
In some embodiments, the network interface may use a modem (not depicted) when a broadband connection is not available or is not used. It will be appreciated that the network connection shown is exemplary and other means of establishing a communications link between the computers may be used.
The disk drive 205 may include an integrated controller 206 and may also include a cache 207 of fast memory to store frequently accessed data. The disk drive 205 may also include metering agent 228. The metering agent is discussed in more detail with respect to
To accomplish this, the metering agent 228 may take steps appropriate to the performance level being controller. If cache size is controlled, affecting overall read and write speed, the metering agent 228 may control a setting that manages cache memory allocation, similar to the way a BIOS controls overall memory configuration in a computer. That is, during operation, the controller 206 may receive configuration data information responsive to an event and the metering agent 228, in the role of the BIOS, may supply the configuration data according to the current performance level setting. The event that triggers such a programming of the controller may be the receipt of a new performance level setting at the metering agent 228.
If the data transfer rate is the controlled element, the metering agent 228 may set a clock speed that controls input and output FIFO memory clock rates (FIFOs not depicted). Disk space may be the controlled element. When managing disk space, some embodiments may only allow increases in disk space, at a corresponding increase in billing rate. However, once a limit is set, the metering agent 228 may enforce the limit by presenting a current maximum of space available when queried during a startup/reset process or by an operating system.
The processor 204 may include instruction memory 221, such as microcode, and may have one or more cores 222, 224, 226, for executing program instructions. The processor 204 may include metering agent 220. A metering agent embedded in a processor, such as processor 204, may have more implementation options than a metering agent used in other components. Because the processor 204 has so much control of computer operation, scalable use may be based on instruction set, memory used, execution speed, etc.
Processor 204 performance may be scaled by use of a greater or lesser number of cores 222, 224, 226. Processor 204 performance may also be scaled by clock rate (frequency), voltage, or a combination of both. Another form of managing performance is to limit access to the instruction memory, effectively disabling programs that use certain commands stored in the instruction memory 221. Many current processors also use frequency, voltage, or a combination of both, to manage performance.
The memory 208 may implement scalable performance in several ways, such as limiting the memory size or limiting the memory speed. The metering agent 230 may trap address commands above a certain address, slow the data clocking rate, or use a combination of both. Memory size limit changes may be restricted to restarts because an on-the-fly change in memory size may cause system instability, but dynamic page swapping algorithms may remove this restriction. Alternatively, or in combination with the memory 208, a bus controller (not depicted) associated with memory access may implement similar measures to restrict memory access.
Particularly in systems with memory controllers built into the processor 204, system performance may be managed by controlling the performance of the bus that connects the processor 204 to the memory 208 (for example, bus 124 of
The video controller 210 may have a number of controls associated with scalable performance. For example, the metering agent 232 may have an ability to control or set a maximum limit on display resolution, color depth, 3D rendering, response rate, image frame rate, etc.
Each device or peripheral may be modified to allow its metering agent to control one or more settings related to performance. For example, in the video controller 210, registers (not depicted) that store user settings may be masked by a register that is controlled by the metering agent 232, allowing the metering agent to override the user settings. In the memory 208, the metering agent 230 could simply tri-state a high order address line to disable a portion of the memory, although more elegant solutions may be available through memory mapping and BIOS settings.
In an alternate embodiment, the computer 200 may simply monitor an automatically set performance level, rather than set it. Then, using the monitoring information, determine the value consumed during a session. For example, an application program may be able to request a certain performance level, which is then set by the performance manager 214. In one embodiment, the highest level of performance requested may be set, for example, supporting an interactive computer game. In another embodiment, the performance level may be an accumulation of individual performance level requests. E.g., using a performance level scale of 1-5, a browser may request level 1 and a word processor a level 2. The performance manager may set performance at level 3. To extend the illustration, the performance level may correspond to the number of cores 222, 224, 226 activated, such as level 1=1 core, levels 2-3=2 cores, levels 4-5=3 cores. Other performance level adjustments may be made in combination, such as adjustments to both cores 222, 224, 226 and memory 208.
Once the performance level is set, operation at the new performance level may be monitored and used to generate a usage value for a session. Each performance level may be billed at a different rate. The billing rate multiplied by operating time becomes a simple, easily monitored metric for accumulating the value of a session. The session value may either be subtracted from a local value account, such as a stored currency account, or may be accumulated and sent to a clearinghouse for settlement. In this scenario, implementation may require little or no hardware to implement performance management and value accumulation, since many performance settings can be made via software, as can usage time.
In yet another embodiment, the performance level may not be set at all, but an activity level of one or more components may be monitored to determine actual performance. For example, processor utilization, disk accesses, memory usage, bus traffic, etc. may all be used as indicators of activity level. A value may be associated with each of these metrics and either the value manager 216, the performance manager 214, or the balance manager 218 may be used to monitor the activity level and aggregate a total value associated with usage over a period of time. Thus, usage value may be charged at a rate corresponding to actual use. Measurement of activity level and calculation of an associated value may be performed in hardware in a security module 202 or may be performed in software. A software-only implementation may operate in a secure partition or at a protection level inaccessible by unauthorized users.
Devices with scalable resources and variable billing rates are not limited to computers. For example, the device of
The metering agent 300 may include a processor 302, a communication port 304, and a secure memory 306. The metering agent 300 may also include a cryptographic function 308, a timer 310 and one or more output interfaces. Illustrated in
The memory 306 may include keys 322, cryptographic algorithms 324, program code 326 and usage data 328 such as current performance level settings and usage metrics.
In operation, the metering agent 300 can accept commands from the security module 202 of
The processor 302 may receive the command and interpret the command accordingly. For example, the command may indicate a performance level setting for operation of the metering agent's associated component, such as those shown in
The cryptographic function 308 may be used as part of a mutual authentication process with the security module 202 and for verification of commands received from the security module 202. A timer 310 may present when the metering agent 300 has a time-based requirement, such as either enforcing or measuring a duty-cycle based network access capability.
Output interfaces, such as the switch control 312 and the register 330, may be used to set scalable performance in a component. For example, the switch control 312 may operate the switch 316. The switch leads 318 and 320 may be used in any number of configurations. The switch leads 318, 320 may connect a tri-state bus driver to a logic high to disable an associated bus line. As another example, the switch leads 318 and 320 may be used to pull a normally high input signal to ground, changing the state of the input. As mentioned above, a register 330 may be used to interact with data or control registers in a component to affect operating settings, for example, video controller settings.
A memory 406 may store a number of data items and executable program modules. A cryptographic function 408 may include a random number generator for use in authentication processes. A timer 410 may be used to determine metering time periods. the timer 410 may also be used for setting a required period for communication with the host or fulfillment center 26.
The memory 406 may include data and executable software modules for implementing the functions of the security module. As mentioned above, the conversion between software implementations and hardware-based logic are well known. Although the functions of the security module 400 are described as being implemented in software, implementation in firmware or logic is a design-time decision.
Cryptographic keys 422 may be used as part of a message authentication process, for example, to authenticate messages with either metering agents 220, 228, 230, 232 or a fulfillment center 26. The message authentication process may include hashing, encryption or both and may incorporate either symmetric cryptography with message authentication codes or public key cryptography using encryption and digital signatures. If a dedicated cryptographic function 408 is not available or not used, cryptographic algorithms 424 may be used for message authentication or command verification. Program code 426 may include the stored executable instructions used by the processor 402 to implement message handling, balance management, usage value calculation, performance settings, etc.
A catalog 428 may be a listing of the settings available to a user for performance selections, including pricing associated with each setting. For example, a bundle may be presented to the user that includes selections for “Office,” “Gaming,” and “Browsing.” The Office bundle may include word processing and spreadsheet applications, medium graphics performance and two of three processor cores. The Gaming bundle may include no productivity applications but may include 3D graphics support and 3 of 3 processor cores. The Browsing bundle may include no productivity applications, medium graphics performance and high speed network interface.
Charging for the various bundles may be by bundle and by duration. For example, the Office bundle may be $1.00 per hour, the Gaming bundle may be $1.25 per hour and the Browsing bundle may be $0.80 per hour. The usage charges may be abstracted to “units/hour” to make currency conversions simpler. Alternatively, a bundle may incur a one-time charge that is operable until changed or for a fixed usage period. Other pricing techniques are apparent.
The catalog 428 may be stored as hypertext markup language (HTML) or in extensible markup language (XML) so that catalog data may be directly displayed to a user using a simple browser interface.
A balance manager 430 may manage and store an amount of credit that a user has available to apply to use of an electronic device incorporating the security module 400. The balance manager 430 may store value in currency, units of time, units of performance, etc. The balance manager 430 may manage actual cash or cash-equivalents, such as redeemable tokens. In another embodiment, the amount of credit may be maintained only as an approximation used as oversight and may be periodically reconciled to an actual balance stored elsewhere, such as at the fulfillment center 26. This local balance amount allows continued operation when access to the fulfillment center 26 is limited by using the approximation to provide a check on whether there is enough balance to pay for current operation.
A performance manager 432 may reflect the current performance setting and may be used to calculate a charge per minute or other charge per unit of measurement. In one embodiment, the performance manager 432 may set a billing rate according to a bundle price, such as $1.00 per hour for an office bundle. In another embodiment, the performance manager 432 may set a billing rate to be the sum of all individual component billing rates. To illustrate, if the video controller 210 is used at $0.25 per hour, 3 processors 222, 224, 226 are used at $0.85 per hour, and a high speed disk access is implemented at $0.20 per hour, the performance manager 432 may calculate a billing rate to be $1.30 per hour.
The value manager 434 manage the total value consumed in a current session. The value manager 434 may periodically send a current value to the balance manager 430 and then reset the current value to zero. Alternatively, the value manager 434 may accumulate value over a complete session and reconcile with the balance manager 430 at the conclusion of the session. Even though the current may not be subtracted from the balance, the value manager 434 and balance manager 430 may monitor each other, either one-way or mutually, to assure that the value is within a limit amount of the balance. The limit may be set above or below the actual balance to accommodate different terms and conditions related to charging and billing, credit history, etc.
When the value manager 434 is set to manage a one-time charge, the value manager 434 may be debit the balance at the beginning of a session. When the value manager 434 is set to accumulate value over time at a billing rate corresponding to the performance level, the accumulation of value may occur at a designated periodic interval.
In operation, data in the catalog 428 may be preloaded at the time of manufacture or during system configuration. Alternatively, the catalog 428 may be downloaded periodically after delivery to an end user. Updates to the catalog 428 are preferably encrypted and at least signed by a trusted party, such as the fulfillment center 26 of
The performance manager 432, as executed by the processor 402, may send messages to the appropriate metering agents associated with the updated performance selection. For example, if additional memory is to be authorized, metering agent 230 of
When the new configuration is confirmed, the value manager 434 may begin recording usage at the new performance level and accumulate value as activity occurs. Depending on the configuration, each metering agent may report activity and the value manager 434 may accumulate the reported activity in light of the billing rate to calculate a usage value. In one case, the metering agent may periodically calculate value according to billing rate and usage. In another embodiment, the value manager 434 may simply note the billing rate and the duration of a session. In the latter example, at the end of the session the accumulated value may be calculated once and sent to the balance manager 430 to be deducted from the available usage balance.
After receiving a selection of performance level at block 604, at block 606, the security module 200 to may send messages to metering agents for appropriate scalable-use components associated with the selected performance level. Each message may include an identifier corresponding to a particular scalable component and a performance level. The message may be in a markup language, such as extensible markup language (XML) and may be signed, encrypted, or both.
To expand on a previous illustration, when enabling an office productivity performance level, a metering agent 228 associated with storage device 205 may be directed to decrypt the word processing and spreadsheet applications to enable them to be loaded and executed.
At block 608, the respective metering agents, such as metering agent 228, may return a metering message containing usage data to the security module 202 and the metering messages may be parsed to extract usage data. The metering messages from each metering agent may include a respective component identifier and usage data. The usage data may also include a confirmation of the current performance level setting. The usage data may also include an indication of usage or an on/off indicator, as appropriate to the actual component. For example, the metering agent 228 for the storage device 205 may send the number of disk accesses during a reporting period, while the metering agent 232 for the video controller 210 may only report the performance level and that the video controller 210 is active.
At block 610, the security module 202 may calculate a usage value. The usage value may be a simple single charge for use at a given performance level. Alternatively, a running charge may be developed by multiplying the rate times a usage metric. For a standard performance level, such as an office productivity performance level, a fixed fee per minute may be charged. In yet another embodiment, individual components may be charged at rates corresponding to the performance setting for that component. When the accumulated value for each of the scalable-performance components is added, the total value for usage may be calculated.
At block 612, a balance manager 218 may subtract the total value from a balance, such as prepaid stored value. When local stored value is not used, block 612 may be omitted. At block 614, status testing may be performed. When local stored value is used to pay for use, the remaining balance may be checked. When the balance has reached a limit, the no branch from block 614 may be taken to block 616. The computer may be disabled for beneficial use until the balance can be restored using a mechanism beyond the scope of this disclosure. When the balance is restored, operation may continue at block 604.
If, at block 614, the balance is within the limit established, the OK branch may be taken to block 608 and operation continued as above.
If, at block 614, an explicit quit command has been received, or if a change in performance level is requested, the branch to block 618 may be taken and the current session may be ended. If a local stored value account is not used, a reconciliation may be transacted with a host, such as the fulfillment center 26.
The host, such as the fulfillment center 26, may include a mediation system or the like, for accumulating the user's charges and performing transactions with user accounts to reconcile charges made locally. When different underwriters supply different hardware and software components of the computer 200, the billing/mediation system may distribute revenues according to a revenue sharing agreement.
A software and services section 712 illustrates various applications or services that may be selected for use. These packages may not offer different levels of performance as found in the hardware section 710, but their addition or exclusion contributes to an overall scalable user experience. The check box selections 728 show that word processing and drawing applications are selected for a total price of $0.40 per hour as indicated by legend 730. As illustrated, the mail application is a no charge option.
A summary section 714 presents a user with a total 732 for all selected options. The total 732 may update automatically when any change of performance level is made. An update button 734 may be used to activate the current settings. A cancel button 736 may be used to return to a previous performance level. A password field 738 may allow entry of a password to protect from unauthorized changes. For example, a parent may set a predetermined level and use a password to prevent a child from changing performance to something unneeded or unwarranted. In one embodiment, the use of a password to allow selection of options may be used to restrict access to sensitive information by disabling the program used to access the sensitive information.
Other user interface selection/setting options, such as increase/decrease arrows (not depicted), for performance selection may also be incorporated.
As shown in
A hardware section 808 shows bar meters 814, 816, 818, 820, and 822 representing computer characteristics speed, processor cores, disk space, memory, and graphics memory, respectively. A legend 824 may be used to indicate a cost/month or other indicator of usage pricing for the selected hardware performance levels. A software and services section 810 may use check boxes 826 to select appropriate application software and services, such as word processing or database access. A software and services legend 828 may be used to indicate the value of the selected items from the software and services section 810.
A summary section 812 may be used to indicate a device total 830 and a system total 832. The device total indicates the charge associated with the performance level selected for user 1802. The system total 832 may indicate the total of all the computers associated with the user interface 800. By displaying both the device and system totals 830, 832, an administrator can balance budget constraints vs. desired performance levels. An update button 834 and a cancel button 836 can be used to accept or cancel proposed changes to the performance level of the computer represented by the selected tab 802.
The other tabs 804 and 806 may display similar information and operate in a similar manner to tab 802, although some tabs may be designated in performance categories and include or exclude function-appropriate elements. For example, a group of engineers may have selectable solid modeling programs that are not available to a group of finance users, while that group may have the only access to certain business analysis tools.
A hardware section 924 may indicate a current hardware configuration to a user, showing speed 914, processor cores 916, disk space 918, memory 920, and graphics memory 922. A hardware rate 924 may be shown indicating current value consumption for this level of usage. Similarly, a software and services section 910 may indicate what software or services 926 are currently active. A software and services rate 928 may indicate the current billing rate for these software and services. Particularly when a more simplistic measure is used, such as processor utilization, the rate may vary more or less continuously as the computer is used. The total bill represents the integral of the instantaneous rate over the usage period.
The rate section 912, may advise a user of the current metering or billing rate 930. As shown, the rate is $0.07/minute, the sum of the hardware rate of $0.05/minute and the software and services rate of $0.02/minute. An OK button 932 may be used to dismiss the user interface 900.
In summary, the system and methods described above allow use of an entirely different business model for manufacturing and collecting revenue from a computer asset. Rather than creating highly customized, but still overbuilt, computers for an individual user, a standard model can be created. Improved component and system-level yields already make many performance-related product grade-outs obsolete, allowing cost-effective sale of a computer with very high maximum performance levels. Because the computer user is only charged for the performance level and features actually used, the user can select to modify the performance to suit his or her needs and budget. Although the cost of ownership over the life of the computer may be higher than that of a one-time purchase, the payments can be deferred and the user can extend the useful life of the computer beyond that of the one-time purchase machine. A security mechanism that enforces payments may also be supported by the security module 202 and is discussed elsewhere.
Both users and suppliers benefit from this new business model. The user is able to migrate the performance level of the computer as needs change over time, while the supplier can develop a revenue stream business that may actually have higher value than the one-time purchase model currently practiced. Rather than suffering through less-than adequate performance for a significant portion of the life of a computer, a user can increase performance level over time, at a slight premium of payments. When the performance level finally reaches its maximum and still better performance is required, then the user may upgrade to a new computer, running at a relatively low performance level, probably with little or no change in the cost of use.
All this is possible because the metering agents and specific elements of the security module 202 allow an underwriter in the supply chain to confidently supply a computer at little or no upfront cost to a user or business, aware that their investment is protected and that the scalable performance capabilities generate revenue commensurate with actual performance level settings and usage.
Although the foregoing text sets forth a detailed description of numerous different embodiments of the invention, it should be understood that the scope of the invention is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possibly embodiment of the invention because describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the invention.
Thus, many modifications and variations may be made in the techniques and structures described and illustrated herein without departing from the spirit and scope of the present invention. Accordingly, it should be understood that the methods and apparatus described herein are illustrative only and are not limiting upon the scope of the invention.
This application is related to co-pending U.S. patent application with attorney docket number 30835/320357 entitled, “Computer Hardware Metering,” filed on the same day as this application and is hereby incorporated by reference for all purposes.