1. Field of the Invention
The present invention relates to electro-oxidation catalysts, and particularly to methanol electro-oxidation catalysts including rare earth metal oxides and mesoporous carbon, and a method of making the same.
2. Description of the Related Art
The electro-catalysis of methanol oxidation is among the most significant challenges limiting large-scale commercialization of direct methanol fuel cells. In the anode of the direct methanol fuel cell, methanol is directly supplied as a fuel. During methanol electro-oxidation, methanol is oxidized to produce carbon dioxide, electrons, and protons:
Pt+CH3OHsol→Pt−COads+4H++4e− (1)
Pt+H2O→Pt−OHads+H++e− (2)
Pt−COads+Pt−OHads→2Pt+CO2+H++e− (3)
Among all of the metals, platinum (Pt) is believed to be the most active for the electro-oxidation of methanol in an acid environment. In general, for both the cathode catalyst and the anode catalyst, Pt or an alloy containing Pt as a main constituent element is used. However, Pt is very expensive, and during the methanol electro-oxidation reaction, intermediate carbon monoxide is produced, which is strongly adsorbed on the Pt surface. The adsorption of carbon monoxide as an intermediate material in the reaction on the surface of the Pt catalyst deteriorates its catalytic activity, which negatively affects the performance of the direct methanol fuel cell. Thus, in order to realize the success of direct methanol fuel cell technology, new methanol electro-oxidation catalysts having lower percentages of platinum would be desirable.
A number of binary and ternary catalysts for methanol electro-oxidation are known. Most of these catalysts are based on modification of Pt with some other metal(s). Among the various catalyst formulations, Pt—Ru alloys have shown the best results for the methanol electro-oxidation. Following a bi-functional mechanism, the Ru—OH species act as a source of atomic oxygen, which is required for the electro-oxidation of the adsorbed carbon monoxide to carbon dioxide, thus liberating active sites on the surface of the catalyst material near a Pt atom. The reaction steps are described using a bi-functional mechanism as follows:
Ru+H2O→Ru−OHads+H++e− (4)
Pt−COads+Ru−OHads→Pt+Ru+CO2+H++e− (5)
However, the use of the noble metals, such as Pt and Ru, contributes to the high cost of the methanol electro-oxidation catalysts, which affects the overall cost of the direct methanol fuel cell. Thus, development of active methanol electro-oxidation catalysts with lower amounts of Pt and preferably without using Ru at all is desired.
Thus, a methanol electro-oxidation catalyst and method of making the same solving the aforementioned problems is desired.
The present invention relates to methanol electro-oxidation catalysts and a method for preparing active methanol electro-oxidation catalysts. The methanol electro-oxidation catalysts described herein contain less platinum than is normally required for reasonable activity in conventional methanol electro-oxidation catalysts and do not contain ruthenium. The active methanol electro-oxidation catalysts include nano-oxides of rare earth metals (i.e., cesium, praseodymium, neodymium and samarium) and platinum nanoparticles. The nano-oxides of the rare earth metals are dispersed during synthesis of a support material, preferably formed from mesoporous carbon.
The catalyst includes a support material formed from mesoporous carbon, a nano-oxide of a rare earth metal dispersed in the support material, and platinum nano-particles supported on the nano-oxide of the rare earth metal so that the platinum nano-particles form between about 10 wt % and about 15 wt % of the methanol electro-oxidation catalyst, the rare earth metal forms between about 10 wt % and about 15 wt % of the methanol electro-oxidation catalyst, and carbon and oxygen form the balance (between about 70 wt % and about 80 wt %) of the methanol electro-oxidation catalyst.
In order to prepare the catalyst, SBA-15 mesoporous silica is first added to a 0.5M rare earth metal nitrate solution in ethanol to form an intermediate solution. The intermediate solution is then evaporated to obtain a dry powder. The dry powder is oxidized to form a composition of an oxide of a rare earth metal and SBA-15 mesoporous silica.
A sucrose and sulfuric acid solution is then added to the composition to form a slurry. The slurry is dried to form a secondary dry powder. The secondary dry powder is then carbonized to form a composition of an oxide of a rare earth metal and mesoporous carbon. NaBH4 reduction is then performed on the composition of an oxide of a rare earth metal, and mesoporous carbon and a platinum precursor is added to form a secondary slurry. The secondary slurry is dried to form the methanol electro-oxidation catalyst.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The present active methanol electro-oxidation catalysts include nano-oxides of rare earth metals (i.e., cesium, praseodymium, neodymium and samarium) and platinum nanoparticles. The nano-oxides of the rare earth metals are dispersed during synthesis of a support material, preferably formed from mesoporous carbon. The platinum nano-particles form between about 10 wt % and about 15 wt % of the methanol electro-oxidation catalyst, the rare earth metal forms between about 10 wt % and about 15 wt % of the methanol electro-oxidation catalyst, and carbon and oxygen form the balance (between about 70 wt % and about 80 wt %) of the methanol electro-oxidation catalyst.
SBA-15 mesoporous silica is used as a template for preparing the mesoporous carbon (MC) incorporated with the nano-oxides of the rare earth metals, although it should be understood that other suitable materials may be substituted as the template. Initially, SBA-15 was synthesized by dispersing 4 g of poly (ethylene glycol)—block-poly (propylene glycol)—block poly (ethylene glycol) (EO20PO70EO20), a tri-block copolymer sold under the trade name Pluronic P-123, manufactured by BASF SE, into 30 g of distilled water, and stirred for 4 hours at room temperature. The Pluronic P-123 serves as a structure-directing agent. Then, 120 mL of 2M hydrochloric acid (HCl) solution was added and stirred at 40° C. for 2 hours. This was followed by the addition of 9 g of tetraethylorthosilicate and continuous stirring for 24 hours at 40° C. The resulting gel was aged at 130° C., after which it was filtered, washed with deionized water several times, and dried in an oven at 100° C. overnight. Finally, the powder was calcined at 540° C. for 24 hours to obtain the SBA-15.
For the preparation of CeO2-SBA-15, PrO2-SBA-15, NdO2-SBA-15 and SmO2-SBA-15, a required amount of the prepared SBA-15 in ethanol was added to 0.5M of cerium (III) nitrate hexahydrate solution in ethanol, 0.5M praseodymium (III) nitrate n-hydrate solution in ethanol, 0.5M neodymium (III) nitrate hexahydrate solution in ethanol and 0.5M samarium (III) nitrate hexahydrate solution in ethanol, respectively. The solutions were stirred for 24 hours at room temperature and then evaporated to obtain dry powders. This was then followed by oxidation at 300° C. for 3 hours under an oxygen atmosphere to obtain the CeO2-SBA-15, PrO2-SBA-15, NdO2-SBA-15 and SmO2-SBA-15.
As shown in
The specific surface area and porosity of the CeO2-SBA-15, PrO2-SBA-15, NdO2-SBA-15 and SmO2-SBA-15 samples were measured by N2 physisorption and the results are shown in
The sharp inflections between the relative pressures (P/P0) 0.6-0.8 in the isotherms correspond to capillary condensation within the uniform mesopores. The sharpness of the inflection step demonstrates the extent of uniform pore size distribution in the CeO2-SBA-15, PrO2-SBA-15, NdO2-SBA-15 and SmO2-SBA-15 samples. The textural parameters, such as the specific surface area, pore volume and pore diameters, are given in Table 1 below. Pore size distribution derived from desorption branch of the N2 hysteresis for the samples is shown in
For the preparation of CeO2-MC, PrO2-MC, NdO2-MC, and SmO2-MC, 1.25 g of sucrose, 5 g of water and 0.14 g of H2SO4 were mixed together to obtain a solution, which was added drop-wise to 1 g of CeO2-SBA-15, PrO2-SBA-15, NdO2-SBA-15 and SmO2-SBA-15 each. The slurries were dried at 160° C. in an oven and then crushed to obtain fine dry powders. The obtained dried powders were dissolved in a mixture of 0.83 g of sucrose, 5 g of water and 0.093 g of sulfuric acid. The slurries were again dried at 160° C. in an oven and then crushed to obtain fine dry powders. The dried powders were then carbonized at 900° C., treated with hydrofluoric acid solution, filtered, and washed three times with ethanol. The samples were then dried at 160° C. in an oven for 8 hours to obtain the CeO2-MC, PrO2-MC, NdO2-MC, and SmO2-MC samples.
The specific surface area and porosity of the CeO2-MC, PrO2-MC, NdO2-MC, and SmO2-MC samples were measured by N2 physisorption and the results are shown in
The catalyst samples were prepared using conventional NaBH4 reduction by dispersing CeO2-MC, PrO2-MC, NdO2-MC, and SmO2-MC in deionized water, followed by ultrasonication. Then, 100 mg of NaBH4 in 5 mL deionized water was added immediately. This was followed by rapid addition of a Pt precursor, hydrogen hexachloroplatinate (IV) hexahydrate (H2PtCl6 6H2O). The slurries were stirred for 24 hours at room temperature, filtered, washed with deionized water, and then dried in a vacuum oven at 100° C. for 6 hours to obtain the Pt/CeO2-MC, Pt/PrO2-MC, Pt/NdO2-MC and Pt/SmO2-MC catalyst samples.
Energy dispersive spectroscopy (EDS) was used to determine the elemental composition of the prepared catalyst samples, and the corresponding results are shown in
The activity of the prepared catalyst samples for methanol electro-oxidation was measured using a beaker-type electrochemical cell. As shown in
The reason for the high activity of the Pt/CeO2-MC catalyst sample is due to better synergic interaction between CeO2 and the support, which is confirmed from the low angle XRD pattern (shown in
A preliminary stability test was conducted for all of the catalyst samples, as shown in
The methanol electro-oxidation catalysts described herein do not contain Ru and have lower Pt contents than in conventional catalysts. Additionally, the present catalysts show good activity and reasonable stability, thus allowing them to be used as catalysts for methanol electro-oxidation for direct methanol fuel cell applications and the like. The low weight percentage of platinum and lack of ruthenium reduces the cost of the catalysts, which, in turn, reduces the overall cost of the direct methanol fuel cell. Unlike conventional catalysts, Ru was not used and the Pt content in the prepared catalyst samples is 15 wt % only, which is low compared to the 30-40 wt % metals (Pt and Ru) content normally used in the commercial catalysts.
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6228803 | Gadkaree et al. | May 2001 | B1 |
7169731 | Chondroudis et al. | Jan 2007 | B2 |
7220697 | Pak et al. | May 2007 | B2 |
7402544 | Pak et al. | Jul 2008 | B2 |
7488699 | Huang et al. | Feb 2009 | B2 |
7507687 | Kodas et al. | Mar 2009 | B2 |
7670988 | Switzer et al. | Mar 2010 | B2 |
7879501 | Schaevitz et al. | Feb 2011 | B2 |
8114372 | Pak et al. | Feb 2012 | B2 |
20020136686 | Takahashi | Sep 2002 | A1 |
20090042089 | Choi et al. | Feb 2009 | A1 |
20110091787 | McGrath et al. | Apr 2011 | A1 |
20110281027 | Vogt | Nov 2011 | A1 |
20120196745 | Pak et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
1 501 102 | Feb 1978 | GB |
60-196511 | Oct 1985 | JP |
2000-246106 | Sep 2000 | JP |
Entry |
---|
“Textural property tuning of ordered mesoporous carbon obtained by glycerol conversion using SBA-15 silica as template,” M. Ignat et al. Carbon 48 (2010), pp. 1609-1618. |
“Preparation and electrocatalytic application of high dispersed Pt nanoparticles/ordered mesoporous carbon composites,” Yufan Zhang et al. Electrochimica Acta 56 (2011), pp. 5849-5854. |
“The effect of the use of Ianthanum-doped mesoporous SBA-15 on the performance of Pt/SBA-15 and Pd/SBA-15 catalysts for total oxidation of toluene,” K. Bendahou et al. Applied Catalysis A: General 351 (2008), pp. 82-87. |
Yuying Yang, Ziyu Zhang and Zhongal H, “Activity improvement of Pt/C catalysts by adding CeO2 nanoparticles”, Journal of Rare Earths, vol. 29, Issue 1, Jan. 2011, p. 58-63. |
Jianshe Wang, Jingyu Xi, Yuxia Bai, Yi Shen, Jie Sun, Liquan Chen, Wentao Zhu, and Xinping Qiu, “Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation”, Journal of Power Sources, vol. 164, Issue 2, Feb. 10, 2007, p. 555-560. |
Jung-Byun Nam et al., “Direct methanol fuel cell Pt-carbon catalysts by using SBA-15 nanoporous templates”, Electrochemistry Communications 6 {2004), pp. 737-741. |
Number | Date | Country | |
---|---|---|---|
20130165318 A1 | Jun 2013 | US |