Method, a system, and an apparatus for using and processing multidimensional data

Information

  • Patent Grant
  • 9275451
  • Patent Number
    9,275,451
  • Date Filed
    Thursday, December 20, 2007
    17 years ago
  • Date Issued
    Tuesday, March 1, 2016
    8 years ago
Abstract
A method for analyzing a functional map of at least one tissue of a patient. The method comprises managing a plurality of functional maps each being associated with a plurality of first biological activity indications, receiving a functional map which is associated with a plurality of second biological activity indications, identifying a matching set of the managed functional maps by matching between the plurality of first and second biological activity indications, and using the matching set for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map.
Description
FIELD AND BACKGROUND OF THE INVENTION

The present invention, in some embodiments thereof, relates to a system and a method for analyzing a multidimensional patient profile and, more particularly, but not exclusively, to a system and a method for analyzing a multidimensional patient profile that includes a medical image.


Systems and devices for visualizing the inside of living organisms are among the most important medical developments in the last thirty years. Systems like computerized tomography (CT), magnetic resonance imaging (MRI), a positron emission tomography (PET), and a single photon emission computed tomography (SPECT) scanners allow physicians to examine internal tissues or areas of the body that require a thorough examination. In use, the visualizing scanner outputs a 3D medical image, such as a sequence of computerized cross-sectional images of one or more tissues, which is then interpreted by specialized radiologists.


It should be noted that other imaging devices and methods are also known, for example as disclosed in International patent application Pub. No. WO2006/051531, which has been published on May 18, 2006 and incorporated herein by reference. This patent application describes an apparatus for radiation based imaging of a non-homogenous target area having distinguishable regions therein. The apparatus comprises an imaging unit designed to obtain radiation intensity data from the target region in the spatial dimensions and one or more other dimensions. The apparatus further comprises an image four-dimension analysis unit associated with the imaging unit for analyzing said obtained intensity data in the spatial dimension, and the one or more other dimensions, in order to map the distinguishable regions.


Commonly, a patient is referred for a visual scan by a general practitioner or an expert practitioner. The 3D medical image is forwarded to and diagnosed by a general radiologist who is responsible for the analysis and diagnosis of the medical image. The medical images and the diagnosis thereof are sent back to the referring practitioner.


In most hospitals and radiology centers, the 3D medical images are transferred to a picture archiving communication system (PACS) before being accessed by the radiologists. The PACS is installed on one or more of computers, which are dedicated for storing, retrieving, distributing and presenting the stored 3D medical images. The 3D medical images are stored in an independent format. The most common format for image storage is digital imaging and communications in medicine (DICOM).


Typically, a PACS network consists of a central server that stores a database containing the images connected to one or more clients via a local area network (LAN) or a wide area network (WAN) which provide or utilize the images. Web-based PACS is becoming more and more common: these systems utilize the Internet as their means of communication, usually via a virtual private network (VPN) or a secure sockets layer (SSL). The software in thin or smart client is loaded via ActiveX, Java, or .NET Framework. Definitions vary, but most claim that for a system to be truly web based, each individual image should have its own URL. Client workstations can use local peripherals for scanning image films into the system, printing image films from the system and interactive display of digital images. Modern radiology equipment, modalities, feed patient images directly to the PACS in digital form. For backwards compatibility, most hospital imaging departments and radiology practices employ a film digitizer.


Computer aided detection (CAD) systems that assist physicians in diagnosing pathological, traumatic, or healthy indications are known. However, these CAD system are usually based on fixed expert rules and a closed list of treatments. For example, U.S. Pat. No. 6,188,988 and U.S. Pat. No. 6,081,786, which have been granted on Feb. 13, 2001, disclose systems, methods and computer program products for guiding selection of a therapeutic treatment regimen for a known disease such as HIV infection, are disclosed. The method comprises providing patient information to a computing device (the computer device comprising: a first knowledge base comprising a plurality of different therapeutic treatment regimens for the disease; a second knowledge base comprising a plurality of expert rules for selecting a therapeutic treatment regimen for the disease; and a third knowledge base comprising advisory information useful for the treatment of a patient with different constituents of the different therapeutic treatment regimens; and generating in the computing device a listing (preferably a ranked listing) of therapeutic treatment regimens for the patient; and generating in the computing device advisory information for one or more treatment regimens in the listing based on the patient information and the expert rules.


SUMMARY OF THE INVENTION

According to one aspect of the present invention there is provided a method for analyzing a functional map of at least one tissue of a patient. The method comprises managing a plurality of functional maps each being associated with a plurality of first biological activity indications, receiving a functional map being associated with a plurality of second biological activity indications, identifying a matching set of the managed functional maps by matching between the plurality of first and second biological activity indications, and using the matching set for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map. Optionally, the received functional map is associated with first medical information related to the current patient, each the managed functional map being associated with second medical information, the matching comprises matching between the first and second medical information.


Optionally, the received and managed functional maps are pixelated.


More optionally, at least some pixel elements of the received pixelated functional map is associated with the plurality of first biological activity indications, at least some pixel elements of each the pixelated functional map is associated with the plurality of second biological activity indications, the matching being between respective pixel elements of the received and managed pixelated functional map.


Optionally, the method comprises preprocessing the received functional map before the matching; the preprocessing comprises a member of a group consisting of: registering the received functional map according to at least one of the functional maps and denoising the received functional map.


More optionally, each the first and second medical information comprises a member of a group consisting of: a laboratory result, a therapeutic procedure record, a clinical evaluation, an age, a gender, a medical condition, identification information, genetic information, a patient medical record, a metabolism data, blood pressure, a sensitivity, an allergy, a population relevance, an epidemiologic classification, a patient history, and a treatment method.


Optionally, each the received and managed functional map comprises a member of a group consisting of: a positron emission tomography (PET), a PET—computerized tomography (CT), a single photon emission computed tomography


(SPECT), an extracorporeal gamma scan, an extracorporeal beta scan, an intracorporeal gamma scan, and an intracorporeal beta scan.


Optionally, each the first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers.


Optionally, managing the plurality of functional maps comprises at least one prototype of a pathological biological activity.


Optionally, at least one of the managed functional map is associated a pathological diagnosis, the diagnosis of the received functional map being determined according to the pathological diagnosis of members of the matching set.


Optionally, the managing comprises managing more than 1,000,000 functional maps.


Optionally, the matching comprises matching topological similarities between the received functional map and at least one of the plurality of managed functional maps.


Optionally, the matching comprises matching common radiation emission pattern between the received functional map and at least one of the plurality of managed functional maps.


Optionally, the received functional map and at least one of the plurality of managed functional maps are kinetic functional maps.


Optionally, at least one of the plurality of managed functional maps is associated with a method of treatment and with a success evaluation thereof, the using comprises outputting a treatment recommendation according to respective the evaluation of at least one member of the matching set.


Optionally, the method further identify a plurality of biological pathways in the received and managed functional maps respectively according to the first and second plurality of biological activity indications, the matching comprises matching the plurality of biological pathways.


Optionally, the using comprises classifying the functional map.


Optionally, the using is performed in real time.


According to one aspect of the present invention there is provided a system for analyzing a functional map of at least one tissue of a current patient. The system comprises an input unit configured for receiving the functional map being associated with a plurality of first biological activity indications and a database configured for storing a plurality of functional maps, each being associated with a plurality of second biological activity indications. The system further comprises an analyzing unit for identifying a matching set of the stored functional maps by matching between the plurality of first and second biological activity indications. The matching set is used for a member of a group consisting of: an image data acquisition and treatment.


Optionally, the system further comprises an integration module configured for preprocessing the functional map, the preprocessing comprises a member of a group comprises: registering the functional map according to at least one of the stored plurality of functional maps and converting the functional map to a data format of at least one of the stored plurality of functional maps.


Optionally, the system further comprises a display unit configured for displaying the matching set.


Optionally, the analyzing unit is configured for weighing member of the matching set according to their potential relevance to the received functional map.


According to one aspect of the present invention there is provided a distributed system for analyzing a functional map of at least one tissue of a current patient. The system comprises a plurality of client terminals each configured for receiving the functional map being associated with a plurality of first biological activity indications, a database configured for storing a plurality of functional maps, each being associated with a plurality of second biological activity indications, and an analyzing unit for matching between the plurality of first and second biological activity indications. The matching is used for a member of a group consisting of: an image data acquisition, a diagnosis of the received functional map, a classification of the received functional map.


According to one aspect of the present invention there is provided a research tool for identifying a trial group. The research tool comprises an input unit configured for receiving a set of characteristics defining a patient profile, a database configured for storing a plurality patient profiles, an analyzing unit for identifying a trial group by matching between the set of characteristics and the plurality patient profiles, and an output unit for outputting the trial group.


Optionally, each the patient profile being associated with a functional image.


Optionally, the trial group is a control group.


Optionally, the set of characteristics comprises at least one first biological activity, at least one of the plurality patient profiles comprises at least one second biological activity analyzing unit for identifying a trial group by matching between the at least one first biological activity and the at least one second biological activity.


According to one aspect of the present invention there is provided an imaging system for capturing a functional image of at least one tissue of a patient. The imaging system comprises at least one detector for obtaining a source functional image being associated with at least one first biological activity indication, a database configured for storing a plurality of reference functional images each being associated with at least one second biological activity indication, and an analyzing unit for matching between the at least one first and second biological activity indications. The analyzing unit is configured for controlling the at least one detector according to the matching.


Optionally, the functional image depicts a segment of a requested area, the controlling comprises maneuvering the at least one detector to capture an additional segment of the requested area according to the matching.


Optionally, the detector comprises a radiation transmitting unit for emitting radiation toward the segment; the controlling comprises adjusting the intensity of the emitted radiation according to the matching.


Optionally, the detector is configured for obtaining the functional image, by a first modality, selected from the group consisting of a single photon emission computed tomography (SPECT) unit, a positron emission tomography (PET) unit, an extracorporeal, hand-held gamma scan unit, an extracorporeal unit, hand-held beta scan, an intracorporeal gamma scan, an intracorporeal beta scan, an intravascular gamma scan, and an intravascular beta scan.


Optionally, the source functional image is a preliminary image mapping a radiation emitted from a first tracer; the controlling comprises outputting a recommendation for the injection of a second tracer based on the matching.


According to one aspect of the present invention there is provided a method for obtaining a functional image of at least one tissue of a patient. The method comprises a) receiving a preliminary functional image associated with at least one first biological activity indication, b) matching between the at least one first biological activity and a plurality of respective biological activities each of a reference functional image, and c) outputting a instructions for obtaining an additional preliminary functional image according to the matching.


Optionally, the method further comprises d) obtaining the additional preliminary functional image according to the instructions and e) combining the preliminary functional images producing a final functional image.


Optionally, the method further comprises repeating b)-e), the at least one first biological activity are taken from the final functional image.


Optionally, the instructions comprises a member of a group comprises: an identifier defining which tracer to use during the obtaining, an identifier defining in which concentration to use a tracer during the obtaining, a point of view of at least one detector which is used for the obtaining, a region of interest to be imaged during the obtaining, and refining the preliminary functional image.


According to one aspect of the present invention there is provided a method for calculating a treatment recommendation. The method comprises a) managing a plurality of patient profiles each being associated with a plurality of patient medical records, at least one treatment, and an outcome evaluation of the at least one treatment, b) receiving a current patient profile being associated with a plurality of related medical records, c) identifying a matching set of the managed patient profiles by matching between the plurality of patient and related medical records, and d) calculating a medical recommendation according to the at least one treatment of members of the matching set.


Optionally, the plurality of patient profiles includes the at least 1,000,000 patient profiles.


Optionally, each the patient profile having a functional map, each the functional map being associated with a plurality of biological activity indications, the identifying comprises identifying the matching set by matching between biological activity indications of the current patient profile and the plurality of patient profiles.


Optionally, each the plurality of patient medical records comprises a member of a group consisting of: a laboratory result, a therapeutic procedure record, a clinical evaluation, an age, a gender, a medical condition, identification information, genetic information, a patient medical record, a metabolism data, blood pressure, a sensitivity, an allergy, a population relevance, an epidemiologic classification, a patient history, and a treatment method.


Optionally, at least some of the plurality of patient medical records are associated with a time tag indicating a related occurrence or examination time.


Optionally, each the at least one treatment is associated with a reliability score, the calculating comprises calculating the medical recommendation according to the reliability score of members of the matching set.


Optionally, each the patient profile is associated with a current treatment record, the identifying comprises identifying the matching set by matching between current treatment records of the current patient profile and of the plurality of patient profiles, and the medical recommendation comprises a continuation treatment for the current patient profile.


More optionally, the current treatment record profile is associated with a respective outcome evaluation.


Optionally, the method further comprises e) updating the current treatment record of the current patient profile with the medical recommendation and the respective outcome evaluation with an outcome of a respective treatment and f) repeating a)-d) the current treatment record is the updated current patient profile and the respective outcome evaluation is the outcome of a respective treatment.


Optionally, the medical recommendation is a medical recommendation of a phase in an ongoing treatment and the outcome is a current outcome of the phase, the updating and repeating are performed during the ongoing treatment.


Optionally, the medical recommendation comprises a request for an additional evolution. The method further comprises e) updating at least one of the plurality of patient medical records with the additional evolution and f) repeating a)-d) the current patient profile being updated with the additional evolution.


Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.


Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.


For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard disk and/or removable media, for storing instructions and/or data.


Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.





BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.


In the drawings:



FIG. 1 is a schematic illustration of a matching system for analyzing a functional map of one or more tissues of a patient, according to an exemplary embodiment of the present invention;



FIG. 2 is a flowchart of a method for analyzing a pixelated functional map of one or more tissues of a current patient, according to an embodiment of the present invention;



FIG. 3 is a schematic illustration of a distributed matching system for analyzing a medical map of one or more tissues, according to one embodiment of the present invention; and



FIG. 4 is a flowchart for using the matching process that is depicted in FIG. 2 for refining the functional image, according to one embodiment of the present invention.





DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Exemplary embodiments of the present invention describe methods and systems for calculating a treatment recommendation. These embodiments are based on a plurality of reference patient profiles; each includes a plurality of patient medical records, at least one given treatment, and an outcome evaluation of the given treatment. A current patient profile, which is associated with a plurality of related medical records, is received and matched with the reference patient profiles. The match allows the identification of a matching set that includes members with patient medical records that have a certain potential relevance to the patient medical records of the current patient profile. Each record of the matching set specifies a certain given treatment and the outcome thereof The matching set allows the calculation of a medical recommendation according to given the treatments which are specified in the matching set. For example, the medical recommendation may be based on the identification of a treatment that has a positive outcome evaluation, the most prevalent positive outcome evaluation, or a combination of the level of success of the possible outcome evaluations and/or the prevalence of the possible outcome evaluations.


Exemplary embodiments of the present invention describe methods and systems for analyzing, optionally in real time, patient data, such as a functional map, functional image, such as PET and SPECT images, and/or patient profile, of a patient using a reference database that contain a plurality of reference functional images, functional maps, and/or patient profiles. These embodiments allow, inter alia, identifying a matching set of functional images, maps, and/or patient profiles from the reference database by matching between the patient data and records of a reference database. Such a matching set can be used for identifying, classifying, and/or diagnosing pathological indications, which are depicted in the functional image, and for alarming and/or notifying the physician about such pathological indications.


Optionally, the matching set is used for refining the process of acquiring the functional image.


Optionally, the reference database is used for managing a plurality of patient profiles. Each patient profile comprises one or more functional images, each as defined above and medical information that is related to the patients which are imaged in the one or more of the functional images.


Optionally, the system is used for locally refining the received functional image. The received functional image may depict a segment of a certain requested area, a preliminary image that depicts partial emissions of one or more tracers, and/or an incomplete imaging of a certain area. In such an embodiment, each matching set may be used for generating instructions to an imaging system, thereby allowing an active vision, optionally as described below.


Optionally, this refinement allows reducing the number of detectors which are needed for capturing the functional image, reducing the computational complexity which is needed for reconstructing the received functional image and/or for reducing the amount and/or medicaments concentration which are injected to the patient. Exemplary embodiments of the present invention are a research tool generates trials groups, such as control groups, for experiments, using a using a reference database that comprises a plurality of functional images and/or patient profiles.


Some exemplary embodiments of the present invention describe a method that includes managing a plurality of pixelated functional maps, each map or a pixel element thereof is associated with a plurality of biological activity indications, such as values that represent the emission of one or more tracers, for example radionuclide sodium-24 tracers, from one or more tissues. When a pixelated functional map of a patient that is associated with a plurality of such biological activity indications is received, the managing allows the identification of a matching set that includes functional images that record respective biological activity indications. The matching set is used for image data acquisition, diagnosing the received functional map, refining the received functional map, operating the imaging system that created the functional image, and/or for classifying the received functional map.


Optionally, as a high computational complexity may be needed in order to match between the new functional map and the stored functional maps, a hardware architecture that allows heavy processing may be used, optionally as described below. Such architecture can be used to reduce the processing time of the matching and/or analysis process.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.


Reference is now made to FIG. 1, which is a schematic illustration of a matching system 100 for analyzing a functional map or a functional image, of one or more tissues of a patient, according to an exemplary embodiment of the present invention. The matching system 100 comprises an input unit 101 for obtaining one or more functional images 104 of one or more tissues of a patient. For brevity, a received functional image, which is an output of an imaging system that depicts one or more tissues of a patient and/or a received functional map, which is a set of data that describes and/or defines biological and/or pathological indications in one or more tissues of a patient, are referred to as a source image 104. The system further comprises a reference patient database 102 for managing a plurality of functional images 105. As used herein, managing a plurality of functional images means hosting, searching, manipulating, and/or accessing a plurality of functional images. For brevity, the hosted functional images and/or the functional maps are referred to in this application as reference images 105. The matching system 100 further comprises an analysis unit 103 for matching between the source image 104 and the reference images 105.


In some embedment of the present invention, the matching system 100 is used as a CAD system that assist physicians, such as radiologists, in diagnosing pathological, traumatic, or healthy indications in the source image 104. The matching system 100 assists physicians by leveraging the reference images 105 and additional dimensions which are associated therewith, optionally as described below, to identify relevant medical cases and their courses/acquisition, methods, treatments, and the like. In such an embodiment, the matching system 100 may assist physicians to identify cancerous, juxta cancerous, wounded, and normal tissues.


Optionally, the matching system 100 is used for automatic diagnosis of the patient. Optionally, the matching system 100 is used for alerting a patient, a physician, and/or a central server that is used for monitoring patients about a certain biological activity and/or inactivity in the patient body. The system may also be used as a research tool that allows a researcher to define a control group or a test group, as further described below.


Reference is now also made to FIG. 2, which is a flowchart of a method for analyzing a pixelated functional map of one or more tissues of a current patient, according to some embodiments of the present invention.


As described above and shown at 201, the reference patient database 102 manages a plurality of reference images each associated with a plurality of biological activity indications. Then, as shown at 202, a source image that includes a pixelated functional map is received. The source image is associated with a plurality of biological activity indications, as further described below. The input unit 101, which may be installed on a terminal, such as a personal computer or a server, is designed to receive the source image 104 either directly from a medical imaging system or indirectly via a content source. A medical imaging system comprises imaging by a modality, such as a PET, a PET-CT, a single photon emission computed tomography (SPECT), an extracorporeal gamma scan, an extracorporeal beta scan, an intracorporeal gamma scan, an intracorporeal beta scan, and output of a camera, such as disclosed in U.S. patent application Ser. No. 11/607,075, filed Dec. 1, 2006; U.S. patent application Ser. No. 11/034,007, filed Jan. 13, 2005; U.S. patent application Ser. No. 09/641,973, filed Aug. 21, 2000; PCT Patent Application No. PCT/IL2006/000562, filed May 11, 2006; PCT Patent Application No. PCT/IL2006/001291, filed on Nov. 9, 2006; PCT Patent Application No. PCT/IL2006/000840, filed Jul. 19, 2006; PCT Patent Application No. PCT/IL2006/000834, filed Jul. 19, 2006; PCT Patent Application No. PCT/IL2006/000059, filed Jan. 15, 2006; PCT Patent Application No. PCT/IL2005/001215, filed Nov. 16, 2005; PCT Patent Application No. PCT/IL2005/001173, filed Nov. 9, 2005; PCT Patent Application No. PCT/IL2005/000575, filed Jun. 1, 2005; PCT Patent Application No. PCT/IL2005/000572, filed Jun. 1, 2005; PCT Patent Application No. PCT/IL2005/000048, filed Jan. 13, 2005; and PCT Patent Application No. PCT/IL03/00917, filed Nov. 4, 2003; Israel Patent Application No. 172349, filed Nov. 27, 2005; and Israel Patent Application No. 171346, filed Oct. 10, 2005. The contents of all of the above documents are incorporated by reference as if fully set forth herein. A content source may be a PACS server, a PACS workstation, a computer network, or a portable memory device such as a DVD, a CD, a memory card, etc. The content source hosts and optionally allows the access to various multidimensional patient profiles, or dimensions thereof.


Optionally, the source image 104 comprises two or more functional images depicting the same tissues in the patient's body. The reference patient database 102 comprises references images each comprises two or more functional images depicting respective tissues in a body of another patient. Optionally, the functional images 104, 105 are pixelated. The functional images are optionally produced by radioactive emission. A functional image may be based on radiation emitted from radioactive tracers, such as gamma-emitting radiopharmaceuticals, which are injected into the body of the patient. The uptake of tracers is different between different tissues and between healthy, defective, and tumor tissues. Such an uptake, which is reflected by the radiation emitted from each tissue, is used for evaluating a biological activity, such as a metabolic activity of body tissue. For example, a functional image may image cardiac rhythm or respiratory rhythm, tissue metabolism, blood flow, evaluation of coronary artery disease, receptor binding, brain perfusion, and liver activity. Other indications of biological activities or inactivities that may also be depicted in a functional image may be based on the uptake rate of tracers in the related one or more tissues of the patient. Since the uptake rate of tracers is different between a healthy tissue and a tumor and is furthermore different between malignant and benign portions of a tumor, functional images or maps are of importance in tumor localization and volume determination, and especially, localization and volume determination of malignant portions of tumors.


Optionally, the functional image is a 3D medical image or a sequence of 3D medical images, such as a sequence of PET-CT, SPECT, and/or Gamma scan images that comprises a plurality of voxels. In such an embodiment, the one or more functional images provide information about a plurality of biological activities in each voxel of the source image 104. For example, each voxel may be associated with the uptake rate of a number of different tracers, such as iron isotopes, In-111 chloride, and Tc-99m labeled colloids (7-10). This use of multi-dimensional data, covering domains such as spatial/organs, variety of tracers, and time variation, allows obtaining properties of the underlying biological processes and conclusions related to the clinical condition. Furthermore, even if a radiation, which is emitted from a certain isotope, has an imperfect specificity, the combination of its radiation with radiations of other isotopes may have a specificity that allows the agent that receives the outputs of the matching system to diagnose the pathology of the imaged tissues in the received source image.


Optionally, the biological activity or inactivity is documented as a value representing the interception of rays, such as gamma rays, which are emitted indirectly from the respective area, optionally by a positron-emitting radioisotope, which is introduced into the body on a metabolically active molecule.


Each one of the source images is optionally associated with medical information that is related to the patient. In such an embodiment, for each of some or all of the reference images 105 is associated with related medical information of a patient that her organs are depicted in the related reference image 105. As used herein, medical information means, inter alia, information which is related to the patient, such as laboratory results, therapeutic procedure records, clinical evaluations, age, gender, medical condition, ID, genetic information, patient medical record, data indicating of metabolism, blood pressure, patient history, sensitivities, allergies, different population records, treatment methods and the outcome thereof, epidemiologic classification, and patient history, such as treatment history. Optionally, each one of the source and reference images 104, 105 is optionally associated with previous and/or current structural and/or functional images of respective one or more tissues. Optionally each one of the previous images is associated with information that indicates a diagnosis thereof, a list of pathological and/or biological indications, and selected treatments and/or medicaments. Other important features, such as 3D affine transformation descriptors may also be associated with the source image. The input unit 101 is optionally adapted to interface with more than one content source.


Optionally, the input unit 101 preprocesses the source image 104 before it is forwarded to the analysis unit 103 and/or stored in the reference patient database 102. Preferably, the source image 104 comprises a pixelated functional image that is preprocessed according to the requirements of the analysis unit 103. In one embodiment of the present invention, the pixelated functional image is denoised and/or enhanced using commonly known edge preserving filters before it is forwarded and optionally stored.


As described above, the source image 104 may be associated, or allowing the matching system 100 to associated it, with medical information of a related patient. In such an embodiment, each one of the pixelated functional images, which are hosted in the reference patient database 102, is also associated with related medical information. The reference patient database 102 may also store a number of prototypes of pathological biologic activities and/or indications, for example a pixelated medical map of one or more tissues that depicts an emission of an accumulation of radioactive glucose fluorodeoxyglucose (FDG) in an exemplary cancerous tissue.


For brevity, one or more of the reference images 105 and/or medical information, which are related to a certain patient and/or a certain patient prototype are referred to as a multidimensional patient profile. In such an embodiment, each dimension of the multidimensional patient profile provides information about a biological activity and/or indication in one or more voxels of a functional image or optionally medical information that is related to the patient that one or more of her organs are depicted in the functional image. For example, a dimension may be a functional image that images an emission of a tracer from a biological activity of one or more tissues.


Optionally, the multidimensional patient profile 104, 105 includes a pathologic classification, a clinical stage, and optionally a prognosis of such a pathologic classification. Optionally, one or more of the multidimensional patient profiles 104, 105 are associated with one or more therapies. Each therapy is associated with a related success rate value.


Optionally, the pathologic classification or other diagnosis and/or classification that is associated with the multidimensional patient profile 104, 105 and/or included therein is tagged with a reliability score that reflects the skills of the agent that provided it, the reliability of the organization which is associated with the agent, and/or the reliability of the study from which the data is taken. As used herein an agent means a physician, a measurement device, a measurement system, an imaging device, an imaging system, and an organization means a laboratory, a hospital, a medical service, an association of hospitals and/or laboratories, a geographic location of hospitals and/or laboratories, a manufacture of an agent and/or the training center that trained the agent.


Optionally, the reference patient database 102 hosts a plurality of respective functional images. In such an embodiment, each voxel of each reference image 105 is associated with a plurality of related biological activities. In such a manner, the analysis unit 103 may match between each voxel of the source image 104 and voxels of one or more of the reference images 105, which are optionally respective thereto. In an exemplary embodiment of the invention, the reference patient database 102 hosts more than a 5,000 of functional images each, of an actual patient or a known and explicit profile. Optionally, each functional image is stored along with medical information, optionally as described above, and may be referred to as a multidimensional patient profile. Each dimension in the multidimensional patient profile is the biological activity in one or more voxels of the functional image or a medical information datum.


Optionally, the multidimensional patient profile includes a respective structural image, which is optionally registered with one or more of the related functional images. The structural image is produced by reflections of penetrating rays from the internal tissues of the respective organs of the patient. Such a structural image may be produced, for example, by x-ray, CT, ultrasound, and MRI scans, which provide structural map of the internal tissues of the patient.


Optionally, the number of multidimensional patient profiles 105, which are stored in the reference patient database 102, is greater than 5,000, 50,000, 500,000, 1,000,000, 10,000,000, 100,000,000, 1,000,000,000, or intermediate values. The size of the database may be affected by the standard deviation of the records and the variance of the records. Optionally, the number of different patients whose has a multidimensional patient profile in the reference patient database 102 may be of a similar magnitude. Optionally, 5, 10, 100, 1000 or more separately identifiable functional images are provided per multidimensional patient profile in the reference patient database 102. The number of dimensions analyzed in each multidimensional patient profile may be, for example, 5, 10, 20, 40, 100, 1000, or greater or intermediate values.


The reference patient database 102 is optionally distributed in a number of servers or other hosting computing units, for example 10, 50, 100, 1000, or intermediate or greater numbers of hosting computing units. The connections between these servers are optionally secured in order to maintain data safely and privacy. Optionally, the technical specification of the system varies according to the resolution of the functional images, the number of records in the reference patient database, and the number and/or distribution of the input units 101. For example, larger images and multidimensional patient profile with more dimensions may need more bandwidth, calculating power, and storage. Optionally, in order to increase the robustness if the reference patient database, each record is stored more than once, optionally in a number of different servers which are optionally distributed in different geographical locations. Clearly, by maintaining a number of copies, the degree of data security increases and the latency of storing and retrieving the data decreases.


As described above, the source image may be received with respective medical information. This combination may be referred to as a new multidimensional patient profile. Optionally, the new multidimensional patient profile is stored for future use. Optionally, the input system comprises an integration module for integrating different modalities, such as functional and structural images from different imaging systems, for example, MRI systems, CT systems, Ultrasound (US) systems, and X-ray based systems that contain multiple dimensions and/or markers. Optionally, the integration module is designed for converting data format in an automated and/or semi-automated manner. The conversation allows the analysis unit 103 to handle data from various data sources. Optionally, the integration module is designed for registering the source image according to predefined model that has been used for registering the respective reference images. Such a registration can substantially reduce the computational complexity of the matching process.


The analysis unit 103 is designed to match between the source image 104, or the new multidimensional patient profile 104, and a plurality of respective reference images 105, or a plurality of multidimensional patient profiles 105, which are stored in the reference patient database 102. As shown at 203, after the source image is received at the analysis unit 103, a matching set of the reference images is identified by matching between the plurality of the first and second biological activity indications. The matching allows identifying a set of the hosted multidimensional patient profiles 105 that a plurality of common biological activities and/or pathogenic indications with the new multidimensional patient profile 104.


Optionally, the analysis unit 103 gives each member of the matching set a potential relevance value that is determined according to the potential relevance thereof to the new functional image and/or to the new multidimensional patient profile 104. Optionally, the potential relevance value is determined according to the proximity of the parameters that represent common biological activity indications in the members of the matching set.


The matching between the source and the reference images may be based on topological similarities between the source image and the reference images. Such a matching allows the agent to identify a matching set of multidimensional patient profiles that includes a number of common biological activities and/or indications with the patient that is depicted in the source image. The aforementioned matching allows the detection of a matching set that have a common radiation emission pattern with the source image. For example, in functional imaging of one or more brain activities, it is possible to match between emission patterns that may account as normal or abnormal functional properties of one or more regions, normal or abnormal dependencies between the one or more regions, and pathologies associated with malfunctions of biological pathways in the one or more regions. Matching such an image emission pattern may be used for classifying the new multidimensional patient profile.


In some embodiments of the present invention, the source and the reference images are optionally registered and matched according to known registration and matching methods and process. For example, see A. Venot, et al. Automated Correction of Patient Motion and Gray Values Prior to Subtraction in Digitized Angiography, IEEE Transactions on Medical Imaging, vol. MI-3, no. 4, 1984, pp 179-186; G. Malandain et al., Matching of 3D Medical Images with a Potential Based Method, IRIA, no. 1890, 1993, pp 1-37; L. R. Schad, et al., Three Dimensional Image Correlation of CT, MR, and PET Studies in Radiotherapy Treatment Planning of Brain Tumors, Journal of Computer Assisted Tomography, vol. 11, no. 6, 1987, pp 948-954; B. L. Holman, R. E. Zimmerman, et al., Computer-Assisted Superimposition of Magnetic Resonance and High-Resolution Technetium-99m-HMPAO and Thallium-201 SPECT Images of the Brain, The Journal of Nuclear Medicine, vol. 32, no. 8, 1991, pp 1478-1484; B. A. Birnbaum et al. Diagnosis with Fusion of MR, CT, and Tc-99m-labeled Red Blood Cell SPECT Images, Radiology, vol. 181, no. 2, 1991, pp 469-474, which are incorporated herein by reference.


Optionally, the new multidimensional patient profile 104 and the plurality of multidimensional patient profiles 105 include an electrophysiological reading that measures an electrical activity of one or more tissues of the related patient along a period. Optionally, the electrophysiological reading includes one or more electrophysiological readings, such as electrocardiography reading, electroencephalography reading, electrocorticography reading, electromyography reading, electrooculography reading, electroretinography reading, and electroantennography reading.


Optionally, the matching between the new multidimensional patient profile 104 and the plurality of multidimensional patient profiles 105 may include an additional or an alternative phase of matching between electrophysiological readings. Such a matching allows the user to identify a matching set that includes multidimensional patient profiles that have electrophysiological readings, which are substantially similar to the electrophysiological readings of the probed patient.


It should be noted that an arrhythmia, such as atrial fibrillation, one or more ectopic regions in the heart, an ischemia, changes in existence of biochemical channels which are part of the electrical conduction system, for example connexin-42, and/or changes in the activity and/or concentration of intracellular and intercellular calcium handling proteins, usually have a known electrocardiography reading pattern.


The aforementioned matching allows the detection of a matching set of multidimensional patient profiles that have a common electrophysiological reading with the new multidimensional patient profile. Such a common electrophysiological reading may be used for classifying and/or diagnosing the new multidimensional patient profile and/or alarming the user of the matching system 100 about a possible detection of one or more pathologies which have been identified in members of the matching set.


In one embodiment of the present invention, the source and at least some of the reference images are four-dimensional (4D) medical images of an organ, such as the heart. A 4D medical image is a data set composed of a time-series of 3D medical images that reflects the behavior of the depicted tissue during a certain period. In such an embodiment, the reference and the source images, which may also be known as kinetic images, may be correlated before they are matched by the analysis unit 103. Matching a 4D medical image may be important in organs such as the heart wherein the shape of the organ substantially change over time and can provide information about the pathological level thereof.


In such an embodiment, the matching that is performed by the analysis unit 103 may be performed with respect to the time domain. Such systems, methods, and associated tools may be applied to cardiology, oncology and brain imaging with novel imaging systems, including for example with the nuclear imaging technology presented by Spectrum Dynamics in International Application No. WO2006/051531 published on 18 May 2006 that is incorporated herein by reference.


As described above, each one of the multidimensional patient profiles 104, 105 may comprise medical information, such as medical history, about a related patient. Such information, as described above, may comprise personal information about the patient, such as his or her age, gender, and physical condition at the time the scan has been held. As the differences between biological indications of patients with different medical condition and/or history are substantial, such information may be important, in some embodiments, in order to output efficient recommendation, treatment guidelines, or matching set that can be used by the physician, optionally as described below. For example, it is clear that low red and/or white blood cell count has different meaning if the patient is treated with chemotherapy for cancer or not.


Optionally, an initial diagnosis, which is performed by an agent or attached to the new patient profile, is also included. Such medical information may also be used as another dimension in the multidimensional patient profile 104 for the analysis of the source image, as described below.


Optionally, the matching that is performed by the analysis unit 103 is based on processing the data in the multidimensional patient profiles 104, 105. Optionally, the analysis unit 103 processes the data in order to detect interactions and/or complex biological processes that may last for a certain period. For example, the analysis unit 103 may correlate between a timeline that describes the variability of one or more biological and/or pathological indications in the new patient profile and a respective timeline in the multidimensional patient profile which are hosted in the reference patient database.


Optionally, the measuring includes applying one or more of a variety of statistical and network analysis techniques to one or more dimensions of the multidimensional patient profile. Such an analysis may include an analysis of gene expression, proteomics, transcriptomics, gene regulatory network, metabolic pathways, and/or cellular signaling. For example, the analysis unit 103 may measure an absolute concentration of proteins and/or messenger ribonucleic acid (RNA) of a specific type and a specific state, such as phosphorylated mRNA, glycated mRNA, and various protein conformations. The detected and/or measured data is matched with respective interaction and/or measurements in the multidimensional patient profiles 105 of the reference patient database 102.


In such an embodiment, a multidimensional patient profile includes sequential data of biological activities that is optionally based on dynamic and/or static properties of one or more tracers. The biological activities may have time dependency among them. For example, an uptake of one tracer that is followed by an uptake of a subsequent uptake of another tracer may be indicative to the existence of a time-dependency between two biological activities and potentially to the understanding that one biological activity is the cause and/or a part of the cause of another biological activity and may be associated with a certain pathological indication of the patient. Optionally, the data in the reference patient database 102 is arranged in data tables, which support the aforementioned measurements and interactions.


Optionally, the reference patient database 102 hosts at least 5,000 multidimensional patient profiles. Each one of the multidimensional patient profiles comprises information about the patient from various evaluation and imaging systems and agents, such as one, two, three, four or more of epidemiologic, genetic, functional, chemical, and treatment related information. Matching the new multidimensional patient profile 104 with the multidimensional patient profiles 105 may yield one or more matching sets. Each member of a certain matching set has a combination of biological activities and/or indications that is common to all the members of the certain matching set. The relation between the biological activities and/or indications in this combination may not be obvious to the common physician or even known from the medical literature. Thus, the matching system 100 that optionally automatically match between the new multidimensional patient profiles 104 and the multidimensional patient profiles 105 can detect combinations that include relations between various biological activities which are not obvious or known to the agent that diagnoses the patients with the new multidimensional patient profiles 104.


As the matching is performed with a large scale of multidimensional patient profiles, fuzzy logic methods may be used for identifying the matching set. As commonly, known fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate rather than precisely deduced from classical predicate logic, see Klir, George J.; St Clair, Ute H.; Yuan, Bo (1997). Fuzzy set theory: foundations and applications. Englewood Cliffs, N.J.: Prentice Hall. ISBN 0133410587 and Klir, George J.; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and applications. Upper Saddle River, N.J.: Prentice Hall PTR. ISBN 0-13-101171-5, which are incorporated herein by reference.


As described above and shown at 204, after the source image is received at the analysis unit 103, a matching set of the reference images is identified by matching between the plurality of the first and second biological activity indications. Optionally, the matching is performed between predefined ranges which are set around the values given at the multidimensional patient profile 104. As described above, the multidimensional patient profile 104 comprises different values that represent medical information and biological indications which are related the patient. In such an embodiment, as the matching is between predefined ranges and not according to discrete values the intersecting group may include profiles of patients which are not exactly as the profile of the current patient.


Optionally, the matching of each one of the values and/or the ranges of the patient profile is weighted according to an estimation that reflects the importance. For example, a potential relevance between biological indications such as hemoglobin, hematocrit, and/or iron level measurements may receive a higher weight than the weight that is given to the height or the gender of the patient.


Optionally, a weight is given to a ratio or any other function that is based on a number of values and/or the ranges of the patient profile. For example, the ratio of hemoglobin weight to hematocrit is given with a high weight. Such a ratio distinguishes the normally colored cells from paler cells to classify different anemias and aid in determining cause.


Optionally, the weights are dynamic and depend on other values such as the treatment that is given to the patient, the age of the patient, his medical history, and/or his medical condition.


As shown at 204, after the matching set has been identified it is used for image data acquisition, diagnosis of the source image, calculation of treatment guidelines, and/or classification of the source image. The matching set may comprise multidimensional patient profiles of patients with similar biological activities and/or indications that receive successful treatments and with multidimensional patient profiles of patients with similar biological activities and/or indications that receive unsuccessful treatments. Such matching sets may be useful for allowing the physician to select one or more method of treatments, to optimize and/or to reduce the radiation doses to which the patient is exposed, and to optimize and/or to reduce a medicament dose that the patient receives.


Optionally, a reference patient database 102 with more dimensions allows the matching of more combinations of different dimensions and/or interactions between different biological activities. Such a matching may be used for detecting combinations and interactions, which are not intuitive or based on the known studies and/or tests. Such a multidimensional data analysis may be performed using differential equations and/or control theory methods, as applicable to dynamic systems such as a biological entity, for example the human body.


As described above, the matching system 100 is designed to receive a source image and optionally medical information from an imaging system and/or a storage system and to match it with the reference images and/or other records of the reference patient database 102. As the functional image is optionally matched with large scale of multidimensional patient profiles and optionally processed and analyzed for the identification of complex biological processes that may last for a certain period, the quality of thereof may be relatively low, for example a functional image with high levels of noise. Optionally, the matching system 100 allows using imaging cameras with a relatively low number of detectors, such as a hand-held imaging camera that is designed for capturing images during a data-responsive scanning, to perform a real time reconstruction, and to determine in real time whether additional data is needed to achieve a match, as described above.


Optionally, the analysis unit 103 uses information that is found in the matching set to complete, to denoise, to calibrate, and/or to change areas in the received source image.


It should be noted that using such a matching system 100 may assist particularly in standardizing the analysis of functional images and generally in standardizing the analysis of multidimensional patient profiles. As commonly known, not all the physicians have a common set of guidelines for diagnosing a functional image or many other variants of a patient profile. For example, while a certain physician checks the hippocampus region for diagnosing early Alzheimer's dementia, another physician may check other regions of the brain, such as the medial temporal lobes and the anterior cingulate. In particular, such the matching system 100 may be used for assuring that certain biological activities and indications are probed whenever a functional image or any other variant of a patient profile is diagnosed and/or classified by a physician, such as a general radiologist.


Optionally, the reference patient database 102 is used by the analysis unit 103 for classifying pathological indications that have more than one visible and/or measurable characteristics and not a clear surrogate marker. Optionally, the reference patient database 102 may be used for detecting and/or anticipating the occurrence of a heart failure. Such a detection and/or an anticipation may by based on various biological activities which are documented in the multidimensional patient profiles, including but not limited to echocardiography, blood tests, cardiac mapping, which is optionally isotope based, anatomical information, for example from CT and/or angiography procedures, quality of life questionnaires, electrophysiology parameters, etc.


In one embodiment of the present invention, the matching system 100 is used for solving an inherent problem of the SPECT image analysis. A 3D imaging system, such as SPECT system, assesses a relative decrease in the uptake of a tracer in a certain region by comparing the uptake thereof with the uptake of other regions. The uptake is determined according to the rate of reduction in the emission flow. Such a comparison may be used for detecting regions with stenosis that is relatively high in relation to other regions. It is more difficult, and sometimes impossible, to detect milder stenosis in other regions of the functional image. As described above, the analysis unit 103 is designed for matching a SPECT image with other images. In such an embodiment, each region in the image is compared with respective regions in other SPECT images. In such a manner, the uptake of one region is matched against the uptake in a respective region and not against the uptake of other regions in the same image. Such a matching may provide pathological information that would have gone unnoticed in a commonly used diagnosis. It should be noted that a comparison, such as the aforementioned comparison, is between absolute values taken from respective regions and therefore provide a more accurate outcome than the commonly practiced comparison that is performed between relative values taken from different, unrelated regions.


Reference is now also made to FIG. 3, which is a schematic illustration of a distributed matching system 100 for analyzing a medical image and/or a map of one or more tissues, according to one embodiment of the present invention. The matching system 100 comprises the input unit 101, the reference patient database 102, and the analysis unit 103 which are depicted in FIG. 1. However, in FIG. 3, the system is a distributed system that comprises a number of input units 101 and optionally a distributed reference patient database 102. In such an embodiment, each input unit 101 may be installed or accessed via a different client terminal, such as a personal computer, a Smartphone, a personal digital assistant (PDA), and a laptop. The input units 101 are connected, via a computer network 200, such as the Internet, to the reference patient database 102. The reference patient database 102 is optionally distributed among a plurality of different storage devices, such as a plurality of servers 102. The input units 101 and the storage devices of the distributed reference patient database 102 are connected to the analysis unit 103 via the computer network 200.


In such an embodiment, each one of the client terminals 101 may be used for adding a new patient profile 104 to the reference patient database 102 and/or for forwarding it to the analysis unit 103 for analysis, for example as further described above.


Optionally, the matching system 100 is connected to one or more user interfaces (UIs), which are optionally installed in one or more of the client terminals 101. Each UI allows one or more of the users to extract statistical information from the reference patient database 102. Such a UI may be used for producing improved understanding of the biological processes. Optionally, the UI allows the user to identify and to analyze biological pathways, cell processes, and cellular circuits based on the match between the new multidimensional patient profiles 104 and the multidimensional patient profiles 105.


Optionally, the UI is designed to display the output of the analysis unit 3. Optionally, the analysis unit 3 outputs a list of the matching multidimensional patient profiles. Optionally, the list is sorted according to the potential relevancepotential relevance values of the matching multidimensional patient profiles.


As described above, the new multidimensional patient profiles 104 may be matched with a matching set that comprises multidimensional patient profiles, which have been classified as having biological activities and/or indications of one or more pathological diagnosis. Optionally, the analysis unit 103 generates a complete tree of the one or more pathological diagnosis and/or one or more suggested treatments for each one of the pathological diagnosis and forward it for a display at the client terminal from which the new multidimensional patient profiles 104 have been received. Optionally, the tree is weighted according to the prevalence of a certain match and/or the prevalence of a certain diagnosis in the matched multidimensional patient profiles.


In such a manner, the physician receives a graphical display, such as a tree, optionally weighted, of possible diagnosis and suggested treatments. As described below, the suggested treatments may also be weighted, shown the physician the statistic of the treatment success.


As depicted in FIG. 3, the matching system 100 comprises a plurality of distributed client terminals, which are optionally located in different locations, for example in different diagnostic imaging centers (DICs). In such a manner, the system allows physicians and researchers from different locations to use the same analysis unit 103 and the same reference patient database 102 for diagnosing and/or classifying a new functional image and/or a new multidimensional patient profile. The system assures that these functional images and/or new multidimensional patient profiles are matched against the same multidimensional patient profiles, regardless to their origin.


Optionally, as described above, the matching system 100 is used as a research tool. Optionally, the UI allows a user to define search indicia with one or more and/or biological activities or expressions thereof. The UI instructs the analysis unit 103 to search for a match between the search indicia and the plurality of multidimensional patient profiles. Such a research tool 100 may be used for improving the understanding of the biological processes which are defined in the search indicia.


Optionally, the research tool 100 allows the user to define a genetic population, an environment, an age, a gender, a medical condition, etc. In such a manner, the user may define a test group for an experiment. Optionally, the research tool 100 allows users to upload data of test groups, which have been used in a certain experiment and/or study. In such a manner, an outcome of a future experiment, such as a sequential experiment, can be easily compared with the uploaded data of any test group. As the uploaded data is related to a number of different trials and studies, the analysis unit 103 may combine the results of several studies that address a set of related research hypotheses, generating a match, a classification, an alarm, or a diagnosis that is based on a meta-study, in which as many patients as possible participates.


As, in some embodiments of the invention, the reference patient database 102 is greater than 500,000, 1,000,000, 10,000,000, 100,000,000, 1,000,000,000, or intermediate values, numerous control and/or test groups may be defined for supporting specific combination of biological activities and/or medical information. For example, where A, B, and C denote different tracers, the matching system 100 may support a combination of an analysis with two tracers A+B, a combination with two tracers A+C, and a combination with two tracers B+C. As the number of potential tracers expands, more combinations may be possible and the number of documented pathologies increases. It should be noted that such an embodiment may be used for reducing the radiation to which a patient is exposed during a diagnosis process. The analysis may allow a physician to diagnose a biological activity based on a match with multidimensional patient profiles that has the same combination of tracers as the new multidimensional patient profile, and not based on the injection and the imaging of one or more additional tracers.


Optionally, the matched matching set is used by the physician to determine which additional examination is needed. As described above, the matching set includes patient profiles that have one or more characteristics, such as biological indications and/or medical information, in common with the profile of the patient. A segmentation of the matching set's members according to characteristics thereof, which are not in common with the characteristics of the new patient profile, can indicate which additional data is needed in order to evaluate more accurately which treatment should be given to the new patient. For example, if one segment of the matching set includes patent profiles of members with an indication of normal hemoglobin and non-pathologic diagnosis and another segment of the matching set includes patent profiles of members with an indication of low hemoglobin and a pathologic diagnosis the physician receive an indication that an hemoglobin level test is needed in order to diagnose the new patient more accurately.


Optionally, the matching system 100 is used as an adaptive system for instructing an agent during a medical operation. In such an embodiment, the agent constantly updates and/or reenters the new patient profile that is matched by the matching system 100. The matching system 100 reanalyzes the updated new patient profile and provides the physician with a new, optionally more accurate, matching set and/or treatment recommendation. In such a manner, a physician may use the matching system 100 to predict the outcome of possible outcomes of different operational actions during a medical operation.


It should be noted that matching the new multidimensional patient profile 104 with records of a database that hosts thousands of multidimensional patient profiles can substantially reduce the standard deviation of the matching set. The more multidimensional patient profiles are stored in the database the more the members of the matching set have in common with the new multidimensional patient profile 104. The reference patient database 102 comprises data that describes and/or depicts pathological biological activities and/or indications optionally in association with medical information. These records allow identifying a matching set that has members having one or more common characteristics with the new multidimensional patient profile 104. Such one or more common characteristics may not be clear or known from the known studies and/or tests. The matching is done between absolute values and based on real data that is taken from real patients and not based on processed models that usually cannot accurately reflect dynamic statistical data that is optionally constantly changed and updated with new records.


For example, the reference patient database 102 is uploaded with data collected from trials that has been performed by imaging simultaneously or sequentially a large variety of tracers, which may be referred to as a cocktail, trials that has been performed on different populations, and trials that has been performed on patients with medical information. Such data may be collected either from various studies or during the ordinary course of practicing medicine.


In such a manner, the accuracy of the matching substantially increases. If, for example, an uptake of a tracer is an indication of a certain biological activity has a specificity of ˜10%, the matching of the uptake of more tracers can provide a higher specificity of ˜1%.


Optionally, the reference patient database 102 is connected to other medical databases and can match between the multidimensional patient profiles and records from the other medical databases. Optionally, a multidimensional patient profile may be based on data from other medical databases.


In an exemplary embodiment of the invention, a system is provided to store and analyze all such data. It should be noted that such an uploaded data may be used for analysis, classification, alarming, and/or diagnosing, optionally as described above, and not only for research.


Optionally, the multidimensional patient profiles comprise a status record that describes the health of the related patient. If the patient has been diagnosed by the matching system 100 and/or by a physician as unhealthy patient, the status record may define an impairment of health or a condition of abnormal functioning of the patient or of one or more of the patient tissues. The multidimensional patient profiles comprise a record that describes and/or defines the treatment the patient received and a value, such as a weigh value, that defines the effectiveness of that treatment. Optionally, the analysis unit 103 is designed to suggest a therapy to the patient with is documented in the new multidimensional patient profile. In such an embodiment, the analysis unit 103 identifies a matching set of members having one or more dimensions in common with the new multidimensional patient profile. The dimensions may be medical information and/or a topological potential relevance between related functional images, optionally as described above: Optionally, the analysis unit 103 identifies which therapy has been used most successfully for recovering the members matching set, optionally using the aforementioned weight, and output a therapy suggestion or a list of weighted therapy suggestions based thereupon. Optionally, the analysis unit 103 outputs the list of weighted therapy suggestions and/or the members of the intersecting list to a display at the client terminal from which the functional image and/or the new multidimensional patient profile has been received.


It should be noted that though the multidimensional patient profiles 104, 105 may comprise information about the diagnosis that defines the impairment of health or the condition of abnormal functioning of the patient, the analysis unit 3 may ignore that information. In such a manner, the analysis unit 103 may output a therapy suggestion or a list of weighted therapy suggestions based on medical measurements only, without combining any opinions and/or conclusions of physicians or the like.


Optionally, a dimension of the multidimensional patient profiles 104, 105 is weighted. In such a manner, common parameters may effect the suggestion according to a weight that is associated therewith.


As described above, the system allows the matching of multidimensional profiles. Such a matching may require high computational complexity. In order to provide a short response time for analyzing, classifying, and/or diagnosing requests, the aforementioned matching is performed using a processing unit that has improved processing abilities in relation to the local processors of each one of the client terminals. Optionally, the central processing unit includes multiple processing units that combines a tightly coupled parallel architecture and/or in a loosely coupled distributed architecture.


Optionally, the response time of the central processing unit allows the matching of between the source image and the reference images and/or the new multidimensional patient profile 104 and the records of the reference patient database 102 in real time. In order to provide such a response rate, the multiple processing units may be processors with high processing capacity. Optionally, the multiple processing units are adapted to access large amounts of data. Optionally, each one of the multiple processing units has a multiple data bus, preferably 64-bit or 128-bit processing power, an arithmetic logic unit (ALU), and wide range of fast I/O channels.


Optionally, the system comprises a maintenance module that includes a control mechanism for data quality and data management in order to assure the reliability and availability of the reference patient database 102. Optionally, the maintenance module assures that the records of the reference patient database 102 are kept confidential, inter alia, in order to assure the privacy of the documented patient. Optionally, the maintenance module scores the quality of each record or batch of records that are uploaded to the reference patient database 102.


As described above, the input unit 101 optionally receives a source image that comprises a functional image, as shown at 104, and forwards it for processing by the analysis unit 103 in real time. In one embodiment of the present invention, the matching system 100 is used for allowing an imaging system to have active vision. As used herein, an imaging system with active vision means an imaging system that is able to interact with the imaged scene by altering its viewpoint rather than passively observing it, and by operating on sequences of images rather than on a single frame.


Reference is now made to FIG. 4, which is a flowchart for using the aforementioned matching process for refining the functional image, for example using an active vision method, according to one embodiment of the present invention. Optionally, blocks 201-204 are similar to the blocks described in FIG. 2. However, FIG. 4 further depicts blocks 401-404 and the received source image comprises 401 is a preliminary functional image and not a final functional image. As depicted, after the received preliminary image is received, a matching set is identified, optionally as described above. Then, as shown at 204, a recommendation and/or is calculated and used for refining the image and/or a diagnosis that is based on the recommendation, as shown at 402. As shown at 403, the depicted process is repeated as long as the refined image and/or the patient profile diagnosis are not final or for a predefined number of iterations. Optionally, an image is classified as final according to user instructions, the identification of a matching set having a predefined size, and the like.


Optionally, such a process is used for repositioning the radiation detectors of the imaging system or determining the scanning pattern thereof, thereby improving the acquisition of parameters such as energy resolution, field of view, and/or scan pattern. The matching set, which is produced by the analysis unit 103, comprises a number of images that depicts respective tissues and optionally neighboring tissues. These images depict areas in which there may be irregular biological indications and/or pathological indications. Optionally, the analysis system identifies these irregularities by matching the members of the matching set with a model of a normal image and directs the radiation detectors of the imaging system toward these areas.


Optionally, such a process may be used for generating a continuous motion or step-wise motion for a set of detectors. As described above, the preliminary functional image is matched with a plurality of reference images. Such a matching may reduce the amount of radiation to which a patient is exposed, optionally by reducing the size of the area that is imaged. For example, if the matching set comprises one or more reference images with a certain pathological indication in a certain area, the analysis unit 103 outputs a refinement recommendation that directs the detectors toward another area that allows the analysis unit 103 to determine how to diagnose the pathological indication.


Optionally, a certain area is imaged using a limited number of detectors that sequentially scan sub-areas thereof In such an embodiment, the preliminary functional image, which is received at 202, is an image of one of the sub-areas. By analyzing the acquire data at a certain given time point, the matching set is used as shown at 203 and the next sub-area to be scanned is defined for the next time point. Such a closed loop imaging may be performed in a magnitude of scale of minutes, seconds, and fractions of seconds, such as 1/100th or 1/1000th of a second. Such an embodiment allows the detection of an onset of a biological activity, such as an arrhythmia or a brain activity, and may be used for adapting the scanning pattern according to the propagation and development of the onset.


In order to facilitate such an active vision, the reference images may include preliminary functional images, which are partially reconstructed images that have been taken during the acquisition thereof and/or of one or more segments of a certain area which is respective to the probed area.


Such an embodiment allows the imaging of a complex static scene in nonuniform resolution, thereby reduces the computational complexity of the imaging.


As described above, the process that is depicted in FIG. 4 allows refining the final functional image, according to one or more preliminary functional images. Such a refinement may be understood reconstructing certain regions of interest (ROIs) of the final functional image to higher resolution and other ROIs to lower resolution, thereby reducing the scanning time and/or the radiation dosages. It should be noted that resolution may be understood as a spatial resolution, a temporal resolution or both. The functional image reconstruction may require an analysis of intensities or other parameters which are associated with intensities in a high numbers of variables.


Optionally, the reconstruction is performed in a voxel-by-voxel approach. The reconstructed variables are analyzed, fixed, and then further analyzed in a set of repeated steps, for example as depicted in FIG. 4. A sub-group of voxels is selected, the voxels' values are refined, and the process is reiterated with other sub-group. In an exemplary embodiment of the invention, this approach is implemented using a parallel processing architecture, for example, reconstructing different voxels in parallel.


In an exemplary embodiment of the invention, the refinement recommendation includes instructions that define which ROI to scan next. Optionally, the refinement recommendation is based on an analysis that is provided from a matching set that suggests progression in patients with similar patient profile.


Possibly, the computation power that is used to analyze such a progression in real-time is high and may require a specialized computational system architecture. As described above, the analysis unit 103 may comprise a processing unit that includes multiple high speed CPUs and/or data processing systems (DPSs) that implement multiple data buses and/or 64 bit, 128 bit, and/or stronger CPU architectures.


Optionally, the refinement recommendation may be a selection of a new viewpoint and/or view parameters for one or more of the aforementioned detectors.


Optionally, the reference patient database 102 hosts a probability matrix, such as probability vector that define the probability that a photon emitted from points in space would be detected by the detector for each viewpoint. Such probability matrixes are used as part of the algorithms for estimating the detected photon counts from estimated intensities, and for other algorithmic steps.


Optionally, the reconstruction includes reconstruction of parameters associated with time-varying biological processes. In such an embodiment, some of the processes may require non-linear modeling of the process. In one embodiment, the matching system 100 allows the reconstruction of these parameters in real time, allowing a medical team to diagnose a patient or the progress of a therapeutic procedure immediately.


Optionally, the matching system 100 is designed to optimize the number of views which are necessary to obtain enough information for imaging by identifying when and/or where to acquire a certain preliminary image. As mentioned above, a certain biological activity may be an outcome of another biological activity. In such an embodiment, the biological activities that provide pathological indications may appear in a sequential manner and therefore the ROI should be defined in different locations at different time slots. Furthermore, if the reconstructed parameters are kinetics parameters, such as order of reaction, kinetic rate constant, apparent, intrinsic and diffusional activation energies and activation energy (Ea), the scanning pattern is planned according to an anticipated time curve. Optionally, the anticipated time curve is adjusted in real time.


In an exemplary embodiment of the present invention, the amount and/or complexity of the data that is acquired is reduced to enable easier image processing, image reconstruction, and/or categorization of the disease process. Information maximization and need to reduce complexity of procedure may be addressed in this approach. It may further allow reducing the volume of the relevant and essential data that is needed for making efficient use of resources, such as computational and/or storage resources.


It is expected that during the life of a patent maturing from this application many relevant systems and devices will be developed and the scope of the term a voxel, a pixel element, a patient profile, an imaging device, CT, MRI, and SPECT are intended to include all such new technologies a priori.


The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”. This term encompasses the terms “consisting of” and “consisting essentially of”.


As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.


All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.

Claims
  • 1. A method of medical imaging, comprising: providing a reference database of medical pathology images and information about a plurality of first biological activity indications associated with said respective pathology images;receiving a preliminary nuclear medical image derived from a patient together with information about a plurality of associated second biological activity indications, said preliminary nuclear medical image being a mapping of radiation emitted from a first tracer;identifying a match between one or more images in the reference pathology database and the preliminary medical image using a computing device to compare said plurality of second biological activity indications and one or more of said first biological activity indications;wherein said comparing is performed between predefined ranges which are set around values given at a multidimensional patient profile and wherein said comparing of each one of the values and/or ranges is weighted according to importance; andautomatically generating a recommendation acquisition or further patient images of radiation emitted by a second tracer at locations based on said identified match,wherein each said first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers.
  • 2. The method of claim 1, wherein said received medical image is associated with first medical information related to the current patient, and each said reference medical images are associated with second medical information, said matching comprising matching between said first medical information and said second medical information.
  • 3. The method of claim 1, wherein said received and reference medical images are pixelated.
  • 4. The method of claim 3, at least some pixels of said received pixelated medical image are associated with said plurality of second biological activity indications, at least some pixels of each said pixelated medical image are associated with said plurality of first biological activity indications.
  • 5. The method of claim 1, further comprising preprocessing said received medical image before identification of said one or more matching reference images, said preprocessing comprising a member of a group consisting of: registering said received medical image according to at least one of said reference medical images and de-noising said received medical image.
  • 6. The method of claim 1, wherein each said received and reference medical image is a functional map that that is obtained by one of a group consisting of: a positron emission tomography (PET), a PET—computerized tomography (CT), a single photon emission computed tomography (SPECT), an extracorporeal gamma scan, an extracorporeal beta scan, an intra-corporeal gamma scan, and an intra-corporeal beta scan.
  • 7. The method of claim 1, wherein said recommendation includes a diagnosis of said received medical image determined according to pathology of the identified reference images.
  • 8. The method of claim 1, wherein said reference image database includes more than 1,000,000 medical images derived from a plurality of patients.
  • 9. The method of claim 1, wherein said identification comprises matching topological similarities between said received medical image and at least one of said plurality of reference medical images.
  • 10. The method of claim 1, wherein said identification comprises matching common radiation emission patterns between said received medical image and at least one of said plurality of reference medical images.
  • 11. The method of claim 1, wherein said received medical image and at least one of said plurality of reference medical images are kinetic medical images.
  • 12. The method of claim 1, wherein at least one of said reference medical images is associated with a method of treatment and with a success evaluation thereof for a particular pathology, and further comprising automatically outputting a treatment recommendation according to a pathology associated with one or more of the identified reference images.
  • 13. The method of claim 1, further comprising identifying a plurality of biological pathways in said received and reference medical images respectively according to said first and second plurality of biological activity indications, wherein identification of said matching reference images is based on matching said plurality of biological pathways.
  • 14. The method of claim 1, wherein said reference and received images are processed in real time.
  • 15. The method of claim 1, wherein at least one of said plurality of medical images and said received medical image are of the patient.
  • 16. A method according to claim 1, wherein at least one of said first biological activity indication and at least one of said second biological activity indications are the same.
  • 17. A method according to claim 1, wherein at least one of said first biological activity indication and at least one of said second biological activity indications are different.
  • 18. A method according to claim 1, wherein said plurality of medical images are images of a plurality of patients.
  • 19. A method according to claim 1, further including acquiring at least one additional image of the patient based on the recommendation.
  • 20. An imaging system for capturing a medical image of at least one tissue of a patient, comprising: at least one nuclear emission detector for obtaining a source medical image of the patient associated with at least one first biological activity indication;a computer database configured for storing a plurality of reference medical pathology images including images corresponding to a plurality of pathologies, each with an associated second biological activity indication; anda computing device configured to provide image processing of the reference and source images and to identify one or more reference images matching said source medical image by comparing said first and second biological activity indications;wherein said comparing is performed between predefined ranges which are set around values given at a multidimensional patient profile and wherein the comparing of each one of the values and/or ranges is weighted according to importancesaid computing device being further configured to provide an output for instructing image data acquisition performed by said at least one detector according to said identified matching set,wherein said source medical image is a preliminary image mapping radiation emitted from a first tracer and said output unit provides a recommendation for a protocol of image acquisition of radiation emitted by a second tracer based on said identified matching set,wherein each said first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers.
  • 21. The system of claim 20, wherein said source medical image depicts a segment of a requested area, said output instructing the maneuvering said at least one detector to capture an additional segment of said requested area according to said matching.
  • 22. The system of claim 20, wherein said detector comprises a radiation transmitting unit for emitting radiation toward said segment, and said output instructs adjusting the intensity of said emitted radiation according to said identified matching images.
  • 23. The system of claim 20, wherein said detector is configured for obtaining said medical image, by a first modality, selected from the group consisting of a single photon emission computed tomography (SPECT) unit, a positron emission tomography (PET) unit, an extracorporeal, hand-held gamma scan unit, an extracorporeal unit, hand-held beta scan, an intra-corporeal gamma scan, an intra-corporeal beta scan, an intravascular gamma scan, and an intravascular beta scan.
  • 24. A system according to claim 20, wherein at least one of said first biological activity indication and at least one of said second biological activity indications are the same.
  • 25. A system according to claim 20, wherein at least one of said first biological activity indication and at least one of said second biological activity indications are different.
  • 26. A system according to claim 20, wherein said plurality of reference medical images are images of a plurality of patients.
  • 27. A method for obtaining a medical image of at least one tissue of a patient, comprising: receiving a preliminary nuclear medical image associated with at least one first biological activity indication, said preliminary nuclear image mapping radiation received from a first tracer;matching between said at least one first biological activity and a plurality of respective biological activities associated with a reference pathological medical image using a computing device;wherein said matching is performed between predefined ranges which are set around values given at a multidimensional patient profile, and the matching of each one of the values and/or ranges is weighted according to importance andoutputting a recommendation for a protocol of further image acquisition from said patient of radiation emitted by a second tracer based on said matching,wherein each said first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers.
  • 28. The method of claim 27, further comprising: d) obtaining said additional preliminary medical image according to said instructions; ande) combining said preliminary medical images producing a final medical image.
  • 29. The method of claim 28, further comprises repeating b)-e), wherein said at least one first biological activity are taken from said final medical image.
  • 30. The method of claim 27, wherein said recommendation comprises a member of a group comprising: an identifier defining which tracer to use during said obtaining, an identifier defining in which concentration to use a tracer during said obtaining, a point of view of at least one detector which is used for said obtaining, a region of interest to be imaged during said obtaining, and refining said preliminary medical image.
  • 31. A method according to claim 27, wherein at least one of said first biological activity indication and at least one of said respective biological activities are the same.
  • 32. A method according to claim 27, wherein at least one of said first biological activity indications and at least one of said respective biological activities are different.
  • 33. A method according to claim 27, wherein said reference medical images are images of a plurality of patients.
  • 34. A method for calculating a treatment recommendation, comprising: a) managing a plurality of patient profiles each being associated with a plurality of patient medical records, at least one treatment, and an outcome evaluation of said at least one treatment;b) receiving a current patient profile being associated with a plurality of related medical records from an image mapping nuclear radiation received from a first plurality of tracers;c) identifying a matching set of said managed patient profiles by matching between said plurality of patient and related medical records;wherein said matching is performed between predefined ranges which are set around values given at a multidimensional patient profile, and the matching of each one of the values and/or ranges is weighted according to importance andd) calculating a medical recommendation for a protocol of image acquisition from second plurality of tracers based on to said at least one treatment of members of said matching set,wherein each said first and second plurality of biological activity indications comprises an uptake level of radiation emitted from plurality of tracers.
  • 35. The method of claim 34, wherein each said patient profile having a medical image, each said medical image being associated with a plurality of biological activity indications, said identifying comprising identifying said matching set by matching between biological activity indications of said current patient profile and said plurality of patient profiles.
  • 36. The method of claim 34, wherein at least some of said plurality of patient medical records are associated with a time tag indicating a related occurrence or examination time.
  • 37. The method of claim 34, wherein each said at least one treatment is associated with a reliability score, said calculating comprising calculating said medical recommendation according to said reliability score of members of said matching set.
  • 38. The method of claim 34, wherein each said patient profile is associated with a current treatment record, said identifying comprising identifying said matching set by matching between current treatment records of said current patient profile and of said plurality of patient profiles, said medical recommendation comprising a continuation treatment for said current patient profile.
  • 39. The method of claim 38, wherein said current treatment record profile is associated with a respective outcome evaluation.
  • 40. The method of claim 38, further comprising: e) updating said current treatment record of said current patient profile with said medical recommendation and said respective outcome evaluation with an outcome of a respective treatment; andf) repeating a)-d) wherein said current treatment record is said updated current patient profile and said respective outcome evaluation is said outcome of a respective treatment.
  • 41. The method of claim 40, wherein said medical recommendation is a medical recommendation of a phase in an ongoing treatment and said outcome is a current outcome of said phase, said updating and repeating are performed during said ongoing treatment.
  • 42. The method of claim 34, wherein said medical recommendation comprises a request for an additional evolution, further comprising: e) updating at least one of said plurality of patient medical records with said additional evolution; andf) repeating a)-d) wherein said current patient profile being updated with said additional evolution.
  • 43. A method of medical imaging comprising: providing a reference database of medical pathological images of a plurality of patients, and information about a plurality of first biological activity indications associated with said respective reference imagesreceiving a preliminary nuclear medical image derived from a current patient with information about at least one of a plurality of associated second biological activity indications; identifying a match between one or more images in the reference database and the preliminary nuclear medical image using a computing device by comparing said plurality of second biological activity indications and one or more of said first biological activity indications; and using said matched images for further image data acquisition from said current patient,wherein said comparing is performed between predefined ranges which are set around values given at a multidimensional patient profile, and each one of the values and/or ranges is weighted according to importance, andwherein each said first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers.
  • 44. An imaging system for capturing a medical image of at least one tissue of a patient, comprising: at least one radiation detector for obtaining a source nuclear medical image of a current patient associated with at least one first biological activity indication;a computer database configured for storing a plurality of reference medical pathology images derived from a plurality of patients, each image being stored with at least one associated second biological activity indication;image processing circuitry operative to analyze said source medical image, and to identify one or more reference medical images matching the source medical image according to said at least one first and second biological activity indications,wherein said analyzing is performed between predefined ranges which are set around values given at a multidimensional patient profile, and each one of the values and/or ranges is weighted according to importance; andan output circuit operable to instruct image data acquisition performed by said at least one detector according to said matching set,wherein each said first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers.
  • 45. A method for obtaining a medical image of at least one tissue of a current patient, comprising: receiving a preliminary nuclear medical image of a current patient associated with at least one first biological activity indication;identifying a match between said at least one first biological activity and one or more biological activities respectively associated with a plurality of reference pathological medical images, said reference images comprising images of a plurality of patients;wherein said identifying is performed by matching predefined ranges which are set around values given at a multidimensional patient profile, each one of the values and/or ranges is weighted according to importance, and each said first and second plurality of biological activity indications comprises an uptake level of radiation emitted from a plurality of tracers andoutputting instructions for obtaining an additional medical image of said current patient according to said matching.
RELATED APPLLICATIONS

The application is a National Phase Application of PCT Patent Application No. PCT/IL2007/001588 having International Filing Date of Dec. 20, 2007, which claims priority from U.S. Provisional Application No. 60/875,833, filed on Dec. 20, 2006. The contents of the above Application are all incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IL2007/001588 12/20/2007 WO 00 1/12/2010
Publishing Document Publishing Date Country Kind
WO2008/075362 6/26/2008 WO A
US Referenced Citations (767)
Number Name Date Kind
630611 Knapp et al. Aug 1899 A
2776377 Anger Jan 1957 A
3340866 Nöller Sep 1967 A
3446965 Ogier et al. May 1969 A
3535085 Shumate et al. Oct 1970 A
3684887 Hugonin Aug 1972 A
3690309 Pluzhnikov et al. Sep 1972 A
3719183 Schwartz Mar 1973 A
3739279 Hollis Jun 1973 A
3971362 Pope et al. Jul 1976 A
3978337 Nickles et al. Aug 1976 A
3988585 O'Neill et al. Oct 1976 A
4000502 Butler et al. Dec 1976 A
4015592 Bradley-Moore Apr 1977 A
4055765 Gerber et al. Oct 1977 A
4061919 Miller et al. Dec 1977 A
4095107 Genna et al. Jun 1978 A
4165462 Macovski et al. Aug 1979 A
4181856 Bone Jan 1980 A
4278077 Mizumoto Jul 1981 A
4289969 Cooperstein et al. Sep 1981 A
4291708 Frei et al. Sep 1981 A
4296785 Vitello et al. Oct 1981 A
4302675 Wake et al. Nov 1981 A
4364377 Smith Dec 1982 A
4383327 Kruger May 1983 A
4476381 Rubin Oct 1984 A
4503331 Kovacs, Jr. et al. Mar 1985 A
4521688 Yin Jun 1985 A
H12 Bennett et al. Jan 1986 H
4580054 Shimoni Apr 1986 A
4595014 Barrett et al. Jun 1986 A
4674107 Urban et al. Jun 1987 A
4679142 Lee Jul 1987 A
4689041 Corday et al. Aug 1987 A
4689621 Kleinberg Aug 1987 A
4709382 Sones Nov 1987 A
4710624 Alvarez et al. Dec 1987 A
4731536 Rische et al. Mar 1988 A
4773430 Porath Sep 1988 A
4782840 Martin, Jr. et al. Nov 1988 A
4791934 Brunnett Dec 1988 A
4801803 Denen et al. Jan 1989 A
4828841 Porter et al. May 1989 A
4834112 Machek et al. May 1989 A
4844067 Ikada et al. Jul 1989 A
4844076 Lesho et al. Jul 1989 A
4853546 Abe et al. Aug 1989 A
4854324 Hirschman et al. Aug 1989 A
4854330 Evans, III et al. Aug 1989 A
4867962 Abrams Sep 1989 A
4893013 Denen et al. Jan 1990 A
4893322 Hellmick et al. Jan 1990 A
4919146 Rhinehart et al. Apr 1990 A
4924486 Weber et al. May 1990 A
4928250 Greenberg et al. May 1990 A
4929832 Ledly May 1990 A
4938230 Machek et al. Jul 1990 A
4951653 Fry et al. Aug 1990 A
4959547 Carroll et al. Sep 1990 A
4970391 Uber, III Nov 1990 A
4995396 Inaba et al. Feb 1991 A
5014708 Hayashi et al. May 1991 A
5018182 Cowan et al. May 1991 A
5032729 Charpak Jul 1991 A
5033998 Corday et al. Jul 1991 A
5039863 Matsuno et al. Aug 1991 A
5042056 Hellmick et al. Aug 1991 A
5070877 Mohiuddin et al. Dec 1991 A
5070878 Denen Dec 1991 A
5088492 Takayama et al. Feb 1992 A
5115137 Andersson-Engels et al. May 1992 A
5119818 Carroll et al. Jun 1992 A
5132542 Bassalleck et al. Jul 1992 A
5142557 Toker et al. Aug 1992 A
5145163 Cowan et al. Sep 1992 A
5151598 Denen Sep 1992 A
5170055 Carroll et al. Dec 1992 A
5170439 Zeng et al. Dec 1992 A
5170789 Narayan et al. Dec 1992 A
5196796 Misic et al. Mar 1993 A
5210421 Gullberg et al. May 1993 A
5243988 Sieben et al. Sep 1993 A
5246005 Carroll et al. Sep 1993 A
5249124 DeVito Sep 1993 A
5252830 Weinberg Oct 1993 A
5254101 Trombley, III Oct 1993 A
5258717 Misic et al. Nov 1993 A
5263077 Cowan et al. Nov 1993 A
5279607 Schentag et al. Jan 1994 A
5284147 Hanaoka et al. Feb 1994 A
5299253 Wessels Mar 1994 A
5304165 Haber et al. Apr 1994 A
5307808 Dumoulin et al. May 1994 A
5307814 Kressel et al. May 1994 A
5309959 Shaw et al. May 1994 A
5317506 Coutre et al. May 1994 A
5317619 Hellmick et al. May 1994 A
5323006 Thompson et al. Jun 1994 A
5329976 Haber et al. Jul 1994 A
5334141 Carr et al. Aug 1994 A
5349190 Hines et al. Sep 1994 A
5355087 Claiborne et al. Oct 1994 A
5365069 Eisen et al. Nov 1994 A
5365928 Rhinehart et al. Nov 1994 A
5367552 Peschmann Nov 1994 A
5377681 Drane Jan 1995 A
5381791 Qian Jan 1995 A
5383456 Arnold et al. Jan 1995 A
5383858 Reilly et al. Jan 1995 A
5386446 Fujimoto et al. Jan 1995 A
5387409 Nunn et al. Feb 1995 A
5391877 Marks Feb 1995 A
5395366 D'Andrea Mar 1995 A
5396531 Hartley Mar 1995 A
5399868 Jones et al. Mar 1995 A
5404293 Weng et al. Apr 1995 A
5415181 Hofgrefe et al. May 1995 A
5431161 Ryals et al. Jul 1995 A
5435302 Lenkinski et al. Jul 1995 A
5436458 Tran et al. Jul 1995 A
5441050 Thurston et al. Aug 1995 A
5448073 Jeanguillaume Sep 1995 A
5451232 Rhinehart et al. Sep 1995 A
5472403 Cornacchia et al. Dec 1995 A
5475219 Olson Dec 1995 A
5475232 Powers et al. Dec 1995 A
5476095 Schnall et al. Dec 1995 A
5479969 Hardie et al. Jan 1996 A
5481115 Hsieh et al. Jan 1996 A
5484384 Fearnot Jan 1996 A
5489782 Wernikoff Feb 1996 A
5493595 Schoolman Feb 1996 A
5493805 Penuela et al. Feb 1996 A
5494036 Uber, III et al. Feb 1996 A
5501674 Trombley, III et al. Mar 1996 A
5517120 Misik et al. May 1996 A
5519221 Weinberg May 1996 A
5519222 Besett May 1996 A
5519931 Reich May 1996 A
5520182 Leighton et al. May 1996 A
5520653 Reilly et al. May 1996 A
5521506 Misic et al. May 1996 A
5536945 Reich Jul 1996 A
5545899 Tran et al. Aug 1996 A
5559335 Zeng et al. Sep 1996 A
5565684 Gullberg et al. Oct 1996 A
5569181 Heilman et al. Oct 1996 A
5572132 Pulyer et al. Nov 1996 A
5572999 Funda et al. Nov 1996 A
5579766 Gray Dec 1996 A
5580541 Wells et al. Dec 1996 A
5585637 Bertelsen et al. Dec 1996 A
5587585 Eisen et al. Dec 1996 A
5591143 Trombley, III et al. Jan 1997 A
5600145 Plummer Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5610520 Misic Mar 1997 A
5617858 Taverna et al. Apr 1997 A
5629524 Stettner et al. May 1997 A
5630034 Oikawa et al. May 1997 A
5635717 Popescu Jun 1997 A
5657759 Essen-Moller Aug 1997 A
5672877 Liebig et al. Sep 1997 A
5677539 Apotovsky et al. Oct 1997 A
5682888 Olson et al. Nov 1997 A
5687250 Curley et al. Nov 1997 A
5687542 Lawecki et al. Nov 1997 A
5690691 Chen et al. Nov 1997 A
5692640 Caulfield et al. Dec 1997 A
5694933 Madden et al. Dec 1997 A
5695500 Taylor et al. Dec 1997 A
5716595 Goldenberg Feb 1998 A
5727554 Kalend et al. Mar 1998 A
5729129 Acker Mar 1998 A
5732704 Thurston et al. Mar 1998 A
5739508 Uber, III Apr 1998 A
5741232 Reilly et al. Apr 1998 A
5742060 Ashburn Apr 1998 A
5744805 Raylman et al. Apr 1998 A
5757006 De Vito et al. May 1998 A
5779675 Reilly et al. Jul 1998 A
5780855 Pare et al. Jul 1998 A
5781442 Engleson et al. Jul 1998 A
5784432 Kurtz et al. Jul 1998 A
5786597 Lingren et al. Jul 1998 A
5795333 Reilly et al. Aug 1998 A
5799111 Guissin Aug 1998 A
5800355 Hasegawa Sep 1998 A
5803914 Ryals et al. Sep 1998 A
5806519 Evans, III et al. Sep 1998 A
5808203 Nolan, Jr. et al. Sep 1998 A
5810742 Pearlman Sep 1998 A
5811814 Leone et al. Sep 1998 A
5813985 Carroll Sep 1998 A
5818050 Dilmanian et al. Oct 1998 A
5821541 Tümer Oct 1998 A
5825031 Wong et al. Oct 1998 A
5827219 Uber, III et al. Oct 1998 A
5828073 Zhu et al. Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5838009 Plummer et al. Nov 1998 A
5840026 Uber, III et al. Nov 1998 A
5841141 Gullberg et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5843037 Uber, III Dec 1998 A
5846513 Carroll et al. Dec 1998 A
5847396 Lingren et al. Dec 1998 A
5857463 Thurston et al. Jan 1999 A
5871013 Wainer et al. Feb 1999 A
5873861 Hitchins et al. Feb 1999 A
5880475 Oka et al. Mar 1999 A
5882338 Gray Mar 1999 A
5884457 Ortiz et al. Mar 1999 A
5885216 Evans, III et al. Mar 1999 A
5891030 Johnson et al. Apr 1999 A
5893397 Peterson et al. Apr 1999 A
5899885 Reilly et al. May 1999 A
5900533 Chou May 1999 A
5903008 Li May 1999 A
5910112 Judd et al. Jun 1999 A
5911252 Cassel Jun 1999 A
5916167 Kramer et al. Jun 1999 A
5916197 Reilly et al. Jun 1999 A
5920054 Uber, III Jul 1999 A
5927351 Zhu et al. Jul 1999 A
5928150 Call Jul 1999 A
5932879 Raylman et al. Aug 1999 A
5938639 Reilly et al. Aug 1999 A
5939724 Eisen et al. Aug 1999 A
5944190 Edelen Aug 1999 A
5944694 Hitchins et al. Aug 1999 A
5947935 Rhinehart et al. Sep 1999 A
5953884 Lawecki et al. Sep 1999 A
5954668 Uber, III et al. Sep 1999 A
5961457 Raylman et al. Oct 1999 A
5967983 Ashburn Oct 1999 A
5973598 Beigel Oct 1999 A
5974165 Giger et al. Oct 1999 A
5984860 Shan Nov 1999 A
5987350 Thurston Nov 1999 A
5993378 Lemelson Nov 1999 A
5997502 Reilly et al. Dec 1999 A
6002134 Lingren Dec 1999 A
6002480 Izatt et al. Dec 1999 A
6017330 Hitchins et al. Jan 2000 A
6019745 Gray Feb 2000 A
6021341 Scibilia et al. Feb 2000 A
6026317 Verani Feb 2000 A
6037595 Lingren Mar 2000 A
6040697 Misic Mar 2000 A
6042565 Hirschman et al. Mar 2000 A
RE36648 Uber, III et al. Apr 2000 E
6046454 Lingren et al. Apr 2000 A
6048334 Hirschman et al. Apr 2000 A
6052618 Dahlke et al. Apr 2000 A
6055450 Ashburn Apr 2000 A
6055452 Pearlman Apr 2000 A
RE36693 Reich May 2000 E
6063052 Uber, III et al. May 2000 A
D426891 Beale et al. Jun 2000 S
D426892 Beale et al. Jun 2000 S
6072177 McCroskey et al. Jun 2000 A
6076009 Raylman et al. Jun 2000 A
6080984 Friesenhahn Jun 2000 A
D428491 Beale et al. Jul 2000 S
6082366 Andra et al. Jul 2000 A
6090064 Reilly et al. Jul 2000 A
6091070 Lingren et al. Jul 2000 A
6096011 Trombley, III et al. Aug 2000 A
6107102 Ferrari Aug 2000 A
6115635 Bourgeois Sep 2000 A
6129670 Burdette et al. Oct 2000 A
6132372 Essen-Moller Oct 2000 A
6135955 Madden et al. Oct 2000 A
6135968 Brounstein Oct 2000 A
6137109 Hayes Oct 2000 A
6145277 Lawecki et al. Nov 2000 A
6147352 Ashburn Nov 2000 A
6147353 Gagnon et al. Nov 2000 A
6148229 Morris, Sr. et al. Nov 2000 A
6149627 Uber, III Nov 2000 A
6155485 Coughlin et al. Dec 2000 A
6160398 Walsh Dec 2000 A
6162198 Coffey et al. Dec 2000 A
6172362 Lingren et al. Jan 2001 B1
6173201 Front Jan 2001 B1
6184530 Hines et al. Feb 2001 B1
6189195 Reilly et al. Feb 2001 B1
6194715 Lingren et al. Feb 2001 B1
6194725 Colsher et al. Feb 2001 B1
6194726 Pi et al. Feb 2001 B1
6197000 Reilly et al. Mar 2001 B1
6202923 Boyer et al. Mar 2001 B1
6203775 Torchilin et al. Mar 2001 B1
6205347 Morgan et al. Mar 2001 B1
6212423 Krakovitz Apr 2001 B1
6223065 Misic et al. Apr 2001 B1
6224577 Dedola et al. May 2001 B1
6226350 Hsieh May 2001 B1
6229145 Weinberg May 2001 B1
6232605 Soluri et al. May 2001 B1
6233304 Hu et al. May 2001 B1
6236050 Tumer May 2001 B1
6236878 Taylor et al. May 2001 B1
6236880 Raylman et al. May 2001 B1
6239438 Schubert May 2001 B1
6240312 Alfano et al. May 2001 B1
6241708 Reilly et al. Jun 2001 B1
6242743 DeVito Jun 2001 B1
6242744 Soluri et al. Jun 2001 B1
6242745 Berlad et al. Jun 2001 B1
6246901 Benaron Jun 2001 B1
6252924 Davantes et al. Jun 2001 B1
6258576 Richards-Kortum et al. Jul 2001 B1
6259095 Bouton et al. Jul 2001 B1
6261562 Xu et al. Jul 2001 B1
6263229 Atalar et al. Jul 2001 B1
6269340 Ford et al. Jul 2001 B1
6270463 Morris, Sr. et al. Aug 2001 B1
6271524 Wainer et al. Aug 2001 B1
6271525 Majewski et al. Aug 2001 B1
6280704 Schutt et al. Aug 2001 B1
6281505 Hines et al. Aug 2001 B1
6308097 Pearlman Oct 2001 B1
6310968 Hawkins et al. Oct 2001 B1
6315981 Unger Nov 2001 B1
6317623 Griffiths et al. Nov 2001 B1
6317648 Sleep et al. Nov 2001 B1
6318630 Coughlin et al. Nov 2001 B1
6322535 Hitchins et al. Nov 2001 B1
6323648 Belt et al. Nov 2001 B1
6324418 Crowley et al. Nov 2001 B1
RE37487 Reilly et al. Dec 2001 E
D452737 Nolan, Jr. et al. Jan 2002 S
6336913 Spohn et al. Jan 2002 B1
6339652 Hawkins et al. Jan 2002 B1
6339718 Zatezalo et al. Jan 2002 B1
6344745 Reisker et al. Feb 2002 B1
6346706 Rogers et al. Feb 2002 B1
6346886 de la Huerga Feb 2002 B1
RE37602 Uber, III et al. Mar 2002 E
6353227 Boxen Mar 2002 B1
6356081 Misic Mar 2002 B1
6368331 Front et al. Apr 2002 B1
6371938 Reilly et al. Apr 2002 B1
6375624 Uber, III et al. Apr 2002 B1
6377838 Iwanczyk et al. Apr 2002 B1
6381349 Zeng et al. Apr 2002 B1
6385483 Uber, III et al. May 2002 B1
6388244 Gagnon May 2002 B1
6388258 Berlad et al. May 2002 B1
6392235 Barrett et al. May 2002 B1
6396273 Misic May 2002 B2
6397098 Uber, III et al. May 2002 B1
6399951 Paulus et al. Jun 2002 B1
6402717 Reilly et al. Jun 2002 B1
6402718 Reilly et al. Jun 2002 B1
6407391 Mastrippolito et al. Jun 2002 B1
6408204 Hirschman Jun 2002 B1
6409987 Cardin et al. Jun 2002 B1
6415046 Kerut, Sr. Jul 2002 B1
6420711 Tuemer Jul 2002 B2
6425174 Reich Jul 2002 B1
6426917 Tabanou et al. Jul 2002 B1
6429431 Wilk Aug 2002 B1
6431175 Penner et al. Aug 2002 B1
6432089 Kakimi et al. Aug 2002 B1
6438401 Cheng et al. Aug 2002 B1
6439444 Shields, II Aug 2002 B1
6440107 Trombley, III et al. Aug 2002 B1
6442418 Evans, III et al. Aug 2002 B1
6448560 Tumer Sep 2002 B1
6453199 Kobozev Sep 2002 B1
6459925 Nields et al. Oct 2002 B1
6459931 Hirschman Oct 2002 B1
6468261 Small et al. Oct 2002 B1
6469306 Van Dulmen et al. Oct 2002 B1
6471674 Emig et al. Oct 2002 B1
6480732 Tanaka et al. Nov 2002 B1
6484051 Daniel Nov 2002 B1
6488661 Spohn et al. Dec 2002 B1
6490476 Townsend et al. Dec 2002 B1
6504157 Juhi Jan 2003 B2
6504178 Carlson et al. Jan 2003 B2
6504899 Pugachev et al. Jan 2003 B2
6506155 Sluis et al. Jan 2003 B2
6510336 Daghighian et al. Jan 2003 B1
6512374 Misic et al. Jan 2003 B1
6516213 Nevo Feb 2003 B1
6519569 White et al. Feb 2003 B1
6520930 Critchlow et al. Feb 2003 B2
6522945 Sleep et al. Feb 2003 B2
6525320 Juni Feb 2003 B1
6525321 Juni Feb 2003 B2
6541763 Lingren et al. Apr 2003 B2
6545280 Weinberg Apr 2003 B2
6549646 Yeh et al. Apr 2003 B1
6560354 Maurer et al. May 2003 B1
6562008 Reilly et al. May 2003 B1
6563942 Takeo et al. May 2003 B2
6565502 Bede et al. May 2003 B1
6567687 Front et al. May 2003 B2
6574304 Hsieh et al. Jun 2003 B1
6575930 Trombley, III et al. Jun 2003 B1
6576918 Fu et al. Jun 2003 B1
6583420 Nelson et al. Jun 2003 B1
6584348 Glukhovsky Jun 2003 B2
6585700 Trocki et al. Jul 2003 B1
6587710 Wainer Jul 2003 B1
6589158 Winkler Jul 2003 B2
6591127 McKinnon Jul 2003 B1
6592520 Peszynski et al. Jul 2003 B1
6602488 Daghighian Aug 2003 B1
6607301 Glukhovsky et al. Aug 2003 B1
6611141 Schulz et al. Aug 2003 B1
6614453 Suri et al. Sep 2003 B1
6620134 Trombley, III et al. Sep 2003 B1
6627893 Zeng et al. Sep 2003 B1
6628983 Gagnon Sep 2003 B1
6628984 Weinberg Sep 2003 B2
6630735 Carlson et al. Oct 2003 B1
6631284 Nutt et al. Oct 2003 B2
6632216 Houzego et al. Oct 2003 B2
6633658 Dabney et al. Oct 2003 B1
6638752 Contag et al. Oct 2003 B2
6643537 Zatezalo et al. Nov 2003 B1
6643538 Majewski et al. Nov 2003 B1
6652489 Trocki et al. Nov 2003 B2
6657200 Nygard et al. Dec 2003 B2
6662036 Cosman Dec 2003 B2
6664542 Ye et al. Dec 2003 B2
6670258 Carlson et al. Dec 2003 B2
6671563 Engelson et al. Dec 2003 B1
6673033 Sciulli et al. Jan 2004 B1
6674834 Acharya et al. Jan 2004 B1
6676634 Spohn et al. Jan 2004 B1
6677182 Carlson et al. Jan 2004 B2
6677755 Belt et al. Jan 2004 B2
6680750 Tournier et al. Jan 2004 B1
6694172 Gagnon et al. Feb 2004 B1
6697660 Robinson Feb 2004 B1
6699219 Emig et al. Mar 2004 B2
6704592 Reynolds et al. Mar 2004 B1
6713766 Garrard et al. Mar 2004 B2
6714012 Belt et al. Mar 2004 B2
6714013 Misic Mar 2004 B2
6716195 Nolan, Jr. et al. Apr 2004 B2
6722499 Reich Apr 2004 B2
6723988 Wainer Apr 2004 B1
6726657 Dedig et al. Apr 2004 B1
6728583 Hallett Apr 2004 B2
6731971 Evans, III et al. May 2004 B2
6731989 Engleson et al. May 2004 B2
6733477 Cowan et al. May 2004 B2
6733478 Reilly et al. May 2004 B2
6734416 Carlson et al. May 2004 B2
6734430 Soluri et al. May 2004 B2
6737652 Lanza et al. May 2004 B2
6737866 Belt et al. May 2004 B2
6740882 Weinberg et al. May 2004 B2
6743202 Hirschman et al. Jun 2004 B2
6743205 Nolan, Jr. et al. Jun 2004 B2
6747454 Belt Jun 2004 B2
6748259 Benaron et al. Jun 2004 B1
6751500 Hirschman et al. Jun 2004 B2
6765981 Heumann Jul 2004 B2
6766048 Launay et al. Jul 2004 B1
6771802 Patt et al. Aug 2004 B1
6774358 Hamill et al. Aug 2004 B2
6776977 Liu Aug 2004 B2
6787777 Gagnon et al. Sep 2004 B1
6788758 De Villiers Sep 2004 B2
6798206 Misic Sep 2004 B2
6808513 Reilly et al. Oct 2004 B2
6809321 Rempel Oct 2004 B2
6813868 Baldwin et al. Nov 2004 B2
6821013 Reilly et al. Nov 2004 B2
6822237 Inoue et al. Nov 2004 B2
6833705 Misic Dec 2004 B2
6838672 Wagenaar et al. Jan 2005 B2
6841782 Balan et al. Jan 2005 B1
6843357 Bybee et al. Jan 2005 B2
6851615 Jones Feb 2005 B2
6866654 Callan et al. Mar 2005 B2
6870175 Dell et al. Mar 2005 B2
6881043 Barak Apr 2005 B2
6888351 Belt et al. May 2005 B2
6889074 Uber, III et al. May 2005 B2
6897658 Belt et al. May 2005 B2
6906330 Blevis et al. Jun 2005 B2
D507832 Yanniello et al. Jul 2005 S
6915170 Engleson et al. Jul 2005 B2
6915823 Osborne et al. Jul 2005 B2
6917828 Fukuda Jul 2005 B2
6921384 Reilly et al. Jul 2005 B2
6928142 Shao et al. Aug 2005 B2
6935560 Andreasson et al. Aug 2005 B2
6936030 Pavlik et al. Aug 2005 B1
6937750 Natanzon et al. Aug 2005 B2
6939302 Griffiths et al. Sep 2005 B2
6940070 Tumer Sep 2005 B2
6943355 Shwartz et al. Sep 2005 B2
6957522 Baldwin et al. Oct 2005 B2
6958053 Reilly Oct 2005 B1
6963770 Scarantino et al. Nov 2005 B2
6970735 Uber, III et al. Nov 2005 B2
6972001 Emig et al. Dec 2005 B2
6974443 Reilly et al. Dec 2005 B2
6976349 Baldwin et al. Dec 2005 B2
6984222 Hitchins et al. Jan 2006 B1
6985870 Martucci et al. Jan 2006 B2
6988981 Hamazaki Jan 2006 B2
6994249 Peterka et al. Feb 2006 B2
7009183 Wainer et al. Mar 2006 B2
7011814 Suddarth et al. Mar 2006 B2
7012430 Misic Mar 2006 B2
7017622 Osborne et al. Mar 2006 B2
7018363 Cowan et al. Mar 2006 B2
7019783 Kindem et al. Mar 2006 B2
7025757 Reilly et al. Apr 2006 B2
7026623 Oaknin et al. Apr 2006 B2
7043063 Noble et al. May 2006 B1
7102138 Belvis et al. Sep 2006 B2
7103204 Celler et al. Sep 2006 B1
7127026 Amemiya et al. Oct 2006 B2
7142634 Engler et al. Nov 2006 B2
7145986 Wear et al. Dec 2006 B2
7147372 Nelson et al. Dec 2006 B2
7164130 Welsh et al. Jan 2007 B2
7176466 Rousso et al. Feb 2007 B2
7187790 Sabol et al. Mar 2007 B2
7217953 Carlson May 2007 B2
7256386 Carlson et al. Aug 2007 B2
7291841 Nelson et al. Nov 2007 B2
7327822 Sauer et al. Feb 2008 B2
7359535 Salla et al. Apr 2008 B2
7373197 Daighighian et al. May 2008 B2
7394923 Zou et al. Jul 2008 B2
7444010 De Man Oct 2008 B2
7468513 Charron et al. Dec 2008 B2
7470896 Pawlak et al. Dec 2008 B2
7490085 Walker et al. Feb 2009 B2
7495225 Hefetz et al. Feb 2009 B2
7502499 Grady Mar 2009 B2
7570732 Stanton et al. Aug 2009 B2
7592597 Hefetz et al. Sep 2009 B2
7620444 Le et al. Nov 2009 B2
7627084 Jabri et al. Dec 2009 B2
7652259 Kimchy et al. Jan 2010 B2
7671331 Hefetz Mar 2010 B2
7671340 Uribe et al. Mar 2010 B2
7672491 Krishnan et al. Mar 2010 B2
7680240 Manjeshwar et al. Mar 2010 B2
7705316 Rousso et al. Apr 2010 B2
7734331 Dhawale et al. Jun 2010 B2
7826889 David et al. Nov 2010 B2
7831024 Metzler et al. Nov 2010 B2
7835927 Schlotterbeck et al. Nov 2010 B2
7872235 Rousso et al. Jan 2011 B2
7894650 Weng et al. Feb 2011 B2
7968851 Rousso et al. Jun 2011 B2
8013308 Guerin et al. Sep 2011 B2
8055329 Kimchy et al. Nov 2011 B2
8111886 Rousso et al. Feb 2012 B2
8158951 Bal et al. Apr 2012 B2
8163661 Akiyoshi et al. Apr 2012 B2
8204500 Weintraub et al. Jun 2012 B2
8338788 Zilberstein et al. Dec 2012 B2
8440168 Yang et al. May 2013 B2
20010016029 Tumer Aug 2001 A1
20010020131 Kawagishi et al. Sep 2001 A1
20010035902 Iddan et al. Nov 2001 A1
20010049608 Hochman Dec 2001 A1
20020068864 Bishop et al. Jun 2002 A1
20020072784 Sheppard, Jr. et al. Jun 2002 A1
20020085748 Baumberg Jul 2002 A1
20020087101 Barrick et al. Jul 2002 A1
20020099295 Gil et al. Jul 2002 A1
20020099310 Kimchy et al. Jul 2002 A1
20020099334 Hanson et al. Jul 2002 A1
20020103429 DeCharms Aug 2002 A1
20020103431 Toker et al. Aug 2002 A1
20020145114 Inoue et al. Oct 2002 A1
20020148970 Wong et al. Oct 2002 A1
20020165491 Reilly Nov 2002 A1
20020168094 Kaushikkar et al. Nov 2002 A1
20020168317 Daighighian et al. Nov 2002 A1
20020172405 Schultz Nov 2002 A1
20020179843 Tanaka et al. Dec 2002 A1
20020183645 Nachaliel Dec 2002 A1
20020188197 Bishop et al. Dec 2002 A1
20020191734 Kojima et al. Dec 2002 A1
20020198738 Osborne Dec 2002 A1
20030001098 Stoddart et al. Jan 2003 A1
20030001837 Baumberg Jan 2003 A1
20030006376 Tumer Jan 2003 A1
20030013950 Rollo et al. Jan 2003 A1
20030013966 Barnes et al. Jan 2003 A1
20030038240 Weinberg Feb 2003 A1
20030055685 Cobb et al. Mar 2003 A1
20030063787 Natanzon et al. Apr 2003 A1
20030071219 Motomura et al. Apr 2003 A1
20030081716 Tumer May 2003 A1
20030135388 Martucci et al. Jul 2003 A1
20030136912 Juni Jul 2003 A1
20030144322 Kozikowski et al. Jul 2003 A1
20030147887 Wang et al. Aug 2003 A1
20030158481 Stotzka et al. Aug 2003 A1
20030174804 Bulkes et al. Sep 2003 A1
20030183226 Brand et al. Oct 2003 A1
20030189174 Tanaka et al. Oct 2003 A1
20030191430 D'Andrea et al. Oct 2003 A1
20030202629 Dunham et al. Oct 2003 A1
20030208117 Shwartz et al. Nov 2003 A1
20030215122 Tanaka Nov 2003 A1
20030215124 Li Nov 2003 A1
20030216631 Bloch et al. Nov 2003 A1
20030219149 Vailaya et al. Nov 2003 A1
20040003001 Shimura Jan 2004 A1
20040010397 Barbour et al. Jan 2004 A1
20040015075 Kimchy et al. Jan 2004 A1
20040021065 Weber Feb 2004 A1
20040044282 Mixon et al. Mar 2004 A1
20040051368 Caputo et al. Mar 2004 A1
20040054248 Kimchy et al. Mar 2004 A1
20040054278 Kimchy et al. Mar 2004 A1
20040065838 Tumer Apr 2004 A1
20040075058 Blevis et al. Apr 2004 A1
20040081623 Eriksen et al. Apr 2004 A1
20040082918 Evans et al. Apr 2004 A1
20040084340 Morelle et al. May 2004 A1
20040086437 Jackson et al. May 2004 A1
20040101176 Mendonca et al. May 2004 A1
20040101177 Zahlmann et al. May 2004 A1
20040116807 Amrami et al. Jun 2004 A1
20040120557 Sabol et al. Jun 2004 A1
20040122311 Cosman Jun 2004 A1
20040125918 Shanmugaval et al. Jul 2004 A1
20040138557 Le et al. Jul 2004 A1
20040143449 Behrenbruch et al. Jul 2004 A1
20040144925 Stoddart et al. Jul 2004 A1
20040153128 Suresh et al. Aug 2004 A1
20040162492 Kobayashi Aug 2004 A1
20040171924 Mire et al. Sep 2004 A1
20040183022 Weinberg Sep 2004 A1
20040184644 Leichter et al. Sep 2004 A1
20040193453 Butterfield et al. Sep 2004 A1
20040195512 Crosetto Oct 2004 A1
20040204646 Nagler et al. Oct 2004 A1
20040205343 Forth et al. Oct 2004 A1
20040210126 Hajaj et al. Oct 2004 A1
20040238743 Gravrand et al. Dec 2004 A1
20040251419 Nelson et al. Dec 2004 A1
20040253177 Elmaleh et al. Dec 2004 A1
20040258201 Hayashida Dec 2004 A1
20040263865 Pawlak et al. Dec 2004 A1
20050001170 Juni Jan 2005 A1
20050006589 Young et al. Jan 2005 A1
20050020898 Vosniak et al. Jan 2005 A1
20050020915 Bellardinelli et al. Jan 2005 A1
20050023474 Persyk et al. Feb 2005 A1
20050029277 Tachibana Feb 2005 A1
20050033157 Klein et al. Feb 2005 A1
20050049487 Johnson et al. Mar 2005 A1
20050055174 David et al. Mar 2005 A1
20050056788 Juni Mar 2005 A1
20050074402 Cagnolini et al. Apr 2005 A1
20050107698 Powers et al. May 2005 A1
20050107914 Engleson et al. May 2005 A1
20050108044 Koster May 2005 A1
20050113945 Engleson et al. May 2005 A1
20050113960 Karau et al. May 2005 A1
20050117029 Shiomi Jun 2005 A1
20050121505 Metz et al. Jun 2005 A1
20050131270 Weil et al. Jun 2005 A1
20050145797 Oaknin et al. Jul 2005 A1
20050148869 Masuda Jul 2005 A1
20050149350 Kerr et al. Jul 2005 A1
20050156115 Kobayashi et al. Jul 2005 A1
20050173643 Tumer Aug 2005 A1
20050187465 Motomura et al. Aug 2005 A1
20050198800 Reich Sep 2005 A1
20050203389 Williams Sep 2005 A1
20050205792 Rousso et al. Sep 2005 A1
20050205796 Bryman Sep 2005 A1
20050207526 Altman Sep 2005 A1
20050211909 Smith Sep 2005 A1
20050215889 Patterson, II Sep 2005 A1
20050234424 Besing et al. Oct 2005 A1
20050247893 Fu et al. Nov 2005 A1
20050253073 Joram et al. Nov 2005 A1
20050261936 Silverbrook et al. Nov 2005 A1
20050261937 Silverbrook et al. Nov 2005 A1
20050261938 Silverbrook et al. Nov 2005 A1
20050266074 Zilberstein et al. Dec 2005 A1
20050277833 Williams, Jr. Dec 2005 A1
20050277911 Stewart et al. Dec 2005 A1
20050278066 Graves et al. Dec 2005 A1
20050288869 Kroll et al. Dec 2005 A1
20060000983 Charron et al. Jan 2006 A1
20060033028 Juni Feb 2006 A1
20060036157 Tumer Feb 2006 A1
20060072799 McLain Apr 2006 A1
20060074290 Chen et al. Apr 2006 A1
20060104519 Stoeckel et al. May 2006 A1
20060109950 Arenson et al. May 2006 A1
20060122503 Burbank et al. Jun 2006 A1
20060145081 Hawman Jul 2006 A1
20060160157 Zuckerman Jul 2006 A1
20060188136 Ritt et al. Aug 2006 A1
20060214097 Wang et al. Sep 2006 A1
20060237652 Kimchy et al. Oct 2006 A1
20060257012 Kaufman et al. Nov 2006 A1
20070081700 Blumenfeld et al. Apr 2007 A1
20070116170 De Man et al. May 2007 A1
20070133852 Collins et al. Jun 2007 A1
20070156047 Nagler et al. Jul 2007 A1
20070166227 Liu et al. Jul 2007 A1
20070183582 Baumann et al. Aug 2007 A1
20070189436 Goto et al. Aug 2007 A1
20070194241 Rousso et al. Aug 2007 A1
20070265230 Rousso et al. Nov 2007 A1
20080001090 Ben-Haim et al. Jan 2008 A1
20080029704 Hefetz et al. Feb 2008 A1
20080033291 Rousso et al. Feb 2008 A1
20080036882 Uemura et al. Feb 2008 A1
20080039721 Shai et al. Feb 2008 A1
20080042067 Rousso et al. Feb 2008 A1
20080128626 Rousso et al. Jun 2008 A1
20080137938 Zahniser Jun 2008 A1
20080230702 Rousso et al. Sep 2008 A1
20080230705 Rousso et al. Sep 2008 A1
20080237482 Shahar et al. Oct 2008 A1
20080260228 Dichterman et al. Oct 2008 A1
20080260580 Helle et al. Oct 2008 A1
20080260637 Dickman Oct 2008 A1
20080277591 Shahar et al. Nov 2008 A1
20090001273 Hawman Jan 2009 A1
20090018412 Schmitt Jan 2009 A1
20090078875 Rousso et al. Mar 2009 A1
20090112086 Melman Apr 2009 A1
20090152471 Rousso et al. Jun 2009 A1
20090190807 Rousso et al. Jul 2009 A1
20090201291 Ziv et al. Aug 2009 A1
20090236532 Frach et al. Sep 2009 A1
20090304582 Rousso et al. Dec 2009 A1
20100006770 Balakin Jan 2010 A1
20100021378 Rousso et al. Jan 2010 A1
20100102242 Burr et al. Apr 2010 A1
20100121184 Dhawale et al. May 2010 A1
20100140483 Rousso et al. Jun 2010 A1
20100202664 Busch et al. Aug 2010 A1
20100245354 Rousso et al. Sep 2010 A1
20120106820 Rousso et al. May 2012 A1
20120172699 Nagler et al. Jul 2012 A1
20120248320 Wangerin et al. Oct 2012 A1
20120326034 Sachs et al. Dec 2012 A1
20130051643 Jackson et al. Feb 2013 A1
20130114792 Zilberstein et al. May 2013 A1
20130308749 Zilberstein et al. Nov 2013 A1
20140151563 Rousso et al. Jun 2014 A1
20140163368 Rousso et al. Jun 2014 A1
20140187927 Nagler et al. Jul 2014 A1
20140193336 Rousso et al. Jul 2014 A1
20140200447 Rousso et al. Jul 2014 A1
20140249402 Kimchy et al. Sep 2014 A1
Foreign Referenced Citations (63)
Number Date Country
1516429 Dec 1969 DE
19814199 Oct 1999 DE
19815362 Oct 1999 DE
0273257 Jul 1988 EP
0525954 Feb 1993 EP
0526970 Feb 1993 EP
0543626 May 1993 EP
0592093 Apr 1994 EP
0697193 Feb 1996 EP
0813692 Dec 1997 EP
0887661 Dec 1998 EP
1237013 Sep 2002 EP
2031142 Apr 1980 GB
59-141084 Aug 1984 JP
61-026879 Feb 1986 JP
01-324568 Jun 1986 JP
03-121549 May 1991 JP
04-151120 May 1992 JP
06-109848 Apr 1994 JP
07-059763 Mar 1995 JP
07-141523 Jun 1995 JP
08-292268 Nov 1996 JP
10-260258 Sep 1998 JP
11-072564 Mar 1999 JP
WO 9200402 Jan 1992 WO
WO 9816852 Apr 1998 WO
WO 9903003 Jan 1999 WO
WO 9930610 Jun 1999 WO
WO 9939650 Aug 1999 WO
WO 0010034 Feb 2000 WO
WO 0018294 Apr 2000 WO
WO 0022975 Apr 2000 WO
WO 0025268 May 2000 WO
WO 0031522 Jun 2000 WO
WO 0038197 Jun 2000 WO
WO 0189384 Nov 2001 WO
WO 0216965 Feb 2002 WO
WO 02058531 Aug 2002 WO
WO 02075357 Sep 2002 WO
WO 03073938 Sep 2003 WO
WO 03086170 Oct 2003 WO
WO 2004004787 Jan 2004 WO
WO 2004032151 Apr 2004 WO
WO 2004042546 May 2004 WO
WO 2004113951 Dec 2004 WO
WO 2005002971 Jan 2005 WO
WO 2005059592 Jun 2005 WO
WO 2005059840 Jun 2005 WO
WO 2005067383 Jul 2005 WO
WO 2005104939 Nov 2005 WO
WO 2005118659 Dec 2005 WO
WO 2005119025 Dec 2005 WO
WO 2006042077 Apr 2006 WO
WO 2006051531 May 2006 WO
WO 2006054296 May 2006 WO
WO 2006075333 Jul 2006 WO
WO 2006129301 Dec 2006 WO
WO 2007010534 Jan 2007 WO
WO 2007010537 Jan 2007 WO
WO 2007054935 May 2007 WO
WO 2007074467 Jul 2007 WO
WO 2008010227 Jan 2008 WO
WO 2008075362 Jun 2008 WO
Non-Patent Literature Citations (478)
Entry
Amendment After Allowance Under 37 CFR 1.312 Dated Sep. 13, 2010 to Notice of Allowance of Jul. 22, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Appeal Brief Dated Jan. 19, 2010 to Notice of Appeal of Nov. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Communication Pursuant to Article 93(3) EPC Dated Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3.
Communication Pursuant to Article 94(3) EPC Dated Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3.
Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re.: Application No. 06809851.6.
Communication Pursuant to Article 94(3) EPC Dated Apr. 16, 2010 From the European Patent Office Re. Application No. 01951883.6.
Communication Pursuant to Article 94(3) EPC Dated Oct. 21, 2009 From the European Patent Office Re.: Application No. 02716285.8.
Communication Pursuant to Article 94(3) EPC Dated Jul. 22, 2009 From the European Patent Office Re.: Application No. 06809851.6.
Communication Pursuant to Article 96(2) EPC Dated Jun. 19, 2006 From the European Patent Office Re.: Application No. 03810570.6.
Communication Pursuant to Article 96(2) EPC Dated Aug. 30, 2007 From the European Patent Office Re.: Application No. 03810570.6.
Communication Relating to the Results of the Partial International Search Dated Apr. 18, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291.
Communication Relating to the Results of the Partial International Search Dated May 21, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2007/001588.
International Preliminary Report on Patentability Dated Apr. 16, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2007/000918.
International Preliminary Report on Patentability Dated Jun. 21, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/000575.
International Preliminary Report on Patentability Dated Jan. 22, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/000834.
International Preliminary Report on Patentability Dated Jan. 22, 2009 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/001511.
International Preliminary Report on Patentability Dated May 22, 2007 From the International Preliminary Examining Authority Re.: Application No. PCT/IL06/00059.
International Preliminary Report on Patentability Dated May 22, 2008 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/001291.
International Preliminary Report on Patentability Dated May 24, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/001173.
International Preliminary Report on Patentability Dated Apr. 26, 2007 From the International Bureau of WIPO Re.: Application No. PCT/IL2005/000394.
International Preliminary Report on Patentability Dated Jan. 31, 2008 From the International Bureau of WIPO Re.: Application No. PCT/IL2006/000840.
International Search Report Dated Oct. 10, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00059.
International Search Report Dated Jul. 11, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/01511.
International Search Report Dated Jul. 25, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2007/001588.
International Search Report Dated Feb. 1, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00048.
International Search Report Dated Jul. 1, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00834.
International Search Report Dated Nov. 1, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00840.
International Search Report Dated Jul. 2, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291.
International Search Report Dated Aug. 3, 2006 From the international Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173.
International Search Report Dated May 11, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001215.
International Search Report Dated Sep. 11, 2002 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL01/00638.
International Search Report Dated Sep. 12, 2002 From the International Searching Authority of the Patent Cooperation Treaty Re: Application No. PCT/IL02/00057.
International Search Report Dated Oct. 15, 2008 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
International Search Report Dated Mar. 18, 2004 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL03/00917.
International Search Report Dated Mar. 23, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00572.
International Search Report Dated May 24, 2007 From the International Searching Authority of Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575.
International Search Report Dated Mar. 26, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00394.
Invitation to Pay Additional Fees Dated Jul. 10, 2008 From the International Searching Authority Re.: Application No. PCT/IL06/01511.
Invitation to Pay Additional Fees Dated Feb. 15, 2007 From the International Searching Authority Re.: Application No. PCT/IL05/00575.
Notice of Allowance Dated Jul. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Notice of Allowance Dated Sep. 17, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568. Suppl. IDS VIII in 25855.
Notice of Allowance Dated Jul. 22, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Notice of Allowance Dated Nov. 23, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Notice of Allowance Dated Aug. 25, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Notice of Allowance Dated Jun. 30, 2010 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Notice of Appeal and Pre-Appeal Brief Dated Jan. 4, 2010 to Official Action of Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Notice of Appeal Dated Nov. 16, 2009 to Official Action of Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Office Action Dated Dec. 2, 2007 From the Israeli Patent Office Re.: Application No. 158442.
Office Action Dated Jan. 2, 2006 From the Israeli Patent Office Re.: Application No. 154323.
Office Action Dated Sep. 4, 2007 From the Israeli Patent Office Re.: Application No. 157007.
Office Action Dated Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323.
Official Action Dated Jun. 1, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/686,536.
Official Action Dated Mar. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Official Action Dated Sep. 1, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Official Action Dated Jul. 2, 2004 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Official Action Dated Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Aug. 3, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated May 3, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Sep. 4, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated Sep. 5, 2002 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Official Action Dated Jan. 7, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Jul. 7, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated Oct. 7, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Apr. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Dec. 8, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/132,320.
Official Action Dated Jan. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Official Action Dated Apr. 9, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Aug. 10, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Aug. 11, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 11, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Jul. 12, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Dec. 13, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated May 13, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated May 14, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Official Action Dated Apr. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Dec. 15, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Feb. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Mar. 15, 2004 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/765,316.
Official Action Dated Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Dec. 16, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Sep. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Jan. 17, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 11/034,007.
Official Action Dated Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Official Action Dated Mar. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Apr. 20, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Jul. 20, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Official Action Dated Mar. 21, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Official Action Dated Sep. 21, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Dec. 23, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Feb. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Jun. 23, 2006 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Official Action Dated Jun. 25, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Sep. 25, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Nov. 26, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Jul. 27, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Apr. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Aug. 28, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Apr. 29, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Oct. 30, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Sep. 30, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Sep. 30, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Jul. 1, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Response Dated Jul. 1, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Response Dated Jun. 1, 2010 to Official Action of Mar. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Response dated Sep. 1, 2010 to Official Action of Aug. 3, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Jun. 3, 2010 to Notice of Appeal and Pre-Appeal Brief of Jan. 4, 2010 to Official Action of Sep. 2, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Response Dated Oct. 5, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated Apr. 7, 2009 to Official Action of Oct. 7, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jul. 8, 2010 to Communication Pursuant to Article 94(3) EPC of Mar. 8, 2010 From the European Patent Office Re.: Application No. 06832278.3.
Response Dated Jul. 8, 2010 to Official Action of Apr. 9, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Sep. 8, 2010 to Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re.: Application No. 06809851.6.
Response Dated Dec. 10, 2009 to Official Action of Aug. 11, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated May 10, 2010 to Official Action of Apr. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated May 10, 2010 to Official Action of Jan. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated May 11, 2010 to Official Action of Mar. 11, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Response Dated Oct. 12, 2009 to Notice of Allowance of Jul. 16, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Response Dated Mar. 13, 2008 to Official Action of Dec. 13, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Aug. 14, 2008 to Official Action of Apr. 15, 2008 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/727,464.
Response Dated Jan. 14, 2010 to Official Action of Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. ,No. 10/616,307.
Response Dated Jan. 14, 2010 to Official Action of Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Response Dated Oct. 14, 2009 to Official Action of May 14, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated Mar. 15, 2007 to Official Action of Dec. 15, 2006 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Aug. 16, 2010 to Communication Pursuant to Article 94(3) EPC of Apr. 16, 2010 From the European Patent Office Re. Application No. 01951883.6.
Response Dated Jan. 21, 2010 to Official Action of Sep. 21, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Response Dated Feb. 22, 2010 to Communication Pursuant to Article 94(3) EPC of Oct. 21, 2009 From the European Patent Office Re.: Application No. 02716285.8.
Response Dated Sep. 22, 2008 to Official Action of Jun. 25, 2008 From US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jun. 23, 2010 to Official Action of Feb. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Aug. 25, 2010 to Official Action of Jul. 27, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Nov. 25, 2005 to Office Action of May 13, 2005 From the Patent Office of the People's Republic of China Re.: Application No. 1817689.5.
Response Dated Jul. 26, 2010 to Official Action of Apr. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated May 26, 2010 to Official Action of Mar. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Response Dated Dec. 28, 2009 to Official Action of Aug. 28, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Response Dated Dec. 30, 2009 to Official Action of Sep. 1, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/794,799.
Response Dated Dec. 30, 2009 to Official Action of Oct. 30, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Oct. 31, 2007 to Official Action of Jul. 12, 2007 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response to the International Search Report and the Written Opinion of Oct. 10, 2006 From the International Searching Authority Re.: Appliction No. PCT/IL06/00059.
Second International Search Report Dated Jun. 1, 2009 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC Dated Jan. 16, 2009 From the European Patent Office Re.: Application No. 03810570.6.
Supplemental Response After Interview Dated Aug. 4, 2010 to Official Action of Mar. 2, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,617.
Supplemental Response Under 37 C.F.R. § 1.125 Dated Aug. 12, 2010 to Telephonic Interview of Aug. 6, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Supplementary European Search Report Dated Dec. 12, 2005 From the European Patent Office Re.: Application No. 03810570.6.
Supplementary Partial European Search Report and the European Search Opinion Dated Dec. 15, 2009 From the European Patent Office Re.: Application No. 06832278.3.
Supplementary Partial European Search Report and the European Search Opinion Dated Oct. 16, 2009 From the European Patent Office Re.: Application No. 06756259.5.
Supplementary Partial European Search Report Dated Sep. 4, 2007 From the European Patent Office Re.: Application No. 0 2716285.8.
Supplementary Partial European Search Report Dated Nov. 11, 2008 From the European Patent Office Re.: Application No. 01951883.6.
Supplementary Partial European Search Report Dated Nov. 20, 2007 From the European Patent Office Re.: Application No. 02716285.8.
Translation of Office Action Dated May 13, 2005 From the Patent Office of the People's Republic of China Re.: Application No. 01817689.5.
Written Opinion Dated Feb. 1, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00048.
Written Opinion Dated Jul. 1, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00834.
Written Opinion Dated Jul. 2, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL2006/001291.
Written Opinion Dated Aug. 3, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173.
Written Opinion Dated Oct. 10, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00059.
Written Opinion Dated Oct. 15, 2008 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Written Opinion Dated Mar. 23, 2006 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00572.
Written Opinion Dated May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575.
Written Opinion Dated Jul. 25, 2008 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/001173.
Written Opinion Dated Mar. 26, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00394.
Aoi et al. “Absolute Quantitation of Regional Myocardial Blood Flow of Rats Using Dynamic Pinhole SPECT”, IEEE Nuclear Science Symposium and Medical Imaging Conference Record, 3: 1780-1783, 2002. Abstract, Figs.
Beekman et al. “Efficient Fully 3-D iterative SPECT Reconstruction With Monte Carlo-Based Scatter Compensation”, IEEE Transactions on Medical Imaging, 21(8): 867-877, Aug. 2002.
Bloch et al. “Application of Computerized Tomography to Radiation Therapy and Surgical Planning”, Proceedings of the IEEE, 71(3): 351-355, Mar. 1983.
Bromiley et al. “Attenuation Correction in PET Using Consistency Conditions and a Three-Dimensional Template”, IEEE Transactions on Nuclear Science, XP002352920, 48(4): 1371-1377, 2001. p. 1376, col. 2, § 2.
Brown et al. “Method for Segmenting Chest CT Image Data Using an Anatomical Model: Preliminary Results”, IEEE Transactions on Medical Imaging, 16(6): 828-839, Dec. 1997.
Corstens et al. “Nuclear Medicine's Role in Infection and Inflammation”, The Lancet, 354: 765-770, 1999.
Day et al. “Localization of Radioiodinated Rat Fibrogen in Transplanted Rat Tumors”, Journal of the National Cancer Institute, 23(4): 799-812, 1959.
Del Guerra et al. “An Integrated PET-SPECT Small Animal Imager: Preliminary Results”, Nuclear Science Symposium, IEEE Records, 1: 541-544, 1999.
Erbil et al. “Use and Limitations of Serum Total and Lipid-Bound Sialic Acid Concentrations as Markers for Colorectal Cancer”, Cancer, 55: 404-409, 1985.
Garcia et al. “Accuracy of Dynamic SPECT Acquisition for Tc-99m Teboroxime Myocardial Perfusion Imaging: Preliminary Results”, American College of Cardiology, 51st Annual Scientific Session, Atlanta, Georgia, USA, 8 P., 2002.
Gilland et al. “A 3D Model of Non-Uniform Attenuation and Detector Response for Efficient Iterative Reconstruction in SPECT”, Physics in Medicine and Biology, XP002558623, 39(3): 547-561, Mar. 1994. p. 549-550, Section 2.3 ‘Active Voxel Reconstruction’, p. 551, Lines 4-8.
Gilland et al. “Simultaneous Reconstruction and Motion Estimation for Gated Cardiac ECT”, IEEE Transactions on Nuclear Science, XP011077797, 49(5): 2344-2349, Oct. 1, 2002. p. 2344, Section ‘Introduction’, First §.
Gugnin et al “Radiocapsule for Recording the Ionizing Radiation in the Gastrointestinal Tract”, UDC 615. 417:616.34-005.1-073.916-71 (All-Union Scientific-Research Institute of medical Instrument Design, Moscow. Translated from Meditsinskaya Tekhnika, 1:21-25, Jan.-Feb. 1972).
Hassan et al. “A Radiotelemetry Pill for the Measurement of Ionising Radiation Using a Mercuric Iodide Detector”, Physics in Medicine and Biology, 23(2): 302-308, 1978.
Hayakawa et al. “A PET-MRI Registration Technique for PET Studies of the Rat Brain”, Nuclear Medicine & Biology, 27: 121-125, 2000. p. 121, col. 1.
Hoffman et al. “Intraoperative Probes and Imaging Probes”, European Journal of Nuclear Medicine, 26(8): 913-935, 1999.
Huesman et al. “Kinetic Parameter Estimation From SPECT Cone-Beam Projection Measurements”, Physics in Medicine and Biology, 43(4): 973-982, 1998.
Jeanguillaume et al. “From the Whole-Body Counting to Imaging: The Computer Aided Collimation Gamma Camera Project (CACAO)”, Radiation Projection Dosimetry 89(3-4): 349-352, 2000.
Jessup “Tumor Markers—Prognostic and Therapeutic Implications for Colorectal Carcinoma”, Surgical Oncology, 7: 139-151, 1998.
Kadrmas et al. “Static Versus Dynamic Teboroxime Myocardial Perfusion SPECT in Canines”, IEEE Transactions on Nuclear Sicence, 47(3): 1112-1117, Jun. 2000.
Kinahan et al. “Attenuation Correction for a Combined 3D PET/CT Scanner”, Medical Physics, 25(10): 2046-2053, Oct. 1998.
Kojima et al. “Quantitative Planar Imaging Method for Measurement of Renal Activity by Using a Conjugate-Emission Image and Transmission Data”, Medical Physics, 27(3): 608-615, 2000. p. 608.
Lavallée et al. “Building a Hybrid Patient's Model for Augmented Reality in Surgery: A Registration Problem”, Computing in Biological Medicine, 25(2): 149-164, 1995.
Li et al. “A HOTLink/Networked PC Data Acquisition and Image Reconstruction System for a High Resolution Whole-Body PET With Respiratory or ECG-Gated Performance”, IEEE Nuclear Sience Symposium and Medical Imaging Conference, Norfolk, VA, USA, Nov. 10-16, 2002, XP010663724, 2: 1135-1139, Nov. 10, 2002. p. 1137, First Col., 2nd §.
Molinolo et al. “Enhanced Tumor Binding Using Immunohistochemical Analyses by Second Generation Anti-Tumor-Associated Glycoprotein 72 Monoclonal Antibodies versus Monoclonal Antibody B72.3 in Human Tissue”, Cancer Research, 50: 1291-1298, 1990.
Moore et al. “Quantitative Multi-Detector Emission Computerized Tomography Using Iterative Attenuation Compensation”, Journal of Nuclear Medicine, XP002549083, 23(8): 706-714, Aug. 1982. Abstract, p. 707, Section ‘The Multi-Detector Scanner’, First §.
Mori et al. “Overexpression of Matrix Metalloproteinase-7mRNA in Human Colon Carcinomas”, Cancer, 75: 1516-1519, 1995.
Ogawa et al. “Ultra High Resoultion Pinhole SPECT”, IEEE Nuclear Science Symposium, 2: 1600-1604, 1998.
Pardridge et al. “Tracer Kinetic Model of Blood-Brain Barrier Transport of Plasma Protein-Bound Ligands”, Journal of Clinical Investigation, 74: 745-752, 1984. Suppl. IDS in 27480.
Pellegrini et al. “Design of Compact Pinhole SPECT System Based on Flat Panel PMT”, IEEE Nuclear Science Symposium Conference Record, 3: 1828-1832, 2003.
Piperno et al. “Breast Cancer Screening by Impedance Measurements”, Frontiers Med. Biol. Engng., 2(2): 11-17, 1990.
Qi et al. “Resolution and Noise Properties of MAP Reconstruction for Fully 3-D PET”, IEEE Transactions on Medical Imaging, XP002549082, 19(5): 493-506, May 2000. p. 493, col. 2, Lines 10-21, p. 495, col. 1, Last §.
Quartuccia et al. “Computer Assisted Collimation Gama Camera: A New Approach to Imaging Contaminated Tissues”, Radiation Projection Dosimetry, 89(3-4): 343-348, 2000.
Rajshekhar “Continuous Impedence Monitoring During CT-Guided Stereotactic Surgery: Relative Value in Cystic and Solid Lesions”, British Journal of Neurosurgery, 6: 439-444, 1992.
Reutter et al. “Direct Least Squares Estimation of Spatiotemporal Distributions From Dynamic SPECT Projections Using a Spatial Segmentation and Temporal B-Splines”, IEEE Transactions on Medical Imaging, 19(5): 434-450, 2000.
Reutter et al. “Kinetic Parameter Estimation From Attenuated SPECT Projection Measurements”, IEEE Transactions on Nuclear Science, 45(6): 3007-3013, 1998.
Stoddart et al. “New Multi-Dimensional Reconstructions for the 12-Detector, Scanned Focal Point, Single-Photon Tomograph”, Physics in Medicine and Biology, XP020021960, 37(3): 579-586, Mar. 1, 1992. p. 582, § 2—p. 585, § 1.
Takahashi et al. “Attenuation Correction of Myocardial SPECT Images With X-Ray CT: Effects of Registration Errors Between X-Ray CT and SPECT”, Annals of Nuclear Medicine, 16(6): 431-435, Sep. 2002.
Wilson et al. “Non-Stationary Noise Characteristics for SPECT Images”, Proceedings of the Nuclear Science Symposium and Medical Imaging Conference, Santa Fe, CA, USA, Nov. 2-9, 1991, XP010058168, p. 1736-1740, Nov. 2, 1991. p. 1736, col. 2, Lines 4-6.
Wu et al. “ECG-Gated Pinhole SPECT in Mice With Millimeter Spatial Resolution”, IEEE Transactions on Nuclear Science, 47(3): 1218-1221, Jun. 2000.
Yu et al. “Using Correlated CT Images in Compensation for Attenuation in PET Image Reconstruction”, Proceedings of the SPIE, Applications of Optical Engineering: Proceedings of OE/Midwest '90, 1396: 56-58, 1991.
Zaidi et al. “Magenetic Resonance Imaging-Guided Attenuation and Scatter Corrections in Three-Dimensional Brain Positron Emission Tomography”, Medical Physics, 30(5): 937-948, May 2003.
Zaidi et al. “MRI-Guided Attenuation Correction in 3D Brain PET”, Neuroimage Human Brain Mapping 2002 Meeting, 16(2): Abstract 504, Jun. 2002.
Zhang et al. “An Innovative High Efficiency and High Resolution Probe for Prostate Imaging”, The Journal of Nuclear Medicine, 68: 18, 2000. Abstract.
Official Action Dated Dec. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Dec. 20, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Response Dated Nov. 13, 2011 to Official Action of Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Response Dated Dec. 29, 2011 to Office Action of Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323.
Berman et al. “Dual-Isotope Myocardial Perfusion SPECT With Rest Thallium-201 and Stress Tc-99m Sestamibi”, Cardiology Clinics, 12(2): 261-270, May 1994.
DeGrado et al. “Topics in Integrated Systems Physiology. Tracer Kinetic Modeling in Nuclear Cardiology”, Journal of Nuclear Cardiology, 7: 686-700, 2000.
Links “Advances in SPECT and PET Imaging”, Annals in Nuclear Medical Science, 13(2): 107-120, Jun. 2000.
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Nov. 23, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Response Dated Nov. 18, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Notice of Allowance Dated Dec. 17, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Dec. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Response Dated Dec. 15, 2010 to Official Action of Jul. 19, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Official Action Dated Oct. 7, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/750,057.
Official Action Dated Oct. 7, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/932,872.
Official Action Dated Jan. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated Jan. 23, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Jin et al. “Reconstruction of Cardiac-Gated Dynamic SPECT Images”, IEEE International Conference on Image Processing 2005, ICIP 2005, Sep. 11-14, 2005, 3: 1-4, 2005.
Toennies et al. “Scatter Segmentation in Dynamic SPECT Images Using Principal Component Analysis”, Progress in Biomedical Optics and Imaging, 4(23): 507-516, 2003.
Communication Pursuant to Article 94(3) EPC Dated Sep. 23, 2011 From the European Patent Office Re.: Application No. 06832278.3.
Written Opinion Dated Nov. 1, 2007 from the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/00840.
Written Opinion Dated Jul. 11, 2008 from the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL06/01511.
Official Action Dated Jan. 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated Jan. 28, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Feb. 10, 2011 to Official Action of Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Jan. 27, 2011 to Official Action of Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Jan. 31, 2011 to Official Action of Sep. 30, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Notice of Allowance Dated Feb. 2, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074.
Communication Pursuant to Article 94(3) EPC Dated Mar. 2, 2011 From the European Patent Office Re.: Application No. 06756259.5.
Notice of Allowance Dated Nov. 15, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301.
Notice of Non-Compliant Amendment Dated Feb. 14, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Feb. 10, 2011 to Notice of Allowance of Nov. 15, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301.
Mettler et al. “Legal Requirements and Radiation Safely”, Essentials of Nuclear Medicine Imaging, 2nd Ed., Chap.13: 323-331, 1985.
Notice of Panel Decision From Pre-Appeal Brief Review Dated Feb. 29, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Mar. 1, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated Dec. 22, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Official Action Dated Feb. 28, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
International Search Report Dated May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575.
Response Dated Mar. 8, 2011 to Official Action of Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Lavall?e et al. “Building a Hybrid Patient's Model for Augmented Reality in Surgery: A Registration Problem”, Computing in Biological Medicine, 25(2): 149-164, 1995.
Lin et al. “Improved Sensor Pills for Physiological Monitoring”, NASA Technical Brief, JPL New Technology Report, NPO-20652, 25(2), 2000.
Mettler et al. “Legal Requirements and Radiation Safety”, Essentials of Nuclear Medicine Imaging, 2nd Ed., Chap.13: 323-331, 1985.
Notice of Allowance Dated Feb. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Mar. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Response Dated Mar. 24, 2011 to Official Action of Dec. 8, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 6, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/792,856.
Restriction Official Action Dated Mar. 9, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852.
Office Action Dated Jul. 17, 2007 From the Israeli Patent Office Re.: Application No. 154323 and Its Translation Into English.
Communication Pursuant to Rules 70(2) and 70a(2) EPC Dated Apr. 4, 2011 From the European Patent Office Re. Application No. 05803689.8.
Response Dated Mar. 31, 2011 to Official Action of Jan. 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Response Dated Apr. 5, 2011 to Official Action of Nov. 10, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Supplementary European Search Report and the European Search Opinion Dated Mar. 16, 2011 From the European Patent Office Re. Application No. 05803689.8.
Hermann et al. “Mitochondrial Proteome: Altered Cytochtrome C Oxidase Subunit Levels in Prostate Cancer”, Proteomics, XP002625778, 3(9): 1801-1810, Sep. 2003.
Krieg et al. “Mitochondrial Proteome: Cancer-Altered Metabolism Associated With Cytochrome C Oxidase Subunit Level Variation”, Proteomics, XP002625779, 4(9): 2789-2795, Sep. 2004.
Interview Summary Dated Mar. 25, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Mao et al. “Human Prostatic Carcinoma: An Electron Microscope Study”, Cancer Research, XP002625777, 26(5): 955-973, May 1966.
Storey et al. “TC-99m Sestamibi Uptake in Metastatic Prostate Carcinoma”, Clinical Nuclear Medicine, XP009145398, 25(2): 133-134, Feb. 2000.
Restriction Official Action Dated Apr. 13, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Response Dated Mar. 3, 2011 to Notice of Non-Compliant Amendment of Feb. 14, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Jan. 14, 2010 to Official Action of Sep. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Kadrmas et al. “Static Versus Dynamic Teboroxime Myocardial Perfusion SPECT in Canines”, IEEE Transactions on Nuclear Science, 47(3): 1112-1117, Jun. 2000.
International Preliminary Report on Patentability Dated Apr. 16, 2009 From the International Bureau of WIPO Re.: Applicaiton No. PCT/IL2007/000918.
International Search Report May 24, 2007 From the International Searching Authority of the Patent Cooperation Treaty Re.: Application No. PCT/IL05/00575.
Invitation to Pay Additional Fees Dated Feb. 15, 2007, From the International Searching Authority Re.: Application No. PCT/IL05/00575.
Office Action Dated Sep. 4, 2007, From the Israeli Patent Office Re.: Application No. 157007.
Official Action Dated Jun. 1, 2006, From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/686,536.
Official Action Dated May 3, 2007 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Official Action Dated Sep. 5, 2002 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 12/084,559.
Official Action Dated Oct. 7, 2008 From the US Patent Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Aug. 10, 2007 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Apr. 15, 2008 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Dec. 15, 2006 From the US Patent Office Re.: U.S. Appl. No. 10/616,301.
Official Action Dated Feb. 15, 2008 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 15, 2008 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Mar. 15, 2004 From the United States Patent and Trademark Office Re.: U.S. Appl. No. 09/725,316.
Second Written Opinion Dated Jun. 1, 2009 From the International Searching Authority Re.: Application No. PCT/IL07/00918.
Stoddart et al. “New Multi-Dimensional Reconstructions for the 12-Detector, Scanned Focal Point, Single-Photon Tomograph”, Physics in Medicine and Biology, XP020021960, 37(3): 579-586, Mar. 1, 1992. p. 582, § 2-p. 585, § 1.
Notice of Allowance Dated Sep. 17, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/533,568.
Response Dated Nov. 16, 2009 to Official Action of Jul. 15, 2009 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Apr. 18, 2010 to Official Action of Feb. 17, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/702,154.
Official Action Dated Apr. 16, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Notice of Allowance Dated May 5, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/240,239.
Notice of Allowance Dated May 6, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Official Action Dated Apr. 20, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Apr. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Communication Pursuant to Article 94(3) EPC Dated May 12, 2010 From the European Patent Office Re. Application No. 06809851.6.
International Preliminary Report on Patentability Dated Apr. 7, 2009 From the International Bureau of WIPO Re. Application No. PCT/IL2007/000918.
International Preliminary Report on Patentability Dated Jan. 13, 2009 From the International Bureau of WIPO Re. Application No. PCT/IL2006/000834.
International Preliminary Report on Patentability Dated May 14, 2008 From the International Bureau of WIPO Re. Application No. PCT/IL2006/001291.
International Preliminary Report on Patentability Dated May 15, 2007 From the International Bureau of WIPO Re. Application No. PCT/IL2005/001173.
International Search Report Dated Jul. 1, 2008 From the International Searching Authority Re. Application No. PCT/IL2006/000834.
International Search Report Dated Jul. 2, 2007 From the International Searching Authority Re. Application No. PCT/IL2006/001291.
International Search Report Dated Aug. 3, 2006 From the International Searching Authority Re. Application No. PCT/IL2005/001173.
International Search Report Dated Oct. 15, 2008 From the International Searching Authority Re. Application No. PCT/2007/000918.
Official Action Dated Nov. 1, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/728,383.
Official Action Dated Mar. 2, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,617.
Official Action Dated Dec. 8, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,690.
Official Action Dated Apr. 9, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Official Action Dated Aug. 13, 2008 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/769,826.
Official Action Dated Feb. 16, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/747,378.
Official Action Dated May 18, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Official Action Dated Apr. 20, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Official Action Dated Sep. 21, 2009 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,690.
Official Action Dated Sep. 30, 2010 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Bracco Diagnostics “Cardiotec®: Kit for the Preparation of Technetium Tc 99m Teboroxime. For Diagnostic Use”, Bracco Diagnostics Inc., Product Sheet, 2 P., Jul. 2003.
Bracco Diagnostics “Techneplex®: Kit for the Preparation of Technetium Tc 99m Pentetate Injection. Diagnostic—for Intravenous Use”, Bracco Diagnostics™, Product Sheet, 5 P., Jun. 1995.
Dewaraja et al. “Accurate Dosimetry in 1311 Radionuclide Therapy Using Patient-Specific, 3-Dimensional Methods for SPECT Reconstruction and Basorbed Dose Calculation”, The Journal of Nuclear Medicine, 46(5): 840-849, May 2005.
GE Healthcare “Myoview™: Kit for the Preparation of Technetium Tc99m Tetrofosmin for Injection. Diagnostic Radiopharmaceutical. For Intravenous Use Only. Rx Only”, GE Healthcare, Product Sheet, 4 P., Aug. 2006.
Mallinckrodt “Kit for the Preparation of Technetium Tc 99m Sestamibi Injection”, Mallinckrodt Inc., Product Sheet, 2 P., Sep. 8, 2008.
Mallinckrodt “OctreoScan®: Kit for the Preparation of Indium In-111 Pentetreotide. Diagnostic—for Intravenous Use. Rx Only”, Mallinckrodt Inc., Product Sheet, 2 P., Oct. 25, 2006.
Pharmalucence “Kit for the Preparation of Technetium Tc99m Sulfur Colloid Injection for Subcutaneous, Intraperitoneal, Intravenous, and Oral Use”, Pharmalucence Inc., Reference ID: 2977567, Prescribing Information, 10 P., Jul. 2011.
Saltz et al. “Interim Report of Randomized Phase II Trial of Cetuximab/Bevacizumab/Irinotecan (CBI) Versus Cetuximab/Bevacizumab (CB) in Irinotecan-Refractory Colorectal Cancer”, Gastrointestinal Cancer Symposium, Hollywood, FL, USA, Jan. 27-29, 2005, American Society of Clinical Oncology, Abstract 169b, 4P., 2005.
Trikha et al. “Monoclonal Antibodies as Therapeutics in Oncology”, Current Opinion in Biotechnology, 13: 609-614, 2002.
Volkow et al. “Imaging the Living Human Brain: Magnetic Resonance Imaging and Positron Emission Tomography”, Proc. Natl. Acad. Sci. USA, 94: 2787-2788, Apr. 1997.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Official Action Dated May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Chengazi et al. “Imaging Prostate Cancer With Technetium-99m-7E11-C5.3 (CYT-351)”, Journal of Nuclear Medicine, 38: 675-682, 1997.
McJilton et al. “Protein Kinase Cε Interacts With Bax and Promotes Survival of Human Prostate Cancer Cells”, Oncogene, 22; 7958-7968, 2003.
Xu et al. “Quantitative Expression Profile of Androgen-Regulated Genes in Prostate Cancer Cells and Identification of Prostate-Specific Genes”, International Journal of Cancer, 92: 322-328, 2001.
Communication Pursuant to Article 94(3) EPC Dated May 29, 2012 From the European Patent Office Re. Application No. 05803689.8.
Communication Under Rule 71(3) EPC Dated May 30, 2012 From the European Patent Office Re.: Application No. 02716285.8.
Interview Summary Dated May 31, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,301.
Communication Pursuant to Article 94(3) EPC Dated Jun. 11, 2012 From the European Patent Office Re.: Application No. 06756259.5.
Dillman “Radiolabeled Anti-CD20 Monoclonal Antibodies for the Treatment of B-Cell Lymphoma”, Journal of Clinical Oncology, 20(16): 3545-3557, Aug. 15, 2002.
Sands et al. “Methods for the Study of the Metabolism of Radiolabeled Monoclonal Antibodies by Liver and Tumor”, The Journal of Nuclear Medicine, 28: 390-398, 1987.
Official Action Dated Jun. 21, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Notice of Allowance Dated Jun. 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Advisory Action Before the Filing of an Appeal Brief Dated Jul. 12, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated May 18, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Official Action Dated Apr. 19, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/750,057.
Official Action Dated Apr. 23, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/932,987.
Official Action Dated Jun. 28, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074.
Examination Report Dated Jun. 22, 2011 From the Government of India, Patent Office, Intellectual Property Building Re. Application No. 2963/CHENP/2006.
Official Action Dated Mar. 9, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jun. 7, 2011 to Official Action of Mar. 9, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,301.
Response Dated Jun. 28, 2011 to Official Action of Dec. 28, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Jul. 11, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Response Dated Jul. 14, 2011 to Official Action of Mar. 15, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 12, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Official Action Dated Jul. 30, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Bowsher et al. “Treatment of Compton Scattering in Maximum-Likelihood, Expectation-Maximization Reconstructions of SPECT Images”, Journal of Nuclear Medicine, 32(6): 1285-1291, 1991.
Official Action Dated Aug. 2, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Handrick et al. “Evaluation of Binning Strategies for Tissue Classification in Computed Tomography Images”, Medical Imaging 2006: Image Processing, Proceedings of the SPIE, 6144: 1476-1486, 2006.
Thorndyke et al. “Reducing Respiratory Motion Artifacts in Positron Emission Tomography Through Retrospective Stacking”, Medical Physics, 33(7): 2632-2641, Jul. 2006.
Response Dated Sep. 1, 2011 to Communication Pursuant to Article 94(3) EPC of Mar. 2, 2011 From the European Patent Office Re.: Application No. 06756259.5.
Response Dated Aug. 29, 2011 to Official Action of Apr. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Aug. 31, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Official Action Dated Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Official Action Dated Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Response Dated Sep. 12, 2011 to Official Action of Jul. 11, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Response Dated Sep. 20, 2011 to Official Action of Apr. 20, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Communication Pursuant to Article 94(3) EPC Dated Sep. 22, 2011 From the European Patent Office Re. Application No. 06756258.7.
Notice of Allowance Dated Sep. 16, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Sep. 13, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852.
Ellestad “Stress Testing: Principles and Practice”, XP008143015, 5th Edition, p. 432, Jan. 1, 2003.
Gilland et al. “Long Focal Length, Asymmetric Fan Beam Collimation for Transmission Acquisition With a Triple Camera SPECT System”, IEEE Transactions on Nuclear Science, XP011087666, 44(3): 1191-1196, Jun. 1, 1997.
Meyers et al. “Age, Perfusion Test Results and Dipyridamole Reaction”, Radiologic Technology, XP008142909, 73(5): 409-414, May 1, 2002.
Zhang et al. “Potential of a Compton Camera for High Performance Scintimammography”, Physics in Medicine and Biology, XP020024019, 49(4): 617-638, Feb. 21, 2004.
Communication Pursuant to Article 94(3) EPC Dated Sep. 17, 2012 From the European Patent Office Re. Application No. 06832278.3.
Ouyang et al. “Incorporation of Correlated Structural Images in PET Image Reconstruction”, IEEE Transactions of Medical Imaging, 13(4): 627-640, Dec. 1994.
Notice of Allowance Dated Sep. 28, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/792,856.
Cancer Medicine “Radiolabeled Monoclonal Antibodies. Historical Perspective”, Cancer Medicine, 5th Ed., Sec.16: Principles of Biotherapeutics, Chap.65: Monoclonal Serotherapy, 2000.
Lange et al. “EM Reconstruction Algorithms for Emission and Transmission Tomography”, Journal of Computer Assisted Tomography, 8(2): 306-316, Apr. 1984.
Ohrvall et al. “Intraoperative Gamma Detection Reveals Abdominal EndocrineTumors More Efficiently Than Somatostatin Receptor Scintigraphy”, 6th Conference on Radioimmunodetection and Radioimmunotherapy of Cancer, Cancer, 80: 2490-2494, 1997.
Rockmore et al. “A Maximum Likelihood Approach to Emission Image Reconstruction From Projections”, IEEE Transactions on Nuclear Science, 23(4): 1428-1432, Aug. 1976.
Shepp et al. “Maximum Likelihood Reconstruction for Emission Tomography”, IEEE Transactions on Medical Imaging, MI-1: 113-122, Oct. 1982.
Sitek et al. “Reconstruction of Dynamic Renal Tomographic Data Acquired by Slow Rotation”, The Journal of Nuclear Medicine, 42(11): 1704-1712, Nov. 2001.
Solanki “The Use of Automation in Radiopharmacy”, Hospital Pharmacist, 7(4): 94-98, Apr. 2000.
Weldon et al. “Quantification of Inflammatory Bowel Disease Activity Using Technetium-99m HMPAO Labelled Leucocyte Single Photon Emission Computerised Tomography (SPECT)”, Gut, 36: 243-250, 1995.
Response Dated Oct. 14, 2011 to Supplementary European Search Report and the European Search Opinion of Mar. 16, 2011 From the European Patent Office Re. Application No. 05803689.8.
Official Action Dated Oct. 11, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852.
Official Action Dated Oct. 26, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/836,223.
Official Action Dated Oct. 27, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Supplemental Notice of Allowability Dated Oct. 24, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/607,075.
Official Action Dated Oct. 10, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Communication Pursuant to Article 94(3) EPC Dated Oct. 26, 2012 From the European Patent Office Re. Application No. 05803689.8.
Notice of Allowance Dated Oct. 11, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/988,926.
Response Dated Oct. 14, 2011 to Communication Pursuant to Rules 70(2) and 70a(2) EPC of Apr. 4, 2011 From the European Patent Office Re. Application No. 05803689.8.
Restriction Official Action Dated Nov. 8, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Communication Pursuant to Article 94(3) EPC Dated Nov. 12, 2012 From the European Patent Office Re. Application No. 06756258.7.
Notice of Allowance Dated Nov. 15, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,683.
Response Dated Nov. 14, 2011 to Official Action of Sep. 12, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Response Dated Oct. 24, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Restriction Official Action Dated Nov. 15, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,683.
Summons to Attend Oral Proceedings Pursuant to Rule 115(1) EPC Dated Nov. 29, 2012 From the European Patent Office Re. Application No. 06756259.5.
Communication Pursuant to Article 94(3) EPC Dated Nov. 18, 2011 From the European Patent Office Re. Application No. 05803689.8.
Response Dated Nov. 14, 2011 to Official Action of Jul. 12, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Response Dated Nov. 23, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Response Dated Nov. 23, 2011 to Official Action of May 23, 2011 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Response Dated Nov. 28, 2011 to Official Action of Jun. 28, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/628,074.
Official Action Dated Nov. 1, 2010 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Pluim et al. “Image Registration by Maximization of Combined Mutual Information and Gradient Information”, IEEE Transactions on Medical Imaging, 19(8): 1-6, 2000.
Response Dated Dec. 8, 2011 to Restriction Official Action of Nov. 8, 2011 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Official Action Dated Mar. 11, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/345,719.
Official Action Dated Jun. 12, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Bacharach et al. “Attenuation Correction in Cardiac Positron Emission Tomography and Single-Photon Emission Computed Tomography”, Journal of Nucelar Cardiology, 2(3): 246-255, 1995.
Uni Magdeburg “Attenuation Map”, University of Magdeburg, Germany, Retrieved From the Internet, Archived on Jul. 31, 2002.
Zaidi et al. “Determination of the Attenuation Map in Emission Tomography”, Journal of Nuclear Medicine, 44(2): 291-315, 2003.
Notice of Allowance Dated Jun. 14, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/616,307.
Notice of Allowance Dated Jul. 19, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Notice of Allowance Dated Jul. 25, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/345,719.
Supplementary European Search Report and the European Search Opinion Dated Nov. 13, 2012 From the European Patent Office Re. Application No. 06728347.3.
Notice of Allowance Dated Mar. 14, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Studen “Compton Camera With Position-Sensitive Silicon Detectors”, Doctoral Thesis, University of Ljubljana, Faculty of Mathematics and Physics, 36 P.
Notice of Allowance Dated Apr. 10, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/976,852.
Applicant-Initiated Interview Summary Dated May 1, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/343,792.
Applicant-Initiated Interview Summary Dated May 1, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Notice of Allowance Dated Jun. 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Advisory Action before the Filing of an Appeal Brief Dated May 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Notice of Allowance Dated Jul. 15, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/932,987.
Official Action Dated Jul. 5, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/656,548.
Advisory Action Before the Filing of an Appeal Brief Dated Feb. 26, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Official Action Dated Nov. 30, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/989,223.
Notice of Allowance Dated Oct. 26, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Official Action Dated Nov. 30, 2012 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Brzymialkiewicz et al. “Evaluation of Fully 3-D Emission Mammotomography With a Compact Cadmium Zinc Telluride Detector”, IEEE Transactions on Medical Imaging, 24(7): 868-877, Jul. 2005.
Jan et al. “Preliminary Results From the AROPET”, IEEE Nuclear Science Symposium Conference Record, Nov. 4-10, 2001, 3: 1607-1610, 2001.
Ohno et al. “Selection of Optimum Projection Angles in Three Dimensional Myocardial SPECT”, IEEE Nuclear Science Symposium Conference Record 2001, 4: 2166-2169, 2001.
Seret et al. “Intrinsic Uniformity Requirements for Pinhole SPECT”, Journal of Nuclear Medicine Technology, 34(1): 43-47, Mar. 2006.
Smither “High Resolution Medical Imaging System for 3-D Imaging of Radioactive Sources With 1 mm FWHM Spatial Resolution”, Proceedings of the SPIE, Medical Imaging 2003: Physics of Medical Imaging, 5030: 1052-1060, Jun. 9, 2003.
Tomai et al. “A 3D Gantry Single Photon Emission Tomograph With Hemispherical Coverage for Dedicated Breast Imaging”, Nuclear Instruments & Methods in Physics Research, Section A, 497: 157-167, 2003.
Advisory Action Before the Filing of an Appeal Brief Dated Feb. 26, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/514,785.
Notice of Allowance Dated Feb. 21, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/798,017.
Notice of Allowance Dated Feb. 25, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 09/641,973.
Communication Under Rule 71(3) EPC Dated Feb. 26, 2013 From the European Patent Office Re. Application No. 06756259.5.
Official Action Dated Feb. 22, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/616,307.
Notice of Allowance Dated Mar. 7, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/726,316.
Applicant-Initiated Interview Summary Dated Jan. 28, 2013 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/798,017.
Official Action Dated Feb. 7, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Notice of Allowance Dated Dec. 26, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 11/980,690.
Official Action Dated Dec. 28, 2012 From the US Patent and Trademark Office Re.: U.S. Appl. No. 10/343,792.
Charland et al. “The Use of Deconvolution and Total Least Squares in Recovering a Radiation Detector Line Spread Function”, Medical Physics, 25(2): 152-160, Feb. 1998. Abstract Only!
Applicant-Initiated Interview Summary Dated Jan. 29, 2014 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/345,773.
Communication Pursuant to Article 94(3) EPC Dated Nov. 25, 2013 From the European Patent Office Re. Application No. 06756258.7.
Notice of Allowance Dated Dec. 17, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/913,804.
Official Action Dated Nov. 15, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/345,773.
Official Action Dated Dec. 16, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Communication Pursuant to Article 94(3) EPC Dated Sep. 16, 2013 From the European Patent Office Re.: Application No. 06832278.3.
Notice of Allowance Dated Aug. 20, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/932,872.
Official Action Dated Aug. 5, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Official Action Dated Sep. 5, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 13/947,198.
Supplemental Notice of Allowability Dated Aug. 20, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/980,653.
Berman et al. “D-SPECT: A Novel Camera for High Speed Quantitative Molecular Imaging: Initial Clinical Results”, The Journal of Nuclear Medicine, 47(Suppl. 1): 131P, 2006.
Berman et al. “Myocardial Perfusion Imaging With Technetium-99m-Sestamibi: Comparative Analysis of Available Imaging Protocols”, The Journal of Nuclear Medicine, 35: 681-688, 1994.
Borges-Neto et al. “Perfusion and Function at Rest and Treadmill Exercise Using Technetium-99m-Sestamibi: Comparison of One- and Two-Day Protocols in Normal Volunteers”, The Journal of Nuclear Medicine, 31(7): 1128-1132, Jul. 1990.
Kwok et al. “Feasability of Simultaneous Dual-Isotope Myocardial Perfusion Acquisition Using a Lower Dose of Sestamibi”, European Journal of Nuclear Medicine, 24(3): 281-285, Mar. 1997.
Patton et al. “D-SPECT: A New Solid State Camera for High Speed Molecular Imaging”, The Journal of Nuclear Medicine, 47(Suppl. 1): 189P, 2006.
Official Action Dated Apr. 11, 2014 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/309,479.
Sharir et al. “D-SPECT: High Speed Myocardial Perfusion Imaging: A Comparison With Dual Detector Anger Camera (A-SPECT)”, The Journal of Nuclear Medicine, 48(Suppl. 2): 51P, # 169, 2007.
Applicant-Initiated Interview Summary Dated Mar. 20, 2014 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Official Action Dated Feb. 10, 2014 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Official Action Dated Jul. 30, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 10/343,792.
Official Action Dated Jul. 31, 2013 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Communication Pursuant to Article 94(3) EPC Dated May 8, 2014 From the European Patent Office Re. Application No. 05803689.8.
Communication Pursuant to Article 94(3) EPC Dated Oct. 10, 2014 From the European Patent Office Re. Application No. 05803689.8.
Communication Pursuant to Article 94(3) EPC Dated Oct. 17, 2014 From the European Patent Office Re. Application No. 06809851.6.
Communication Pursuant to Article 94(3) EPC Dated Sep. 12, 2014 From the European Patent Office Re. Application No. 06832278.3.
Official Action Dated Jun. 17, 2014 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Official Action Dated Jul. 8. 2015 From the US Patent and Trademark Office Re. U.S. Appl. No. 11/667,793.
Applicant-Initiated Interview Summary Dated Jun. 11, 2015 From the US Patent and Trademark Office Re. U.S. Appl. No. 14/214,960.
Official Action Dated Apr. 15, 2015 From the US Patent and Trademark Office Re. U.S. Appl. No. 14/214,960.
Official Action Dated Mar. 26, 2015 From the US Patent and Trademark Office Re. Application No. 14/147,682.
Official Action Dated Dec. 4, 2014 From the US Patent and Trademark Office Re. U.S. Appl. No. 12/087,150.
Johnson et al. “Analysis and Reconstruction of Medical Images Using Prior Information”, Lectures Notes in Statistics, Case Studies in Bayesian Statistics, II: 149-228, 1995.
Official Action Dated Aug. 4, 2015 From the US Patent and Trademark Office Re. U.S. Appl. No. 14/082,314.
Official Action Dated Sep. 15, 2015 From the US Patent and Trademark Office Re. U.S. Appl. No. 14/147,682.
Related Publications (1)
Number Date Country
20100142774 A1 Jun 2010 US
Provisional Applications (1)
Number Date Country
60875833 Dec 2006 US