The present invention relates to a method for plasticating and conveying macromolecular materials and equipment thereof, and in particular to a method for plasticating and conveying macromolecular materials based on elongational flow and an equipment thereof.
Macromolecular materials processing is a process with high energy consumption. Normally, screw machinery such as screw type extruder and screw type injection machine is used. The plastic materials should be proceeded with the process of conveying, melting and plasticating, during the processing of extrusion, injection or calendering, and this process occupies most of the energy consumption of the processing of macromolecular materials. In the screw machinery, the plasticating and conveying of the materials mainly depends on the dragging effect during the rotation of screw, wherein the solid conveying relies on friction, the melt conveying relies on viscosity, the velocity gradient of the materials is vertical to the direction of flow and deformation, and this flow and deformation is mainly subject to the shear stress. Therefore, it can be considered that the current screw machinery widely used is a screw type plasticating and conveying equipment of macromolecular materials based on shear rheology, and it is unavoidable that the capability of plasticating and conveying strongly depends on the internal friction of materials and the friction between the materials and the surface of material barrel. These two problems also depend on the physical property of the materials and the process conditions during manufacturing. In screw machinery, approaches such as providing grooves on the solid conveying section of the material barrel to increase the friction between the barrel and the materials, enlarging the length/diameter ratio of screw, and optimizing the screw structure are usually adopted to solve the above problems. However, these approaches may result in the increase of the thermo-mechanical history, the energy consumption, and the volume of the equipment, etc.
The dynamic processing technology shortens the thermo-mechanical history of the materials and reduces the flow resistance of the materials during the processing, so that the energy consumption of plasticating and conveying is reduced, and the plasticating capacity is improved. However, the dynamic processing equipment for macromolecular materials is essentially a screw type machine in which the plasticating and conveying of materials are based on shear rheology, and thus it can not overcome the problem that the capability of plasticating and conveying strongly depends on the friction between the materials and the inner surface of the material barrel and the internal friction of materials. Accordingly, the reduction in energy consumption of plasticating and conveying and the improvement in capability of plasticating and conveying are quite limited.
Given the shortcomings of the prior art, it is an object of the present invention to provide a method for plasticating and conveying macromolecular materials based on elongational flow, which overcomes the aforementioned problems of long thermo-mechanical history and high energy consumption during the processing.
It is also an object of the present invention to provide equipment for plasticating and conveying macromolecular materials based on elongational flow.
In the method for plasticating and conveying macromolecular materials based on elongational flow according to the present invention, a set of spaces having specific geometrical shape are formed; and the volume of the spaces increases and decreases periodically so that the materials flow into the space when the space volume increases; and the materials are pressed, plasticated and discharged when the volume decreases. Hence the materials are mainly under normal stress during the whole process of plasticating and conveying.
The equipment for achieving the above method is of the following structure: a vane-type plasticating and conveying unit comprises a cylindrical hollow stator; a columned rotor eccentrically installed in the inner cavity of the stator, wherein a group of rectangular slots are formed along the circumference of the rotor; and a plurality of vanes which are arranged evenly in the slots and can move freely along the radial direction. At each end of the stator one baffle which is concentrically to the stator is installed to control the flow direction of the materials. In the vane-type plasticating and conveying unit, the eccentricity between the stator and the rotor is adjustable and is larger than zero but smaller than the difference between the radius of the inner cavity of the stator and the radius of the rotor. The inner surface of the stator, the outer surface of the rotor, the two vanes, and the two baffles surround to form spaces having specific geometrical shape. When the rotor rotates, a pair of the vanes on the diameter of the rotor make reciprocating radial movements within the rectangular slot formed along the circumference of the rotor due to the outer top surface of the vanes being restricted by the inner surface of the stator; consequently the volume of the enclosed spaces increases and decreases periodically. When the space volume increases, the materials flow into the space gradually; whereas when the volume decreases, the materials are milled, compacted and discharged in the space mainly under the normal stress; and are plasticated and melted under the outer heating of the stator and are forced out in the end. Thus, the whole plasticating and conveying process is completed in a very short thermo-mechanical history. During the process, the volume of the spaces changes synchronously with the size of the cross section through which the materials pass, accordingly the velocity gradient of the materials is parallel to the direction of flow and deformation, which is mainly subject to normal stress. Therefore this plasticating and conveying process is based on elongational flow. A plurality of vane-type plasticating and conveying units may be combined in series to form a vane-type plasticating and conveying extruder. The vane-type plasticating and injection equipment of various types of extruder or injection machine may consist of a vane-type plasticating and conveying unit and various screw-type extruding units or plunger-type injection units.
The method for plasticating and conveying macromolecular materials based on elongational flow and the equipment thereof overcome the shortcoming that in a traditional plasticating and conveying unit, the plasticating and conveying capability strongly depends on the friction between the materials and the barrel surface and the internal friction of materials. Compared with the screw-type plasticating and conveying technology and equipment, the present invention is of the following advantages:
Many aspects of the invention can be better understood in the following embodiments with reference to the accompanying drawings.
Referring to
Referring to
Referring to
Referring to
Referring to
It should be emphasized that the above-described embodiments of the present invention, particularly, any preferred embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiment(s) of the invention without departing substantially from the spirit and principles of the invention. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present invention and protected by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0026054 | Jan 2008 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2008/000643 | 3/31/2008 | WO | 00 | 11/4/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/094815 | 8/6/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1804604 | Gilbert | May 1931 | A |
2239165 | Adams | Apr 1941 | A |
RE22160 | Davis | Aug 1942 | E |
3132847 | Mercuriali | May 1964 | A |
3201034 | Ryffel | Aug 1965 | A |
3260210 | Gram | Jul 1966 | A |
3364522 | Ledoux | Jan 1968 | A |
3831906 | Wakeman | Aug 1974 | A |
4627555 | Locke | Dec 1986 | A |
4737090 | Sakai et al. | Apr 1988 | A |
4746280 | Wystemp et al. | May 1988 | A |
5743639 | Puerner et al. | Apr 1998 | A |
5743640 | Crossley | Apr 1998 | A |
20040125690 | Sentmanat | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
2171020 | Jul 1994 | CN |
101219565 | Jul 2008 | CN |
1731040 | Dec 2006 | EP |
Entry |
---|
Supplementary European Search Report of EP 08715075 dated Apr. 5, 2011, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20100135102 A1 | Jun 2010 | US |