1. Field of the Invention
The present invention relates to a method and to a machine for the manufacture of a fiber web, and, more particularly, to the manufacture of a tissue web or of a hygienic web.
2. Description of the Related Art
The use of so-called throughflow apparatuses or TAD drying apparatuses (TAD=through air drying) in paper making machines is known (see for example WO 97/03247, U.S. Pat. No. 4,036,684). The TAD units have previously made up a large part of the total costs of the respective paper making machines. The energy requirements for a TAD machine with a dual wire former is very high and, in particular, much higher than, for example, those for a crescent former. For example, approximately 12 vacuum pumps have thus been required up to now in one TAD machine in order to achieve the desired dry content and degree of cleansing.
In a conventional TAD machine with, for example, a dual wire former, the web must be transferred from the forming zone to the TAD zone, with the desired dry content being able to lie on the web transfer, for example, in a range from approximately 22 to approximately 26.5%, depending on the basis weight. The web is then guided with this dry content, for example, to a wet suction box effecting a wet imprinting (wet molding) and then to the TAD drum. The named dry content has previously only been achieved, however, with a relatively high energy effort.
What is needed in the art is an improved method and an improved machine with which an optimum quality of the respective final product can be achieved with an energy effort which is as low as possible. In particular the energy effort required in connection with the vacuum generation in the dewatering of the fiber web should be reduced in this process.
In accordance with the present invention, a method for the manufacture of a fiber web, in particular of a tissue web or of a hygienic web, in which the fiber web is formed on a soft clothing with fine pores and the clothing is guided over a surface subject to suction and in which the fiber web is transferred from a soft clothing with fine pores directly onto a TAD wire of a TAD drying apparatus.
An advantage of the present invention is that an optimum quality of the respective final product is achieved with an energy effort which is as low as possible, in particular, the energy effort required with vacuum generation in the dewatering of the fiber web is reduced.
An optimum dry content gain results with minimum energy effort due to the combination of the surface subject to suction or of the vacuum generated there with the soft clothing with fine pores. When an appropriate soft clothing with fine pores is used, the capillary effect of the clothing can in particular be used for the web dewatering. The respective underpressure is thus supported and facilitated by this capillary effect. A lower number of vacuum pumps for the forming zone also results in view of the lower energy requirements. The dry content desired at the transfer to the TAD section is therefore achieved with a lower number of vacuum pumps in the forming zone. The transfer of the fiber web to the TAD wire preferably takes place after the surface subject to suction. The surface subject to suction is expediently curved. It is preferably formed by a suction guide roll, a shoe subject to suction or the like.
In accordance with a preferred embodiment of the method in accordance with the invention, the fiber web is dewatered between two clothings which run together while forming a material inlet gap and are guided over a forming element such as a forming roll, with the fiber web being guided after the forming element, by the inner clothing coming into contact with it, to the surface subject to suction. Advantageously, in this process the outer clothing not coming into contact with the forming element can be formed by an endless fabric, preferably a water permeable endless fabric.
The forming element can be formed by a solid forming roll or by a suction forming roll. In accordance with a preferred practical embodiment, the fiber web is wet molded on the TAD wire. The wet molding can take place at and/or after the web transfer position. It is advantageous, in certain cases for the two clothings to have a different running speed in order to produce a crepe effect acting on the fiber web.
The soft clothing with fine pores can in particular be formed by a felt, a capillary felt, a capillary membrane and/or the like. A coated wire, e.g. a wire with a foamed layer, and for example a felt with a foamed layer, can be used as the soft clothing with fine pores. In this case, the foam coating is preferably selected such that pores result in a range from approximately 3 to approximately 6 μm. The appropriate capillary effect is therefore used for the dewatering. The felt is provided with a special foam layer which gives the surface very small pores whose diameters can lie, for example, in the recited range from approximately 3 to approximately 6 μm. The air permeability of this felt is very low. The natural capillary effect is utilized for the dewatering of the web while it is in contact with the felt.
At least one suction element arranged inside the loop of the TAD wire can be used for the wet molding. A pick-up element or suction element can, for example, be provided inside the loop of the TAD wire in the region of the web transfer position for the support of the web transfer.
In accordance with an expedient practical embodiment, at least one suction element serving for the wet molding of the fiber web is provided inside the loop of the TAD wire in the region of the web transfer position and/or after the web transfer position. In accordance with a further advantageous embodiment of the method in accordance with the present invention, a shoe press is provided in the region of the web transfer position through which the fiber web is guided together with the soft clothing with fine pores and the TAD wire.
Advantageously, in this process the length of the press nip of the shoe press considered in the web running direction can be selected larger than a value of approximately 80 mm, and preferably larger than or equal to approximately 85 mm, and in particular larger than or equal to approximately 120 mm. The shoe press can be designed such that a pressure profile results over the press nip length with a maximum pressing pressure which is smaller than or equal to a value of approximately 2.5 MPa, and in particular smaller than 2 MPa, with a press shoe length of larger than or equal to approximately 120 mm. A gentle pressing with a low pressing pressure is thus ensured and a larger dwell time or pressing time is secured due to the shoe length, whereby the molding effect is improved.
The shoe press advantageously includes a shoe pressing unit, in particular a shoe press roll, and a wire roll cooperating with it and arranged inside the loop of the TAD wire. The pressing of the fiber web between the structured TAD wire and the soft clothing with fine pores effects the desired wet molding in this process. In this case, creping is not possible, i.e. there must not be any speed difference between the clothings.
In specific cases, it is also advantageous for the fiber web to be wet molded both by way of the shoe press and by way of a suction element provided after it. Wet molding is therefore generally possible at different positions.
In accordance with a preferred practical embodiment of the method in accordance with the present invention, a dewatering wire with zonally different wire permeability is used as the outer clothing not coming into contact with the forming element. In conjunction with the other method features, the advantage results therefrom of a higher water absorption speed of the fiber web, in particular of the tissue web or of the hygienic web.
The fiber web is expediently transferred from the TAD wire onto a drying cylinder, in particular onto a Yankee cylinder, after the TAD drying. A shoe pressing unit, in particular a shoe press, which is preferably wrapped around by a soft felt or by a capillary felt and which includes a longitudinal shoe, can be provided in this process inside the loop of the TAD wire in the transfer region. A reliable and gentle transfer of the web is thus ensured in which it is avoided that the three-dimensional structure of the fiber web produced by the wet molding and by the TAD process, and thus the web quality such as in particular the water retention capability, the water absorption speed and/or the like, is again reduced. The respective web transfer can generally, however, also be ensured by a suction press roll, and in particular by a press roll not subject to suction.
The machine in accordance with the present invention for the manufacture of a fiber web, in particular of a tissue web or of a hygienic web, is accordingly characterized in that the fiber web is formed on a soft clothing with fine pores and this clothing is guided over a surface subject to suction and in that the fiber web is transferred from a soft clothing with fine pores directly onto a TAD wire of a TAD drying apparatus.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate one preferred embodiment of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
Fiber web 12 is formed on a soft clothing 14 with fine pores in machine 10. Clothing 14 is guided together with fiber web 12 formed thereon over a surface 16 subject to suction. Subsequent to this, fiber web 12 is transferred from soft clothing 14 with fine pores directly onto a TAD wire 18 of a TAD drying apparatus 20.
Fiber web 12 is therefore transferred from the same soft clothing 14 with fine pores directly onto TAD wire 18 on which it was formed. The transfer takes place in the web running direction L after surface 16 subject to suction. Surface 16 subject to suction is formed by a suction guide roll 22.
In the forming zone, fiber web 12 is dewatered between two clothings 14, 24 which run together while forming a material inlet gap and are guided over a forming element 28 such as in particular a forming roll. Fiber web 12 is guided after forming element 28, by inner clothing 14 coming into contact with forming element 28, to surface 16 subject to suction.
Outer clothing 24 not coming into contact with forming element 28 can in particular be formed by an endless fabric, preferably a water permeable endless fabric. Forming element 28 can be formed by a solid forming roll or also by a suction forming roll.
Fiber web 12 is wet molded on TAD wire 18. The wet molding can generally take place at and/or after web transfer position I.
In the present case, the two clothings 14, 24 have a different running speed in order to produce a crepe effect acting on fiber web 12. Soft clothing 14 with fine pores can in particular be formed by a felt, a capillary felt, a capillary membrane and/or the like. In particular a felt with a foamed layer can thus be used as soft clothing 14 with fine pores. In this process, the foam coating can in particular be selected such that pores result in a range from approximately 3 to approximately 6 μm.
At least one suction element arranged inside the loop of TAD wire 18 can be used for the wet molding. In the present case, only one such suction element 30 is used which is here provided, for example, after web transfer position I. Fiber web 20 is pulled toward TAD wire 18 by suction element 30 and thus wet molded.
A pick-up element or suction element 32 is provided inside the loop of TAD wire 18 in on of the web transfer position. The fiber suspension is introduced via a headbox 34 into material inlet gap 26 formed between two clothings 14, 24. Clothing 14 is conditioned by way of a so-called Uhle box 36, i.e. a tube suction box, after the transfer of fiber web 12 to TAD wire 18.
Subsequent to suction element 30, fiber web 12 is guided together with TAD wire 18 over a TAD drum 38 which, as can be recognized with reference to
The length of press nip 44 of shoe press 42 considered in the web running direction L can expediently be selected to be larger than a value of approximately 80 mm, and preferably larger than or equal to approximately 85 mm, and in particular larger than or equal to approximately 120 mm. The shoe press can in particular be designed such that a pressure profile results over the press nip length with a maximum pressing pressure which is smaller than or equal to a value of approximately 2.5 MPa and in particular smaller than 2 MPa with a press shoe length of larger than or equal to approximately 120 mm. In this manner, a gentle pressing with a low pressing pressure is thus ensured and a larger dwell time and pressing time is secured due to the corresponding shoe length, whereby the molding effect is improved. Wet molding can therefore also already take place in the region of web transfer position I. In addition, suction element 30 likewise serving for the wet molding (see also
Wet molding can therefore generally take place in each case in the region of web transfer position I or after web transfer position I or such wet molding can take place both in the region of web transfer position I and after web transfer position I.
Shoe press 42 includes a shoe pressing unit 46, in particular a shoe press roll, and, in the embodiment of
Moreover, outer clothing 24 not coming into contact with forming element 28 can be formed by a dewatering wire with zonally different wire permeability, which in particular brings about the advantage of a higher water absorption speed of fiber web 12. As can be recognized with reference to
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This is a continuation of PCT application No. PCT/EP02/05807, entitled “METHOD AND MACHINE FOR THE PRODUCTION OF A FIBRE WEB”, filed May 27, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3059312 | Jamieson | Oct 1962 | A |
3617442 | Hurschman | Nov 1971 | A |
3812000 | Salvucci, Jr. et al. | May 1974 | A |
3821068 | Shaw | Jun 1974 | A |
4036684 | Schmitt et al. | Jul 1977 | A |
4102737 | Morton | Jul 1978 | A |
4236963 | Busker | Dec 1980 | A |
4369081 | Curry et al. | Jan 1983 | A |
4931010 | Barnewall | Jun 1990 | A |
5002801 | Barnewall | Mar 1991 | A |
5397437 | Ingemar | Mar 1995 | A |
5846380 | Van Phan et al. | Dec 1998 | A |
5932068 | Farrington et al. | Aug 1999 | A |
6042692 | Myren | Mar 2000 | A |
6077398 | Fiscus et al. | Jun 2000 | A |
6103062 | Ampulski et al. | Aug 2000 | A |
6209224 | Chuang | Apr 2001 | B1 |
6235160 | Tietz et al. | May 2001 | B1 |
6248210 | Edwards et al. | Jun 2001 | B1 |
6350349 | Hermans et al. | Feb 2002 | B1 |
6488816 | Klerelid | Dec 2002 | B1 |
6524445 | Otto et al. | Feb 2003 | B1 |
6758943 | McConnell et al. | Jul 2004 | B2 |
6780282 | Scherb et al. | Aug 2004 | B2 |
20020060043 | Scherb et al. | May 2002 | A1 |
20020060046 | Scherb et al. | May 2002 | A1 |
20020179269 | Klerelid | Dec 2002 | A1 |
20030019601 | Hermans et al. | Jan 2003 | A1 |
20030098134 | Scherb et al. | May 2003 | A1 |
20030136018 | Herman et al. | Jul 2003 | A1 |
20040018369 | Goulet et al. | Jan 2004 | A1 |
20040237210 | Thoroe-Scherb et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
694 17 068 | Dec 1994 | DE |
10130038 | Jan 2003 | DE |
0 874 083 | Apr 1997 | EP |
1 365 230 | Jun 1971 | GB |
2 006 296 | Oct 1977 | GB |
WO 9300475 | Jun 1991 | WO |
WO 9703247 | Jul 1995 | WO |
WO 9947749 | Mar 1998 | WO |
WO 0100925 | Jun 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040244933 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP02/05807 | May 2002 | US |
Child | 10742401 | US |