The present invention relates to a method of determining imbalances of at least one wheel on a vehicle, when said wheel is rotating. Further, it relates to a system for performing said method.
When a vehicle with wheels is being driven, this exposes it to wear over time, which may influence the performance of said vehicle. Steering system, tire and wheel wear are continually resulting in frequent maintenance repairs. If not detected and repaired, this wear may lead to increased steering inaccuracies, and in the worst case scenario to accidents and risk for damage to driver, vehicle, bystanders and material.
Said wear induces vibrations in all three dimensions into the vehicle and its wheels, because different types of wheel imbalances develop due to this wear over time. For the purpose of the present invention, the term “wheel imbalances” comprises different types of wheel imbalances. The most common wheel imbalance type is known as an out of balance condition, e.g. where a wheel is having a non circular wheel shape due to uneven tire wear as is shown in
Other types of wheel imbalances comprises wheel run-out, such as radial wheel runout in an “out-of-round” situation where vibrations are produced as the wheel spindle moves up and down, i.e. where a wheel has its circular shape transformed into an elliptical one, e.g. by an impact, as shown in
Other types of wheel imbalances comprises when a wheel 20 has an eccentric rotational axis 20c relative to the wheel axle axis, as shown in
When a wheel is provided with a wheel imbalance, the rotation of said wheel upon a surface G or even independently from any surface imparts wheel vibrations, all of which may be more or less detectable in all directions x, y, and z as indicated with arrows in the
Prior art systems for detecting wheel imbalances have been disclosed, both conventional systems comprising a separate system from the vehicle, where the vehicle is at holding still and the wheels are turning, and also systems for a vehicle being driven
These prior art systems comprise the system disclosed in EP 0 421 065 comprising accelerometers along an x, y and z direction and wheel speed indicators for each wheel and an on board display indicating which type of wheel imbalance is detected after performing frequency analysis of the measurements from the accelerometer and wheel speed indicator.
In U.S. Pat. No. 6,353,384 is disclosed another wheel imbalance detection system and method for a vehicle while driving for determining an out of balance condition in a wheel, comprising a single accelerometer provided upon an axle mounting two wheels, where the combined wheel vibrations from these two wheels and wheel speeds from a conventional ABS-system is used for said determination. With this solution, it is not possible to detect from which wheel the imbalance originates.
However, such prior art systems are not able to indicate where upon the wheel, such an imbalance is positioned. This is a disadvantage, because this requires the use of two systems, that is an on board system indicating that a wheel imbalance is in fact present and what type of wheel imbalance it is, and a more sensitive separate system, e.g. a maintenance apparatus for a precise location of said wheel imbalance, which accordingly increases the costs of installation and maintenance of both systems. These systems also require that each wheel is dismounted from the vehicle for the analysis.
This is especially a problem for large vehicles, wherein often more than four wheels are provided, because if an on board prior art system e.g. such as disclosed in U.S. Pat. No. 6,353,384, indicates an imbalance in one of the wheels on an axis, several wheels must be checked, increasing the time used in trying to locate such a wheel imbalance. The wheels of a heavy vehicle are heavy and difficult to handle, which increases the cost for the examination.
On this background, it is desirable to provide a method and a system for determining imbalances of at least one wheel on a vehicle, which alleviate the above mentioned disadvantages, and provide a positive identification of where upon said wheel, such imbalance is located in order to ease the maintenance repair of said wheel when needed.
According to aspects of the present invention, a method and a system for performing said method for determining imbalances of at least one wheel on a vehicle, when said wheel is rotating, are provided. The method comprises the steps of: providing a vibration signal from at least one wheel vibration sensor associated with said wheel, said vibration signal comprising at least vertical acceleration along a y-direction; providing angular velocity signals of the rotation of said wheel comprising a reference signal indicating the start of a wheel revolution; based thereupon performing signal processing upon these signals for detecting a periodic signal of a predetermined nature corresponding to imbalances in said wheel and determining the position upon said at least one wheel of such imbalance; and indicating the position of such imbalance in the wheel, and optionally other wheel imbalance characteristics, such as imbalance type.
Accordingly, a wheel imbalance detection system separate from the vehicle is no longer necessary, because the present method provides an indication as to the precise location and type of any detected imbalance in a wheel. Based on the indication of imbalance location on each wheel provided with such system, any type of wheel imbalance may be located and quickly attended to by turning the wheel into position, and inspect and repair the point of the wheel imbalance. By being able to locate the position upon the wheel of such wheel imbalance, the maintenance time used is reduced considerably. Further, the possibility of an early detection of a wheel imbalance reduces the risk for a small damage to the wheel condition to develop further, such as a wear induced zone of breakage.
In a preferred embodiment of the method according to the invention, said reference signal is provided by a predetermined number of pulses, wherein one is selected for an indication of the start of a wheel revolution. Thus, a reference signal is provided for an accurate determination of wheel revolution start.
In another preferred embodiment of the method according to the invention, said reference signal is provided by an ABS sensor providing one signal pulse per revolution, which is different from the other signal pulses. This may e.g. be a pulse with a shorter or longer pulse width than the other ABS-pulses in one wheel revolution, corresponding to an ABS sensor being provided with a broader or shorter tooth than the other teeth, which effectively identifies the wheel revolution start as a reference signal.
In another preferred embodiment of the method according to the invention, the method further comprises the step of indicating the number, weight and position of counter balancing weights required to balance the wheel, when the wheel imbalance type is determined to be an out of balance type. Thus, a supplemental use of a balancing apparatus is not necessary any more, as a fully operational out of balance detection and balancing method is available by this method.
In a preferred embodiment of the system according to the present invention, said wheel vibration measurement means comprise one or more one-, two, or three-dimensional accelerometers, which are provided on a non-rotating end section of the axle mounting said at least one wheel, adjacent to said wheel. By being provided on a non-rotating part of the axle, e.g. in the wheel hub or on the axle end section adjacent to the wheel, interfering rotational vibrations in either direction is avoided. Accelerometers provide accurate wheel vibration measurement data, and may provide multi-dimensional data as well, providing further basis for an accurate detection of wheel imbalance position upon the wheel as well as of imbalance type.
In another embodiment of the system according to the present invention, the system is arranged to communicate with a data system in said vehicle for a mutual exchange of data. Such data may advantageously comprise wheel radius data, vehicle speed indication, ABS system data provided to the system and for the vehicle data system it may comprise a wheel imbalance indication signal, which is processed and communicated to a display system already available inside said vehicle, such as e.g. a display showing alert or alarm conditions in said vehicle.
By the invention it has been realized, that said method for detecting wheel imbalances may also be used to indicate periodic wheel vibrations from a tire approaching its flat state.
In the following, the invention is described with reference to the accompanying drawings, in which:
a to 1d are schematic side views of wheels in four different wheel imbalance conditions, these being an uneven wear of a tire in
a to 3d are schematic views of a vehicle rotation sensor signal from a system according to another embodiment of the present invention in
The
In
The wheel vibration sensor 10 for said wheel 20 comprise in the embodiment shown in
The wheel angular velocity sensor 12 provides signals corresponding to the angular velocity ω of said at least one wheel 20. The angular velocity sensor is preferably an ABS-sensor (Automatic Braking System), which provide a known number of pulses per wheel revolution. As indicated in
As a further alternative, a less accurate angular velocity of the wheel may be calculated based on signals from the available vehicle speed indicator and from data concerning the wheel radius r. In a preferred embodiment, the wheel radius data is supplied from a wheel data chip 12a provided in the tires upon the truck 2 by the time of tire fabrication. Alternatively, the radius r of the wheel 20 may be approximated, or even be input by an operator of the system 1, e.g. maintenance personnel or the driver, or may be indicated to the system 1 in any other suitable way 12. Alternatively, the start of wheel revolution reference signal is given at the position of said wheel radius chip.
As shown in
Preferably, the seriousness of such detected imbalance may also be indicated to a driver by actuating a specific visual or audible signal device or indicator lamp in said display. Further, the indicator 16 can also be arranged to show only certain types of wheel imbalances, e.g. by a user selection option.
In the
In
In
In
In
Accordingly, signals are available for signal processing for an accurate determination of wheel imbalance type and position upon said wheel, as will be described further in the following.
The signal processing of the resulting wheel vibration measurements, which is performed in order to detect a frequency peak, which indicates a periodic signal within a given frequency area, may be performed by using a whole range of different analogue or digital techniques. These comprise band pass filtering to reduce the signal to noise ratio during time domain analysis, Fast Fourier Transform or FFT and frequency domain analysis, and may be performed either with predetermined or adaptive peak detection levels. Preferably, the signal processing is performed by digital frequency analysis of the signals acquired from the wheel angular velocity and vibration measurements.
For frequency domain analysis, the wheel vibration measurements registered by the accelerometer 10 at the wheel 20 may be represented as shown in
In
Then, during frequency analysis, band pass filtering may preferably be performed by selecting an interval ft−δf, ft+δf around one or more such frequencies, where such imbalance frequency peaks are presumed to be located, where the value of δf may be suitably chosen to fit a peak most effectively. Each speed dependent peak frequency fi, f2, f3 . . . is equal to frequency of the wheel imbalance type and position on the wheel. The surrounding frequency level of said interval ft−δf, ft+δf is also measured, and the peak level of the specific frequency is divided by the surrounding frequencies ft−δf, ft+δf to be able to detect, if the increase detected is a general noise increase or if the vibration signal is created by any wheel imbalance type, i.e. if ft/(ft−δf) or ft/(ft+δf)>x, where x is a predetermined level, the result of the detection wheel imbalance is positive. The detection amplitude threshold level x may be chosen arbitrarily, depending upon type of indication needed, i.e. direct in the cabin provided for the driver attention or as service data for maintenance personnel. Further, the level x may be subdivided into stages, for an indication of seriousness of the imbalance present for detecting the change of intensity of the detected periodic signal peak over time. Advantageously, type of indicator means is selected according to different levels of seriousness of the wheel imbalance vibration.
As an example, consider a periodic vibration signal as shown in
The result from the previous quote is stored in the memory and compared to the result of the next analysis. Preferably, overtone analysis is performed for higher order harmonics as well in order to reconstruct any such weaker periodic wave signals. In general peak frequencies in the order of 5 to 100 Hz are observed with the types of periodic wheel imbalances mentioned above.
The processor may preferably also be capable of indicating an informed suggestion as to number, weight and position of required counter balancing weights, when the wheel imbalance type is determined to be an out of balance type. This may render a second maintenance shop balancing apparatus unnecessary for balancing out an out of balance wheel.
The results of the digital signal processing may be stored continuously for further processing or registration purposes, and may be interchanged with an on board vehicle data system.
Other embodiments of the present invention are conceivable, all remaining within the scope of invention, such as the vehicle may preferably be a truck, alternatively it may be an automobile, a bus or a construction vehicle, as well as a vehicle comprising trailers or a tractor with a semi-trailer.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2005/001292 | 9/6/2005 | WO | 00 | 1/11/2009 |