The present invention, in some embodiments thereof, relates to a system and a method for supporting histological analysis and, more particularly, but not exclusively, to a system and a method for supporting the histological analysis of specimens obtained from a common biological source.
In the field of medical diagnostics, the detection, identification, quantization and characterization of regions of interest, such as tumor regions, through testing of biological specimens is an important aspect of diagnosis. Typically, a biological specimen such as bone marrow, lymph nodes, peripheral blood, cerebrospinal fluid, urine, effusions, fine needle aspirates, peripheral blood scrapings or other materials are prepared by staining the specimen to identify regions of interest. One method of histological specimen preparation is to react a specimen with a specific probe which may be a monoclonal antibody, a polyclonal antiserum, or a nucleic acid which is reactive with a component of the region of interest, such as tumor cells. The reaction may be detected using an enzymatic reaction, such as alkaline phosphatase or glucose oxidase or peroxidase to convert a soluble colorless substrate to a colored insoluble precipitate, or by directly conjugating a dye to the probe.
Typically, biological specimens are prepared by fixing the biological material onto microscopic slides and staining them using a variety of staining methods, such as morphological and cytogenetical stains. Stained specimens are then evaluated for the presence or absence of cancerous or abnormal regions or cells. Cytogenetical staining may be useful for the identification of specific chromosomal aberrations. Examples of cytogenetical staining include but are not limited to fluorescent in situ hybridization (FISH), radiolabeled in situ hybridization, Digoxygenin labeled in situ hybridization and biotinylated in situ hybridization.
Various bio-imaging approaches are routinely utilized for both research and diagnostic purposes. Several bio-imaging methods are currently used in clinical and research practice, inter alia, for the diagnosis of hematological malignancies including cancers. In histology and immunohistochemistry the common practice is to bind fluorescent dyes, such as chromophores, or absorbent dyes, such as chromogens, that may be observed by excited emission, transmission or reflection, (see David L. Spector and R. D. Goldman (2005). Basic Methods in Microscopy. New York Cold Spring Harbor Laboratory Press) that is incorporated herein by reference. Such staining methods or protocols are vital in order to reveal the content and structure of cells in sections of a histological specimen. In some cases, more than one staining method should be performed in order to reveal enough details about the histological specimen. In these cases different sections of the same histological specimen may have to be processed according to different staining procedures and/or methods, which may be referred to herein as staining procedures. Different sections are needed as dyeing the same section of a histological specimen according to more than one staining method and/or protocol may not be possible as one staining method and/or protocol may counter the other. Furthermore, at times a certain staining procedure may only be determined and applied after the first analysis is performed on a differently stained section. In these cases a primary diagnosis is based on the staining of a section of the histological specimen according to a first staining procedure. If this diagnosis reveals that the histological specimen should be further analyzed, one or more additional sections of the histological specimen are stained according to another staining procedure, usually a more targeted one.
In general, staining procedures may be used for general and specific applications. Common staining dye for general application is Hematoxylin and Eosin (H&E) dye that is often used to reflect the acidity-basophilic nature of a specimen. Similarly, a Giemsa dye, wherein Methylene blue replaces the Hematoxylin, is also broadly used to differentiate chromosomes, cytology specimens and various bacteria. Since every chemical entity bears, for instance, an acidity value this sort of staining does not target specific compounds. Such a staining may be used for differentiating the sought-after structures from the background and/or from other elements.
Common staining dyes for specific applications are FISH and CISH and Diamino Benzidine tetrahydrochlorid (DAB), 3-Amino-9-ethylcarbazole (AEC), and Fast-Red. A certain dye may be used for marking different proteins through binding and its meaning depends on the specimen context. Another specific application may assist in identification of specific bacteria, for example using Methylene blue and fuchsine (Ziehl-Nielsen) that is used for staining for bacilli.
Common staining protocols usually include a primary diagnosis that is based on a general staining of a section of a histological specimen and a secondary diagnosis that is based on a specific staining of another section of the histological specimen. For instance, core biopsies of prostate are first analyzed based on the H&E stained sections. If there is doubt with respect to the integrity of the prostate glands, a serial section is stained for the identification of, for example Cytokeratin 903, to verify or refute the initial suspicion, for example see Varma, M., M. D. Linden, et al. (1999). “Effect of formalin fixation and epitope retrieval techniques on antibody 34betaE12 immunostaining of prostatic tissues.” Modern Pathology 12(5): 472-8, which incorporate herein by reference.
It should be noted that the fixation of cells by cell dropping may be optimal for FISH analysis but worthless for morphological analysis since the cell cytoplasm is completely destroyed by the pre-treatment. In another case, cell smears are compatible with cell morphology but are not optimal for FISH analysis due to overlapping cells in the slide and the relatively low number of nucleated cells. In addition, multiple staining might result in inadequate results due to interference between the two staining methods. For example, the material used for the first staining method might leave some remnants on the cells, which appear as background to the second staining method. On another case the chromogenic substrates used by one staining method might obscure the chromogens used by the second staining method.
The stained specimens may be examined manually either by a lab technician or by a pathologist or automatically by automated cell analysis systems. When the stained specimen is probed by an automated cell analysis system a high power microscope is used for scanning a rack of slides, portions of which have been previously selected by an operator. The operator scans each slide and notes the points of interest on the slide for later analysis. Once the points of interest have been located and stored by the operator, the automated analysis system performs an image analysis.
For example, U.S. Pat. No. 7,177,454, filed on Feb. 3, 2003, describes a method, system, and apparatus are provided for automated light microscopic for detection of proteins associated with cell proliferative disorders and U.S. Pat. No. 7,272,252, filed on Sep. 18, 2007, that describes a method and apparatus for automated analysis of transmitted and fluorescently labeled biological samples, wherein the apparatus automatically scans at a low magnification to acquire images which are analyzed to determine candidate cell structures of interest. Once candidate structures of interest are identified, further analysis is conducted automatically to process and collect data from samples having different staining agents.
According to an aspect of some embodiments of the present invention there is provided a method for presenting at least one structure of a histological specimen. The method comprises providing a plurality of images of a plurality of sections of a single histological specimen having a plurality of structures, segmenting a plurality of segments of the plurality of structures in each the image, associating among respective the segments of a common structure of the plurality of structures, and presenting the association in relation to at least some of the plurality of images.
Optionally, the method further comprises matching pixels of a segment of the plurality of segments with respective pixels of an associated segment of the plurality of segments.
Optionally, each the section is stained using at least one of a different staining procedure and a different staining agent.
Optionally, at least some of the associated segments are depicted in non-consecutive sections of the plurality of sections.
Optionally, the displaying further comprises aligning at least one of the plurality of images according to the association.
Optionally, the displaying further comprises reorienting at least one of the plurality of images according to the association.
Optionally, the associating comprises identifying a transformation between at least two of the plurality of segments.
Optionally, the associating comprises acquiring positional information of at least two of the associated segments, the presenting comprises adjusting the at least two of the associated segments according to the positional information.
Optionally, the method further comprises verifying the associating by matching positional information of at least two of the associated segments.
Optionally, each the section is positioned on a single specimen slide.
Optionally, the associating comprises coloring the associated segments in a single color.
Optionally, the associating comprises labeling the associated segments with a single label.
Optionally, the associating comprises scoring the similarity between at least one pair of the plurality of segments and associating the segments according to the scoring.
More optionally, the associating comprises generating a probability matrix according to the scoring and associating the plurality of segments according to the probability matrix.
According to an aspect of some embodiments of the present invention there is provided a system for presenting a histological specimen. The system comprises a receiving module for receiving a plurality of images of a plurality of sections of a single histological specimen having a plurality of structures and a matching module for mapping segments of each the structure in each the section and associating among respective the segments of a common structure of the plurality of structures. The system further comprises an output module for allowing the presenting of an indication of the association in relation to at least one of the plurality of images.
Optionally, the system further comprises a user interface for allowing a user to select at least one of the pluralities of segments, the matching module being for performing the mapping according to the selection, the associating comprises associating an area respective to the selected area.
Optionally, the matching module is for aligning the plurality of images according to the associating, the indication comprises the aligned images, the presentation unit being for displaying the aligned images to a user.
According to an aspect of some embodiments of the present invention there is provided an apparatus for allowing the presentation of a single histological specimen. The apparatus comprises a receiving module for receiving a plurality of images each of a different section of a single histological specimen, a user interface for allowing a user to select a first area in a first location in one of the plurality of images, and a matching module for identifying a second area in a second location in another of the plurality of images. The second location being respective to the first location. The apparatus further comprises an output module for allowing the presenting of an association between the first and second areas according to the identification.
Optionally, the matching module is for identifying the second area by segmenting a plurality of segments of a plurality of structures of the single histological specimen in each the image, and associating among segments of each the structure.
Optionally, the receiving module is configured to receive the plurality of images from a microscope camera.
Optionally, the output module is for allowing the presenting automatically in response to the user selection of the first area.
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, several selected tasks could be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
For example, hardware for performing selected tasks according to embodiments of the invention could be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data. Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
In the drawings:
a-i are schematic illustrations of common characteristics of an image of a section which may be taken into account during the matching process, according to some embodiments of the present invention;
a-8f includes exemplary images of non-consecutive sections of a common histological specimen, according to some embodiments of the present invention;
The present invention, in some embodiments thereof, relates to a system and a method for facilitating the analysis of biological specimens and, more particularly, but not exclusively, to a system and a method for presenting biological specimens obtained from a common biological source.
According to some embodiments of the present invention there is provided a system and a method for identifying, associating, and optionally mapping structures of a common histological specimen in different sections and presenting the association in a manner that facilitates the analysis of the common histological specimen by a user and/or an automated system. Each one of the sections may be stained by the same staining agent and/or protocol or by a different staining agent and/or protocol. Optionally, one section of the common histological specimen is reoriented and/or aligned according to the orientation of another section. Such a reorientation or alignment allows a lab technician or a pathologist to compare between segments of a certain structure of the common histological specimen in different sections. Optionally, segments of a certain structure are colored and/or labeled in the same manner in each one of the sections. Such a coloring and/or labeling assists the lab technician or the pathologist to identify different segments of the same structure in a number of different sections. Optionally, the system and/or the method maps equivalent areas on similar sections, either automatically or according to user inputs and/or definitions. Optionally, the pixels of a segment in a certain section are mapped to respective pixels of one or more associated segments in of other sections. Optionally, a non-unique mapping is used for associating a certain area in a certain section to several respective areas in one or more other sections and vice versa. As further described below, the association of the segments of a common structure may be performed with regard to unique characteristics of stained sections.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not necessarily limited in its application to the details of construction and the arrangement of the components and/or methods set forth in the following description and/or illustrated in the drawings and/or the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways.
Reference is now made to
As commonly known and outlined in the background, various staining methods and protocols are used for analyzing histological specimens. Such staining methods and protocols may require the performing of a number of staining procedures, such as specific and general staining procedures, on a number of different sections of the histological specimen. The different sections may be provided on a common slide and/or on different slides. For example, as depicted in 101 and 102, first and second sections of a common histological specimen are provided.
The first and second sections may be trimmed from a common histological specimen, such as a biological tissue. The histological specimen is optionally fixated in a block, such as a paraffin block and frozen array block that contains the histological specimen, such as a tissue or cytology related specimen. Usually, the histological specimen includes one or more structures. Each section includes cross sectional segments of the one or more structures, which may be referred to herein as segments. An example for such sections are provided in
It should be noted that although the description mostly refers to only one pair of sections, any number of sections which have been trimmed from the common histological specimen may be provided and associated, optionally as further described below.
Then, as depicted in 103, the segments in each one of the sections are segmented, optionally as further described below. In some embodiments of the present invention, the segmenting includes identifying segments of different structures of the common histological specimen. These structures may include necrotic parts, granulomas, bone tissues, fat regions, and the like.
The segments of each structure may have a general outline and/or micro fingerprints, such as purple nuclei and pink cytoplasm that appears in an H&E staining procedure. The general outline of a certain structure, which may be referred to herein as a macro view, appears darker than the surrounding, which optionally appear as a “white light” background and may be fixated in the sections. The hues of elements which are part of the surrounding, such as cell debris, are optionally lighter than the hue of the structures that appear in the sections.
The method by which structures are found may depend on the used type of slides and may be performed according to a known segmentation method. Such segmentation methods are well known and will not, therefore, be described herein detail.
Optionally, the segmentation includes joining structure sections with relatively small area to form a single structure. Optionally, structure sections with an area below a certain threshold are joined with other structure sections with an area below the certain threshold which are positioned in a proximity thereto.
Now, after the sections have been segmented, as shown at 103, segments of the same structures at different sections are mapped, as shown at 104. Optionally, the segmenting and/or the mapping is performed on digital images of the sections which are captured using an image sensor, as further described below in relation to
Such segmenting and mapping allow the examination and analysis of structures of the common histological from which the aforementioned sections have been trimmed. For example, when a pathologist diagnoses serial sections, she compares between cross sectional segments of a structure of the histological specimen, which may be referred to herein as segments. The segments may be located on an image of a different slide that has been stained differently. For example, the comparison between the sections which are depicted in
As used herein, mapping means arranging, tagging, labeling, coloring, and/or otherwise presenting segments of a certain structure of the histological specimen in a manner that allows a user, such as a lab technician or a pathologist, or a an automated cell analysis systems to identify the relation of the segments to the certain structure. Mapping may include aligning a slide and/or an image of one section in relation to a slide and/or an image of another section in a manner that position segments of the same structure in respective positions. As commonly known in the art, the examination and analysis may be performed either manually, by a lab technician or a pathologist, or automatically, by an automated cell analysis systems.
In some embodiments of the present invention the mapping is based one two steps, for example as depicted in
Optionally, pixels of a first section are mapped to respective pixels in a second section. The mapping process may be performed on any number of serial sections that reside on the same slide, as shown at
As shown at 105, after the segments have been mapped, as shown at 104, the mapping is presented to the user, optionally as further described below.
Reference is now made to a description of an exemplary mapping process. For the clarity of the following description, C denotes an image of a first section, R denotes an image of a second section, M denotes the number of segments to which C has been identified and N denotes the number of segments to which R has been identified. For brevity, M and N refer to arbitrary sets of segments that consist of the elements, optionally smallest, which are identified during the mapping process by any a known segmentation algorithm.
Optionally, each segment of the N segments of the image of the second section R, which may be individually referred to herein as Rsi where i=1, . . , N, may be associated with one or more of the following:
Optionally, each segment may be divided to a plurality of sub-segments. Each sub-segment may be associated according to any of the aforementioned options (a-c).
In some embodiments of the present invention, each distinct segment Rsi is associated with every distinct segment Csj of C. A similarity score is then assigned to each pair of segments (Rsi, Csj) to assess the probability of their resemblance. Such scoring allows the generation of a probability matrix that maps the estimated similarities between the segments. The values in the matrix may be normalized and/or assigned in a manner that defines the relation between them.
Optionally, if during the mapping process the similarity of two segments has been scored above a predefined threshold, the orientation of all the other structures is estimated accordingly. In such an embodiment, the orientation of some segments may be determined according to the orientation of associated structures. Optionally, a transformation that allows such an orientation is determined according to a transformation function which is based on the associated segments. In such a manner, there is no need to score the similarity with all the structures. Optionally, in order to reduce the computational complexity of the mapping process, a impressionsegment in a certain area may be matched only with segments which have been identified in a respective area.
As described above, different sections may be stained according to different staining procedures and/or agents. Different staining procedures may dye the segments and/or the background in different colors or hues. In order to assure that segments of a certain structure in different sections are associated and mapped, these differences may be reset or considered. As further described below the images of the sections may be binarized before the mapping process. For example, as shown at
It should be noted that differentiating between the background and the foreground allows associating between foregrounds which have been stained differently.
Reference is now made to
Optionally, the matching process, which is used for scoring the similarity between structures from different sections, takes into account one or more of the following characteristics, each exemplified in a respective figure of
Optionally, the local motion is detected in a local motion identification process, such as an optic-flow algorithm, for example the optic-flow algorithm that has been published by A. Bruhn et al., see A. Bruhn et al. Real-Time Optic-flow Computation with Variational Methods. In N. Petkov, M A.
Westenberg (Eds.). Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, Vol. 2756, Springer, Berlin, 222-229, 2003 and A. Bruhn et al., “Combining the advantages of Local and Global Optic-flow Methods, L.
Van Gool (Ed.), Pattern Recognition, Lecture Notes in Computer Science, Vol. 2449, Springer, Berlin, which are incorporated in their entirety by reference into the specification.
Optionally, the aforementioned N×M probability matrix is established based on a similarity algorithm that scores each matching while taking into account some or all of the above mentioned characteristics. Optionally, during the scoring of each match, the similarity algorithm calculates similarity of one or more of the following characteristics: size, dipole moment, moment of inertia, higher moment values, and genus number.
Optionally, the similarity algorithm is based on calculating a series of coefficients such as the values of the inner contour and/or outer contour of the probed segments.
Optionally, the similarity algorithm is based on calculating a vector set that represents the center of mass of a certain segment in relation to the center of mass of other segments. This calculation may be relative to some segment inner axis, for example to the major axis of inertia.
Optionally, the aforementioned N×M probability matrix reflects the similarity between all or some of the above listed features. One element of the N×M probability matrix may reflect size differences in an absolute value. The absolute value may reflect the differences between the major axis and minor axis ratio of the segments.
In such an embodiment, the distance between segment i and segment j is calculated may be represented by the N×M probability matrix. A match between segment i and segment j is identified if the distance between i and any other segment is not smaller than the distance between segment i and segment j and does not exceed some predefined or an ad-hoc defined distance threshold value.
In some embodiment of the present invention, a verification procedure is used for estimating the credibility of the probability matrix. As described above, different sections may be taken from a common histological specimen that is fixated in a block, such as a paraffin embedded block. The coordinates of a segment of a certain structure in relation to another segment of another structure in a common section may be used for verifying the matching that is described above. For example, a vector that represents the differences between the orientations of matching segments is calculated. If the vector is below a certain threshold, the matching is verified and if the vector is above the certain threshold, the matching is tagged as unverified.
Reference is now also made to
Reference is now made to
Optionally, the digital image sensor 410 is connected to the receiving module via a TWAIN interface, a universal serial bus (USB) interface and/or any other interface, such as a plug-in interface. Optionally, the digital image sensor 410 is either a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) type. An example for such a digital image sensor 410 is 1.4 MP moving sensor that scans the image area in up to 36 increments to produce extremely high resolution final images, which the specification thereof is incorporated herein by reference.
The receiving module 401 is designed to receive images of two or more sections from the microscope 405. As depicted in
Optionally, the association is displayed in real time, during the analysis of the specimen from which the sections have been trimmed. In such a manner, a user, such as a researcher or a pathologist, may probe a number of sections of a common histological specimen simultaneously. The association may be between a section which has been placed in front of the microscope camera in the past and the section which is currently placed in front of the microscope camera.
In use, the receiving module is designed to receive the images of the sections from the imaging unit 405 and/or from a repository, such a personal computer or a central server. The images are optionally forwarded via a communication network, such as the Internet. Optionally, the association is displayed on a graphical user interface (GUI) that is displayed to the user, for example as depicted in
Optionally, the GUI 501, 502, or any other user interface, allows the user to initiate the association between different segments. Optionally, each structure that is identified on an image of the section is color-coded. In such an embodiment, the association is done by coloring segments of the same structure with similar colors, for example as shown at
As described above, the sections are trimmed from different potions of a common histological specimen; an segment of a certain structure in one section may be associated with a number of segments in another section and vice versa. In such a case, a segment in one section may have the same color as multiple structures which are related thereto in other sections.
Optionally, the GUI 501, 502 and/or any other user interface allows the user to delete and/or add an association between segments from different sections. Optionally, the association allows the mapping of matched segments. The system 399 may fully or partly map matched segments. The mapping may be applied automatically or manually, for example using the GUI. The mapping may be partial as some segments may not have respective segments in other sections. As described above, the similarity between different segments is mapped in a probability matrix. In such an embodiment, the coloring may be performed according to the probability matrix. Optionally, if the score of a certain match between two segments is above a predefined threshold, the matched segments are colored with the same color.
In some embodiment of the present invention, the orientation of one image is adjusted according to the association between the structures. Optionally, the orientation is determined according to the one or more matched segments with the highest scores. As further described above, the orientation of one section is transformed according to a transformation between segments of a common structure. Optionally, the user uses the GUI 501, 502, for associating between different segments of a common structure.
In some embodiments of the present invention, the GUI 501, 502 may be used for facilitating the identification of segments associated with a selected area. For example, while the user maneuvers a cursor, such as a crosshair cursor, to indicate a certain area in one segment of an image of one section, another cursor, such as a crosshair cursor, may be maneuvered to indicate on one or more matching areas in one or more respective segments of another image of a different section.
In some embodiments of the present invention, the matching process is performed during the probing of certain sections. In such an embodiment, an image of a first image of a first section is captured and optionally stored in the memory of the system 399. Then, the user may tag areas on the first image, optionally using the curser. Then, the user uses the imaging unit 405, which is optionally a microscope, for probing a second image of a second section. The matching module 403 may now associate between the tagged areas in the first image and respective areas in the second image and display an indication to the association, for example by highlighting the respective tagged areas in the second image. In such a manner, the user may tag areas of interest in the first section and receive an indication about respective areas that appear in the second section that is optionally stained using a different staining dye.
Optionally, segments of the image of the first image are matched with respective segments of the image section and/or with an image of another section that is captured in a higher magnification. Optionally, the image of the first section is captured in a relatively low magnification, for example as depicted in numeral 450 of
It is expected that during the life of a patent maturing from this application many relevant systems and methods will be developed and the scope of the terms image sensor, microscope, operating system, and imaging are intended to include all such new technologies a priori.
The terms “comprises”, “comprising”, “includes”, “including”, “having” and their conjugates mean “including but not limited to”.
The term “consisting of means “including and limited to”.
The term “consisting essentially of” means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
As used herein, the singular form “a”, “an” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “a compound” or “at least one compound” may include a plurality of compounds, including mixtures thereof.
Throughout this application, various embodiments of this invention may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the invention. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, 25 and 6. This applies regardless of the breadth of the range.
Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases “ranging/ranges between” a first indicate number and a second indicate number and “ranging/ranges from” a first indicate number “to” a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals therebetween.
As used herein the term “method” refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting.
This application claims the benefit of U.S. Provisional Patent Application No. 61/129,151, filed on Jun. 6, 2008, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61129151 | Jun 2008 | US |