1. Field of the Invention
The invention relates to a method and to an apparatus for manufacturing a fiber web, in particular a web of tissue or hygiene material, provided with a three-dimensional surface structure. It further relates to a method and an apparatus for drying a fiber web, in particular a web of tissue or hygiene material.
2. Description of the Related Art
The imprinting of a three-dimensional structure into the surface of a paper web, in particular of a tissue web, in particular of hand tissue, is known (see, for example, WO 99/47749, WO 01/18307). It is further known that a very good paper quality can be achieved by so-called through-air drying (TAD). However, it is disadvantageous that the use of TAD dryers is very complex and correspondingly expensive.
The present invention provides an improved method and an improved apparatus of the kind initially mentioned with which in particular a high quality of the end product can be achieved in an economic and correspondingly favorably priced manner even without the use of a larger TAD drying apparatus. In this connection, a corresponding quality should be reached in particular with respect to the water retention capability, the water absorption rate, the bulk, etc.
The present invention provides an additional drying device positioned upstream from a drying cylinder. The additional drying device includes a drying surface which evaporates moisture in the fiber web, and a condensation region with an associated higher pressure and/or colder temperature.
The invention comprises, in one form thereof, an apparatus for dewatering a fiber web in a paper machine, including a heated drying surface, a permeable fabric carrying the fiber web, and a condensing region adjacent a portion of the permeable fabric on a side opposite the fiber web. The fiber web is interposed between and contacts each of the heated drying surface and the permeable fabric. The condensation region has: a) a temperature which is less than a temperature of the permeable fabric; and/or b) a pressure which is greater than an ambient pressure.
The invention comprises, in another form thereof, a method of dewatering a fiber web, including the steps of: carrying the fiber web with a permeable fabric to a heated drying surface; contacting the fiber web on one side with the heated drying surface and on an other side with the permeable fabric; evaporating moisture in the fiber web using heat from the heated drying surface; and condensing the evaporated moisture in a condensing fabric on a side of the permeable fabric opposite the fiber web, the condensing fabric having: a) a temperature which is less than a temperature of the permeable fabric, and/or b) a pressure which is greater than an ambient pressure.
An advantage of the present invention is that the moisture content of the fiber web is reduced by evaporation using the heated drying surface of the additional drying device.
Another advantage is that the evaporated moisture is condensed in a region away from the permeable fabric using a higher pressure and/or lower temperature for subsequent removal.
Yet another advantage is that the fiber web is drawn into the coarse permeable fabric prior to pressing so that the physical properties of the fiber web are not substantially adversely affected by the pressure in the “knuckle areas”.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate one preferred embodiment of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
In the embodiment shown, double wire forming section 12 is a crescent former type forming section including a forming roll 20 carrying a permeable fabric 22 (instead of a conventional felt) and an outer forming wire 24 around a portion of the periphery thereof. Forming roll 20 may include an optional suction zone 26. Suction device 28 is positioned at the downstream side of the extended nip formed between permeable fabric 22 and outer forming wire 24 and separates fiber web 30 from outer forming wire 24. Fiber web 30 may be of any suitable type, such as a paper web or more particularly a tissue web. Wire forming section 12 receives fiber suspension from head box 32, which forms fiber web 30.
Permeable fabric 22 is a coarse permeable fabric, such as a structured permeable fabric forming a structured three-dimensional fiber web. In one embodiment, permeable fabric 22 is configured as a through air drying fabric allowing air or another gaseous medium to flow therethrough.
A wet suction box 34 is positioned adjacent to and in fluid communication with a portion of permeable fabric 22. Wet suction box 34 is positioned between double wire forming section 12 and drying device 14 relative to the fiber web travel direction 36.
Drying device 14 includes a heated drying surface 38, which is in the form of a heated drying cylinder in the embodiment shown. Drying device 14 is internally referred to as a “Boost Dryer” within the assignee of the present invention. Drying cylinder 38 has a surface temperature of between approximately 100° C. to 250° C.; and more particularly has a surface temperature of between approximately 120° C. to 180° C.; This surface temperature range has been found to be effective to evaporate a portion of the moisture within fiber web 30 carried by drying cylinder 38.
A condensation fabric 40 is positioned adjacent to permeable fabric 22 on a side opposite fiber web 30. Condensation fabric 40 is a permeable fabric allowing the evaporated moisture to accumulate and condense therein, as will be described in more detail hereinafter. An impermeable membrane 42 is positioned adjacent to condensation fabric 40 on a side opposite permeable fabric 22. Impermeable membrane 42 allows pressure to be applied to condensation fabric 40, permeable fabric 42 and fiber web 30, and also is thermally conductive.
Drying device 14 also includes a pressurized hood 44 which surrounds and is substantially sealed with a portion of drying cylinder 38. Pressurized hood 44 is in communication with a plurality of outlets 46, one of which is visible in
Water which is condensed within the pores of condensation fabric 40 is removed from condensation fabric 40 by conditioners/suction device 54 positioned on opposite sides of condensation fabric 40 in the return loop after exiting from the discharge side of drying cylinder 38.
Fiber web 30 exits drying device 14 and is carried from drying device 14 on the bottom side of permeable fabric 22. Optional cooling device 55 is positioned adjacent permeable fabric 22 on a side opposite from fiber web 30.
Positioned downstream from cooling device 55 is turning roll 56 located adjacent permeable fabric 22 on a side opposite from fiber web 30. Turning roll 56 is positioned between drying device 14 and press assembly 16 relative to fiber web travel direction 36. Turning roll 56 is in the form of a suction turning roll with a suction zone 58 in the embodiment shown in
An additional suction box (not shown) can be positioned upstream from turning roll 56, between turning roll 56 and drying device 14.
Press assembly 16 includes press member 60 defining a press nip with drying cylinder 18. In the embodiment shown, press member 60 is in the form of a suction press roll, but may also be configured differently, such as a shoe press roll, etc. Fiber web 30 and permeable fabric 22 travel through the press nip between press member 60 and drying cylinder 18. Fiber web 30 is immediately adjacent to drying cylinder 18, and permeable fabric 22 is immediately adjacent to press member 60. Drying cylinder 18 and press member 16 are each positioned downstream from drying device 14 relative to web travel direction 36.
Drying cylinder 18 preferably is configured as a Yankee drying cylinder having a large diameter and corresponding large circumference. Drying cylinder 18 thus provides the dual functionality of both acting as a drying cylinder and being used as part of press assembly 16. A creping doctor 62 is positioned on the downstream side of drying cylinder 18.
A hot air drying hood 64 is positioned adjacent to and partially surrounds drying cylinder 18. Hot air drying hood 64 thus is in fluid communication with permeable fabric 22 and fiber web 30. Hot air drying hood 64 further assists in drying of fiber web 30 as it is carried about the periphery of drying cylinder 18.
Using a paper machine 10 as shown in
The sheet absorbency capacity as measured by the basket method, for a nominal 20 gsm web is equal to or greater than 12 grams water per gram of fiber and often exceeds 15 grams of water per gram fiber. The sheet bulk is equal to or greater than 10 cm3/gm and preferably greater than 13 cm3/gm. The sheet bulk of toilet tissue is expected to be equal to or greater than 13 cm3/gm before calendering.
With the basket method of measuring absorbency, five (5) grams of paper are placed into a basket. The basket containing the paper is then weighted and introduced into a small vessel of water at 20° C. for 60 seconds. After 60 seconds of soak time, the basket is removed from the water and allowed to drain for 60 seconds and then weighted again. The weight difference is then divided by the paper weight to yield the grams of water held per gram of fibers being absorbed and held in the paper.
More particularly, during use, head box 32 discharges a fiber suspension into the forming section between permeable fabric 22 and outer forming wire 24. Fiber web 30 is suctioned using wet suction box 34 to control sheet moisture. Fiber web 30 is then dried in drying device 14 and is transferred to the press nip between two press members. One press member is Yankee cylinder 18 and the other press member is a press roll 60, such as a suction press roll or preferably a shoe press roll. The press nip can be preceded by suction turning roll 56 and/or cooling device 55. Fiber web 30 is then dried using Yankee cylinder 18, preferably also with hot air drying hood 64, and is creped by doctor 62.
Pressurized hood 44 is pressurized by a hot fluid, e.g., pressurized steam or water. The temperature of fluid medium in pressurized hood 44 is less than the temperature of heated drying cylinder 38. The condensed water in condensation fabric 40 is suctioned out by suction boxes 54. Impermeable membrane 42 fluidly separates the fluid in pressurized hood 44 from condensation fabric 40.
It is also possible to configure the double wire forming section as a fourdrinier wire former or an inclined wire former (not shown).
According to the embodiments of paper machines 10 and 70 shown in
While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.