Method and an equipment for reducing the sulphur dioxide emissions of a marine engine

Information

  • Patent Application
  • 20080044335
  • Publication Number
    20080044335
  • Date Filed
    May 16, 2007
    17 years ago
  • Date Published
    February 21, 2008
    16 years ago
Abstract
A method and an equipment for reducing sulphur dioxide emissions of a marine engine, wherein flue gases are scrubbed with a scrubbing solution in a scrubber. Fresh water with added sulphur removal reagent is used as the scrubbing solution.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

In the following, the invention will be described in more detail with reference to the appended drawings, in which



FIG. 1 shows schematically an equipment suitable for cleaning flue gases of a ship,



FIG. 2 shows schematically another equipment suitable for cleaning flue gases of a ship,



FIG. 3 shows schematically a third equipment suitable for cleaning flue gases of a ship, and



FIG. 4 shows schematically an arrangement suitable for warming the flue gases freed from the scrubber shown in the equipment according to FIGS. 1 to 3.





In FIGS. 1 to 4, the same numerals refer to corresponding parts, and they will not be explained separately later on, unless required by the illustration of the subject matter.


DETAILED DESCRIPTION OF THE INVENTION

In this description the term fresh water refers to water that comprises no salts. The term grey water refers to water that is created on the ship as a result of washing, cooking, cleaning, dish washing and laundering. The term line refers to any pipe, connection or duct suitable for transferring liquid, gas, or suspension.



FIG. 1 shows a scrubber 1 used in scrubbing flue gases of a diesel engine used on a ship. The scrubber 1 has an elongated, substantially vertically installed shell 2, inside which a packed bed 3 has been mounted. Nozzles 4 distributing scrubbing solution to the scrubber have been arranged above the packed bed, after the packed bed in the flow direction of flue gases. The nozzles 4 are arranged at even intervals over the cross-sectional area of the scrubber so that they spray scrubbing solution substantially evenly over the entire cross-sectional area of the scrubber. After the nozzles 4, a droplet separator has been installed in the scrubber, which separator separates the droplets that have been swept along with the flue gases before the cleaned flue gases are directed out via a connection 6 arranged at the upper end of the scrubber.


The flue gases created in a ship's diesel engine or engines, if there are several engines in the ship, are conveyed to the scrubber 1 via a connection 7 installed in its lower part. The diesel engine or engines are not shown in the figure. The flow direction of flue gases in the scrubber is upwards, from the bottom to the top.


Scrubbing solution is conveyed to the flue gas scrubber 1 from the pumping container 9 by means of a pump 10 via line 11. The line 11 is connected to the nozzles 4, which spray the scrubbing solution to the scrubber. The scrubbing solution consists of fresh water directed to the pumping container 9 via line 12, i.e. in this embodiment of the grey water of the ship and the sulphur removal reagent mixed with fresh water. The sulphur removal reagent, i.e. NaOH is conveyed from a sulphur removal reagent container 13 via line 14 to the pumping container 9, to the scrubbing solution. In directing the sulphur removal reagent to the pumping container, a pump 15 arranged to the line 14 is utilized, which also controls the amount of sulphur removal reagent added to the scrubbing solution.


The NaOH fed to the flue gas scrubber reacts with the sulphur dioxide in the flue gases by forming sodium sulphite in accordance with the following formula:





SO2+2NaOH→Na2SO3+H2O  (1)


The sodium sulphite oxidizes in the scrubber at least partly into sodium sulphate. NaOH also reacts with other sulphur oxides in the flue gases and forms other compounds to be removed from the flue gases by scrubbing. The reactions of NaOH and sulphur oxides in the flue gas scrubber are known as such by a person skilled in the art, and therefore they are not described in more detail in this context.


The flue gases are scrubbed with the NaOH-containing scrubbing solution sprayed via nozzles 4. The sodium sulphite and sulphate containing scrubbing solution formed as a result of the reaction of NaOH and sulphur oxides is removed from the scrubber 1 via line 16 arranged in its lower part and is returned to the pumping container 9. From the pumping container 9 the scrubbing solution is recycled to the scrubber 1.


The lower part of the scrubber and the connection point of line 16 to it is arranged so that no scrubbing solution layer is formed in the lower part of the scrubber, as in conventional scrubbers used in power plants operating on land. Either a container in connection with the scrubber or a separate pumping container is used for recycling scrubbing solution. Thus, the scrubber can be built lightweight, because it does not need to carry the weight of the scrubbing solution mass. The pumping container can be placed on the ship so that the mass center of the ship is as close to the bottom of the ship as possible. This is a great advantage. The used scrubbing solution containing sulphur removal products is removed from the scrubbing solution circulation via line 17. The scrubbing solution containing sulphur removal products can be led either directly to the waters surrounding the ship or to a waste water treatment phase, if the ship has one. It is to be noted that the amount of used scrubbing water removed from the scrubbing circulation is significantly small, because the concentration of the scrubbing solution in the scrubbing circulation is great.



FIG. 2 shows an embodiment, where the fresh water used in the scrubbing solution is formed by condensing the water vapor in the flue gases by means of cooled scrubbing solution. For this purpose the scrubbing solution used in the scrubber is cooled with an external heat exchanger. In this embodiment the scrubber 1 and its operation, as well as the pumping container 9 and the sulphur removal reagent container 13 are substantially the same as in the embodiment according to FIG. 1. For cooling the scrubbing solution a heat exchanger 18 has been added to the scrubbing solution circulation. The hot scrubbing solution received from the scrubber 1 is pumped with a pump 10 from the pumping container 9 via line 19 to the heat exchanger 18, where the scrubbing solution cools. From the heat exchanger 18 the cooled scrubbing solution is conveyed to the scrubber via line 20. Sea water is used as a cooling medium for cooling the scrubbing solution in the heat exchanger 18. It is led to the heat exchanger 18 via line 21 and removed from there via line 22. The scrubbing solution is removed from the scrubber 1 via line 16 arranged in the lower part of the scrubber and returned to the pumping container 9. From the pumping container 9 the scrubbing solution is recycled again to the heat exchanger 18 and from there to the scrubber 1. The used scrubbing solution containing sulphur removal products is removed from the scrubbing solution circulation via line 17.



FIG. 3 shows an embodiment, where the fresh water used in the scrubbing solution is made by condensing wet flue gases from the sulphur removal phase. Flue gases are condensed separately from the sulphur removal phase by scrubbing them again after the actual sulphur removal scrubbing stage. As a result, the temperature of the flue gases cleaned of sulphur oxides decreases and the water vapor in them condenses into water. The means used in condensing flue gases are arranged in the same scrubber with the means used in sulphur removal. The equipment includes a scrubber 23, which has two scrubbing stages, a sulphur removal stage A and a condensing stage B. The elongated, substantially vertically installed shell 2 of the scrubber embeds both stages, which are installed so that the flue gases coming to the scrubber 23 from the connection 7 are scrubbed first in the sulphur removal stage A. The flow direction of flue gases in the scrubber is upwards, from the bottom to the top.


The packed bed 3 included in stage A and the nozzles 4 spraying scrubbing solution that contains sulphur removal reagent are substantially the same as in the embodiment shown hereinabove in FIGS. 1 and 2. Similarly, the operation of stage A is the same as described above. Scrubbing solution is conveyed to the nozzles 4 from the pumping container 9 by means of a pump 10 via line 11. NaOH is conveyed to the scrubbing solution in the pumping container 9 with a pump 15 from a container 13 via line 14. The sodium sulphite and sulphate containing scrubbing solution formed in the scrubbing stage A is removed form the scrubber 23 via a line 16 arranged in its lower part and returned to the pumping container 9 and recycled from there back to the scrubbing stage A. The used scrubbing solution that contains sulphur removal products and is removed from the scrubbing solution circulation via line 17. The fresh water needed in forming the scrubbing solution is conveyed to the pumping container 9 from the condensing stage B via line 24.


From the sulphur removal stage A the cleaned flue gases flow to the condensing stage B. In the flow direction of flue gases, before the condensing stage B, an intermediate floor 25 separating stages A and B from each other has been installed in the scrubber.


In the condensing stage B, the packed bed 26 is first in the flow direction of flue gases. Nozzles 27 distributing scrubbing solution for condensing flue gases have been arranged above the packed bed 26, after it in the flow direction of flue gases. The nozzles 27 are arranged at even intervals over the cross-sectional area of the scrubber so that they spray cooling solution substantially evenly over the entire cross-sectional area of the scrubber. After the nozzles 27, a droplet separator 5 has been installed in the scrubber 23, which separator separates the droplets that have been swept along with the flue gases before the cleaned flue gases are directed out via a nozzle 6 arranged at the upper end of the scrubber.


In the condensing stage B the flue gases coming from the sulphur removal stage A, whose sulphur oxide content has decreased, are scrubbed with a cooling solution. The fresh water used as cooling solution is formed in this same stage by condensing the flue gases received from the sulphur removal stage. The cooling solution cools the flue gases and makes the water vapor in them to condense to water.


The cooling solution received from the condensing stage B is conveyed from the lower part of the condensing stage via line 30 to a storage container 31 and from there further via line 32 to be cooled in the heat exchanger 28. A pump 33 arranged in line 32 is utilized in transferring the solution to the heat exchanger. Sea water is used as a cooling medium for cooling the cooling solution in the heat exchanger. The sea water is conveyed to the heat exchanger 28 via line 34 and removed from there via line 35. From the heat exchanger the cooled 28 scrubbing solution is recycled to the nozzles 27 of the cooling stage of the scrubber via line 29.


As presented above, the fresh water received from the condensing stage B is used not only in the condensing stage itself, but also in forming the scrubbing solution used in sulphur removal. The cooling solution received from the heat exchanger and removed via line 36, is possible to use for other needs of the ship as well.


The flue gases from the scrubber can still, if desired, be heated before they are released to the environment. When flue gases are scrubbed in a wet scrubber, the result is completely wet, water-vapor-containing, visible flue gas. In some situations the visibility of flue gases is seen as a drawback. This drawback can be overcome by increasing the temperature of the flue gases.


The visibility of water-vapor-containing flue gases cleaned according to the invention can be decreased by using, for example, an arrangement according to FIG. 4. The arrangement is based on that the above-described method and equipment for decreasing the sulphur dioxide emissions of a marine engine is so effective, that all the flue gases produced by ship engines does not necessarily need to be cleaned in order to realize environmental regulations. Often it is enough that only half or less than a half of the flue gases are scrubbed in the scrubber. The remaining hot and un-cleaned flue gases can be mixed with the cleaned flue gases. Thus, the visibility problem typical for water-vapor-containing flue gases can be overcome.



FIG. 4 shows a new type of a droplet separator 5 located last in the scrubber 1 in the flow direction of flue gases, where the flue gas duct 5a of the droplet separator connected to it has been elongated. In addition, the flue gas duct 5a of the droplet separator is made of heat conductive material, which enhances the warming of flue gases before the mixing of them.


Hot, uncleaned flue gases are conveyed to the upper part of the scrubber via a connection 37. The hot flue gases heat the moist flue gases coming from the scrubber. Warming of the cleaned flue gases also continues in the flue gas duct 6 of the scrubber, where the cleaned flue gases discharged from the flue gas duct 5a of the droplet separator are mixed with the hot flue gases.


In addition, the above-described scrubber has the ability to attenuate the noise caused by the engine. Thus, it can be used to replace the silencer after an engine in a ship. The scrubber can be installed in the space freed from a conventional silencer in the machine shaft of the ship. In this case the scrubber can be placed in a place advantageous from the point of view of stability, that is, low, close to the mass center of the ship.


The invention is not intended to be limited to the embodiments presented as examples above, but the invention is intended to be applied widely within the scope of the inventive idea as defined in the appended claims.

Claims
  • 1. A method for decreasing the sulphur dioxide emissions of a marine engine, in which method flue gases are scrubbed with a scrubbing solution in a scrubber, wherein fresh water having sulphur removal reagent added to it is used as scrubbing solution.
  • 2. The method according to claim 1, wherein grey water created on the ship is used as fresh water.
  • 3. The method according to claim 1, wherein the fresh water is made on the ship.
  • 4. The method according to claim 3, wherein the fresh water is made of sea water.
  • 5. The method according to claim 3, wherein the fresh water is made by condensing water vapor contained by the flue gases by means of a heat exchanger.
  • 6. The method according to claim 1, wherein the flue gases are scrubbed in a scrubber, which comprises a sulphur removal stage for removing sulphur dioxide from the flue gases, and a condensing stage for condensing the water vapor in the flue gases coming from the sulphur removal stage.
  • 7. The method according to claim 6, wherein fresh water is made in the condensing stage by scrubbing the flue gases coming from the sulphur removal stage with the fresh water received from the condensing stage, which fresh water is cooled in the heat exchanger before recycling it back to the condensing stage.
  • 8. The method according to claim 5, wherein sea water is used as a cooling medium in the heat exchanger.
  • 9. The method according to claim 1, wherein sodium hydroxide (NaOH) is used as a sulphur removal reagent.
  • 11. An equipment for reducing sulphur dioxide emissions of a marine engine, which equipment comprises: a scrubber for scrubbing flue gases,nozzles for spraying scrubbing solution to the scrubber,
  • 12. The equipment according to claim 11, wherein grey water created on the ship is arranged to be used as fresh water.
  • 13. The equipment according to claim 11, wherein the fresh water is arranged to be made on the ship.
  • 14. The equipment according to claim 13, wherein the equipment comprises means for making fresh water from sea water.
  • 15. The equipment according to claim 13, wherein the scrubber is arranged to condense the water vapor contained by the flue gases.
  • 16. The equipment according to claim 15, wherein the equipment comprises a heat exchanger for cooling the scrubbing solution used in the scrubber.
  • 17. The equipment according to claim 11, wherein the scrubber comprises a sulphur removal stage for removing sulphur dioxide from the flue gases, and a condensing stage for making fresh water, which comprises nozzles for spraying the fresh water formed in the condensing stage to the flue gases coming from the sulphur removal stage.
  • 18. The equipment according to claim 17, wherein the equipment comprises a heat exchanger and at least one line for recycling the fresh water made in the condensing stage from the condensing stage to the heat exchanger and again to the nozzles, which heat exchanger is arranged to cool the fresh water received from the condensing stage before it is recycled back to the condensing stage.
  • 19. The equipment according to claim 16, wherein the heat exchanger is arranged to use sea water as a cooling medium.
  • 20. The equipment according to claim 11, wherein the equipment comprises a sulphur removal reagent container and a pump for adding the sulphur removal reagent to the scrubbing solution.
  • 21. The equipment according to claim 11, wherein sodium hydroxide (NaOH) is arranged to be used as a sulphur removal reagent.
Priority Claims (1)
Number Date Country Kind
20065330 May 2006 FI national