An embodiment of the invention is described as follows, with reference to
Another embodiment of the invention is described as follows, with reference to
Optionally, the at least four SAR platforms have a tetrahedral arrangement.
Another embodiment of the invention is described as follows, with reference to
Optionally, the at least four SAR platforms have a tetrahedral arrangement.
Another embodiment of the invention is described as follows. With reference to
When one platform transmits, all platforms receive the radar return and each forms 2-D complex SAR image data arrays. The four SAR 2-D data arrays (each pixel therein containing a magnitude and phase) are communicated (e.g., via a wireless wide-band data link) to, for example, a processing node 120 shown in
An illustration of one voxel 410, 510 is shown in
V
S
=V
P
+ΔV
SP, (1)
where,
VP=[RP,CRP,HP], ΔVSP=[ΔR,ΔCR,ΔH], (2)
and R, CR, and H refer to the range, cross-range, and height components.
Determination of the sub-voxel position exploits the spherical phase distribution arising from a single scatterer as it appears across multiple SAR platforms spatially distributed in cross-range, range, and height. For a 3-D voxel with a single point scatterer, the phase distribution is constant over a sphere of fixed radius from the scatterer. Illustration of an equivalent problem clarifies the problem formation. Consider the equation of a sphere where the origin (point source) is unknown. The equations for a sphere with origin (a, b, c).
(x−a)2+(y−b)2+(z−c)2=r2 (3)
requires four sample triplets (x,y,z) to determine the sphere unknowns (a, b, c, r). Alternatively, if the radius, r, has some a priori constraints, e.g., the radius being positive (or bounded by (he volume of a given 3-D voxel), then only three sample triplets are required.
The spreading spherical wavefront may be thought of as concentric spheres with different radii, where the radii represent time delay or phase. Since the objective is to solve for the 3-D origin of the spherical wavefront four samples of the spherical wavefront are required, Thus, the minimum configuration in this embodiment is four SAR platforms that are time or phase coherent. In the measurement of phase, it is assumed that phase unwrapping modulo 2π (referenced to a single platform) is unambiguous, making it equivalent to a time measurement.
For convenience, let the phase on one of the SAR platforms (SAR, 401 in
ΔφKJ=φKJ−φJK (4)
where
ΔφKJ the differential phase between SARK and SARJ relative to SAR1, φM1 is the phase associated with the round trip path front SARM to the scatterer to SAR1, and λ is the wavelength of the RF carrier. The notation VM=[RM, CRM, HM], and VS=[RS, CRS, HS] are row vectors representing the position of SARM and the location of the scatterer respectively in the Range, Cross-Range, and Height coordinate system shown in
V
S
=V
P
+ΔV
SP, (6)
where,
VP=[RP,CRP, HP], ΔVSP=[ΔR,ΔCR,ΔH], (7)
Four absolute phase measurements are equivalent to three differential phase measurements when one platform is the reference. While any three of the available six phase differential phase functions (Δφ21, Δφ31, Δφ41, Δφ32, Δφ42, Δφ43) would be sufficient, the best resolution will be obtained for those platforms that have the largest angular separation in cross-range, range, and height relative to the scatterer suggesting an optimal configuration of the multiple SAR platform locations.
Optionally, the preferred multiple platform constellation spans the 3-D space with a common illumination footprint 420 in FIG, 4. The “3-D space span” is in the mathematical sense, i.e., a co-planar or co-linear constellation of SAR platforms may not unambiguously sample the spherical wavefront. Optionally, the SAR platforms are on orthogonal axes. Optionally, the finite dynamic range and the well-known “geometric dilution of precision” also suggest widely spaced sample points. In practice, the requirements for adequate signal to noise, a common illumination footprint, and the unknown scatterer position place additional constraints on the SAR platform locations.
An illustration of a multiple SAR platform constellation is shown as 401, 402, 403, 404 of
The non-linear functions relating the differential phase functions to the platform, voxel, and sub-voxel positions are, for example, defined as;
Δφ31=f31(V1,V3, VPΔVSPλ) (8a)
Δφ32=f32(V1,V2,V3VP,ΔVSP,λ) (8b)
Δφ41f41(V1,V4,VP,ΔVSP,λ) (8c)
The goal is to find an exact solution for ΔVSP. If the relative platform positions V1, V2, V3, V4, are known, and the voxel position, VP, is obtained from the co-registered SARM images, this reduces the set of Equations (8a-c) to 3 coupled non-linear equations and 3 unknowns ΔVSP=[ΔR, ΔCR, ΔH]. Despite the reduction in the unknowns, inverting the coupled non-linear functions in Equations (8a-c) is non trivial and too tedious to do by hand. The solution is optionally found with symbolic root finding and factorization software such as Mathematica®.
Exact symbolic decompositions for ΔR, ΔCR, and ΔH, are found for the case when the relative platform positions, V1, V2, V3, V4, and the position of the SAR voxel, VP are known. They are shown in functional form in Equations (9a-c)
ΔCR=fCR(Δφ31,Δφ32,Δφ41,λ)|V
ΔH=fH(Δφ31,Δφ32,Δφ41,λ)|V
ΔR=fR(Δφ31,Δφ32,Δφ41,λ)|V
and are not presented here due to their length. As an example, the analytic solution for ΔCR has thousands of ΔφKJ polynomial terms; the equation is more than 214 formatted pages in length. The solutions also have multiple roofs. Extraneous roots are easily discarded by obvious constraints (the solution must fall within the illumination footprint). The Appendix has Mathematica® script files to generate the analytic solutions of Equations (9a-c) for a specified set of relative platform positions. Also included in the appendix are header files showing the analytic solution implementation as Matlab® function calls.
As an example, the analytic solution for ΔCR has thousands of ΔφKJ polynomial terms. The solutions also have multiple roots. Extraneous roots are easily discarded by constraints readily apparent to those of ordinary skill in the art (e.g., the solution must fall within the illumination footprint). The analytic solutions of Equations (9a-c) for a specified set of relative platform positions may be convened to computer languages such as C or Matlab® for efficient real time evaluation or demonstration.
As an alternative derivation of the solution, the roots of Equations (8a-c) may be found numerically. Again, the platform positions are known, V1, V2, V3, V4, and the voxel position, VP, is obtained from the co-registered SARM images. An objective function Equation (10a) below, is defined, for example, as the squared error difference between the measured differential phase functions and the calculated phase functions. The Nelder Meade non-linear unconstrained minimization algorithm is, for example, used to find the numerical roots in Equation (10b) below.
where ΔφKJ refer to the measured SAR differential phases for a given voxel.
Next, unambiguous retrieval of the sub-voxel position from the differential phase measurements is calculated for an idealized case. In the idealized case, for example, the radar center frequency is 850 MHz, the bandwidth is 187.37 MHz, and a virtual array length of 1322.6 meters. The resulting 2-D strip-map SAR images have pixel resolution of 0.8 meter in both slant and cross-range. Other radar characteristics are considered ideal so that the phase noise is negligible. an infinite dynamic range receiver, and so on. Further, the INS and GPS sensors are idealized (i.e., no error) allowing the SAR platform positions to be known exactly. The platform and voxel position offsets are shown in Table 1.
Analytic and numerical solutions of sub-voxel position retrieval are calculated and plotted in
Next, in functional component 620 of
Next, in functional component 640 of
Next, in functional component 720 of
Next, in functional component 740 of
Optionally, the sensitivity of sub-voxel position error is a function of SAR platform configuration, phase bias, phase noise, platform flight profile perturbations, SNR, etc. Optionally, the SAR constellation configuration requires optimization in the face of several conflicting constraints. For example, first, the common phase reference implies that each of the SARM platforms are not only phase or time coherent but that each of the platforms need to view the same illumination footprint simultaneously, The effective illumination footprint is determined in part by the antenna beam width and detection range. Second, from the geometric perspective, the inter-platform separation should maximize the angular angle in cross-range, range, and height with respect to a given point scatterer.
Sub-voxel position error due to phase bias and/or platform position error are optionally reduced by dilating the SAR constellation geometry. The four SAR platforms are optionally assumed to fly in the general configuration supporting the strip-map SAR data acquisition mode (
An example of compensation of sub-voxel position error induced by phase bias with constellation geometry is described as follows. For example, ideal conditions are assumed including zero position error, zero flight perturbations, the scatterer's signal to noise ratio exceeds the radar's dynamic range, etc. A scatterer is located at a specific location on the ground, and then the idealized ΔφKJ phase measurements are made. A constant phase bias is introduced, for example, φB:
ΔφKJ=ΔφKJ+φB (11)
The resulting biased differential phases are used to estimate the sub-voxel positions with the analytic solutions of Equations (9a-c), The sub-voxel position error magnitude versus phase bias for configurations A and B are shown in
An example of compensation of sub-voxel position error induced by position error with constellation geometry is described as follows. The position error may be a manifestation of INS position error, or equivalently the departure of the flight profile from the assumed offsets shown in Table 2. Again, for example, ideal conditions are assumed. The flight profiles are also straight and level, but have a spherically distributed Gaussian 3-D position constant offset with variance σP2. Thus, each of the platform positions, VK, on each simulation trial is modified thusly:
V
K
=[G(RK,σP), G(CRK,σP), G(HK,σP)] (12)
where G(η,σ) denotes a 1-dimensional Gaussian distribution of mean, η, and variance. σ2. These perturbed platform positions are used in the computation of the differential phase terms, ΔφKJ, in Equations (8a-c) for a specified scatterer location on the ground. The resulting perturbed differential phases are used to estimate the sub-voxel positions with the analytic solutions (Equations (9a-c)). The sub-voxel position is plotted as the 50% probability error magnitude versus the platform position noise radius, σP, in
The embodiments above are discussed, using SAR as an example of a radar mode that can be used with the instant invention. For instance, strip-map SAR is employed. Alternatively, other SAR or inverse synthetic aperture radar (ISAR) is employed.
Obviously, many modifications and variations of the instant invention are possible in light of the above teachings, It is therefore to be understood that the scope of the invention should be determined by referring to the following appended claims.
The script files to generate the symbolic solutions for Equations (9a-c) were found with the software package, Mathematica®, and are summarized by tile names in Table A1. The output of the script files are omitted here.
The symbolic solutions for Equations (9a-c) were implemented as Matlab functions in separate files. The files were truncated to retain only the text header since the complete files are hundreds of pages in length. They are summarized below in Table A3.