This invention relates to a method and apparatus for three dimensional sub-voxel position imaging, and more particularly, to a method and apparatus for determining three dimensional sub-voxel positions using synthetic aperture radar.
An overview of synthetic aperture radar processing is found, for example, in Soumekh, M., Synthetic Aperture Radar Signal Processing with Matlab Algorithms. John Wiley & Sons, Inc., New York, 1990, Chapter 4, incorporated herein by reference, and Skolnik, M. I. (ed.) Radar handbook, McGraw-Hill Book Company, New York, 1970, Chapter 23, incorporated herein by reference. As discussed in these references, SAR range resolution is typically obtained with a wideband pulsed waveform. The waveform usually consists of an RF pulse chirped in frequency at a high pulse repetition frequency (PRE) for short ranges. The nominal range resolution is c/(2B), where c is the speed of light and B is the radar bandwidth. Range processing (“fast time”) is performed with a matched filter (e.g., pulse compression) in range.
Cross range resolution for strip-map SAR may be understood from either the virtual, space array or Doppler perspectives. One can think of a virtual array (of length L) in space with sample points colleted at every λ/2 in cross range. A synthetic beam is formed using all the data across the array. The 3-dB beam width of this synthetic aperture is approximately 0.44 λ/L.
From the Doppler perspective, the side-looking radar-equipped platform moves past a stationary point scatterer at a given range cell. A Doppler shift is observed by the SAR platform as it approaches and passes a point target. Near the closest approach point the Doppler frequency change is approximately linear. Cross range processing (“slow time”) is performed with a matched Doppler filter applied to the cross range samples (sampled at a maximum λ/2 in cross range) for each range cell. For a strip-map SAR “focused aperture” (a focused aperture compensates for the quadratic phase error produced by the radar's straight line motion past its target) the cross range resolution lower bound is α/2 where α is the horizontal aperture of the (small) physical SAR antenna.
Two-dimensional (2-D) strip-map SAR images are formed as follows. RF signals are down converted to baseband, pulse compressed, and gain integrated by summing multiple pulses of the high PRF waveform. The SAR platform position is effectively frozen relative to the ground during this summation. An additional pre-sum in cross-range creates a virtual array in cross-range space sampled at a maximum of λ/2 in cross range. The range cells are aligned across the aperture to compensate for any non-straight line platform motion, then the range data is polar re-formatted to obtain a rectangular grid. Cross range processing starts with a matched filter (a de-ramp in frequency) applied in cross range over the set of range cells, followed by a frequency domain transform to form the cross range dimension. Efficient “fast time” and “slow time” matched filter processing may be obtained in the frequency domain. The resulting 2-D array, organized in range and cross range, is composed of complex pixels representing a relative phase and magnitude.
Height calculation from two SAR images is described in Graham, L. C. Synthetic interferometer radar for topographic mapping, Proceedings of the IEEE. 62, pp. 763-768, 1972, incorporated herein by reference; Zebker, H. et al., Topographic mapping from interferometric synthetic aperture radar observations, Journal of Geophysical Research, 91, pp. 4993-5001, 1986, incorporated herein by reference; Li, F. et al, Studies of multibaseline spaceborne interferometric synthetic aperture radars, IEEE Transactions on Geoscience and Remote Sensing, 28, pp. 88-97, 1990, incorporated herein by reference; Rodriguez, E. et al., Theory and design of interferometric SARs, Proceedings of the IEEE. 139, pp. 147-159, 1992, incorporated herein by reference; and Zebker, H. et al., On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake, Journal of Geophysical Research, 99, pp. 19617-19634, 1994, incorporated herein by reference.
The traditional height calculation has several inherent assumptions that create measurement error. For example, the derivation has the implicit assumption that the phase distribution across the two SAR platforms is only a function of the different heights of a point scattered, with only one scatterer per pixel. That is, all changes in phase difference in a given pixel are attributed to a point scattereds height, not changes in the point scatters (range, cross-range) location within the pixel itself.
An embodiment of the invention includes a method. At least four phase-coherent synthetic aperture radar (SAR) platforms distributed in range, cross-range, and height are provided. A radar waveform is transmitted from one of the at least four SAR platforms. Scattered energy waveform is received by the at least four SAR platforms, the scattered energy comprising a superposition of a plurality of point scatters in range, cross-range, and height convolved with the radar waveform. A plurality of complex two dimensional (2-D) SAR images are generated by forming a complex 2-D SAR image at each SAR platform based on the scattered energy received at each SAR platform, each complex. 2-D SAR image comprising a plurality of pixels, each pixel comprising a magnitude and a phase. The plurality of complex 2-D SAR images, each representing a different slant plane to a common ground point, are co-registered to generate a discretized 3-D space comprising a plurality of 3-D voxels, each 3-D voxel comprising a range bound, a cross-range bound, and a height bound. Three differential paired phase functions are calculated for each 3-D voxel of the plurality of 3-D voxels. A plurality of sub-voxel positions are calculated. For each sub-voxel position calculation, it is determined as to whether a point scatter of the plurality of point scatters falls within a single 3-D voxel of the plurality of 3-D voxels. A range, a cross-range, and a height of the point scatter, based on the range bound, cross-range bound, and height bound of the single 3-D voxel of the plurality of 3-D voxels is reported, if the calculated position of the point scatter falls within the single 3-D voxel of the plurality of 3-D voxels. A non-compliant scatter is reported, if the calculated position of the point scatter of the plurality of point scatters does not fail within the single 3-D voxel. The aforementioned steps i) through j) are repeated until, a 3-D image with sub-voxel position is generated. Optionally, the at least four SAR platforms comprise a tetrahedral arrangement. Optionally, the at least four SAR platforms are time-coherent. Optionally, calculating a plurality of sub-voxel positions includes one of inverting the three differential paired phase functions and using numerical optimization to minimize quadratic error functions. Optionally, the method further includes reducing sub-pixel position error in a presence of at least one of phase bias and platform flight perturbations by dilation of a constellation geometry of the four SAR platforms.
Optionally, the at least four simultaneous SAR platforms in flight are replaced by four sequential flights of a single SAR platform such that the flight trajectories are distributed in range, cross-range, and height. In this case, the relative phases and relative positions between the SAR platforms between passes are estimated from—central reference points in the scene. An example of such an estimation technique is described in U.S. Pat. No. 6,911,932 to Martinez, et al., incorporated herein by reference.
Another embodiment of the invention includes a method. At least four phase-coherent synthetic aperture radar (SAR) platforms is provided with known distribution in range, cross range and height. A two-dimensional (2-D) SAR image is generated for each SAR platform of the at least four phase-coherent synthetic aperture radar (SAR) platforms. A three-dimensional (3-D) SAR image is generated by co-registering the generated 2-D SAR images, the 3-D SAR image comprising a sub-voxel position. Optionally, the 3-D image comprises a plurality of voxels, wherein the generation of a three-dimensional (3-D) SAR image comprises calculating a plurality of sub-voxel positions by inverting three differential paired phase functions calculated for each voxel of the plurality of voxels. Optionally, the 3-D image includes a plurality of voxels, wherein the generating a three-dimensional (3-D) SAR image comprises calculating a plurality of sub-voxel positions using numerical optimization to minimize quadratic error functions.
Another embodiment of the invention includes an apparatus. The apparatus includes at least four non-coplanar, phase-coherent synthetic aperture radar (SAR) platforms (with known distribution in range, cross-range, and height) comprising a plurality of phase-synchronized local oscillators cohered to a common reference clock, a first SAR platform of the SAR platforms operable to transmit a radar waveform, and the SAR platforms operable to receive scattered energy waveforms resulting from the radar waveform and operable to generate two-dimensional (2-D) SAR images based on the received scattered energy waveforms. The apparatus also includes a synchronizing processor operable to communicate with the SAR platforms and operable to synchronize a plurality of SAR transmission and receiving intervals for the SAR platforms. Optionally, the apparatus also includes an image-coregistration processor operable to receive at least four 2-D SAR images from the SAR platforms, and operable to generate a 3-D SAR image having 3-D voxel positions by coregistering the 2-D SAR images. Optionally, the apparatus also includes a sub-voxel position processor operable to calculate sub-voxel positions of single point scatterers from differential phase-measurements on a given voxel across all of the SAR platforms.
An embodiment of the invention is described as follows, with reference to
Another embodiment of the invention is described as follows, with reference to
Optionally, the at least four SAR platforms have a tetrahedral arrangement.
Another embodiment of the invention is described as follows, with reference to
Optionally, the at least four SAR platforms have a tetrahedral arrangement.
Another embodiment of the invention is described as follows. With reference to
When one platform transmits, all platforms receive the radar return and each forms 2-D complex SAR image data arrays. The four SAR 2-D data arrays (each pixel therein containing a magnitude and phase) are communicated (e.g., via a wireless wide-band data link) to, for example, a processing node 120 shown in
An illustration of one voxel 410, 510 is shown in
VS=VP+ΔVSP, (1)
where,
VP=[RP,CRP,HP], ΔVSP=[ΔR,ΔCR,ΔH], (2)
and R, CR, and H refer to the range, cross-range, and height components.
Determination of the sub-voxel position exploits the spherical phase distribution arising from a single scatterer as it appears across multiple SAR platforms spatially distributed in cross-range, range, and height. For a 3-D voxel with a single point scatterer, the phase distribution is constant over a sphere of fixed radius from the scatterer. Illustration of an equivalent problem clarifies the problem formation. Consider the equation of a sphere where the origin (point source) is unknown. The equations for a sphere with origin (a, b, c).
(x−a)2+(y−b)2+(z−c)2=r2 (3)
requires four sample triplets (x,y,z) to determine the sphere unknowns (a, b, c, r). Alternatively, if the radius, r, has some a priori constraints, e.g., the radius being positive (or bounded by (he volume of a given 3-D voxel), then only three sample triplets are required.
The spreading spherical wavefront may be thought of as concentric spheres with different radii, where the radii represent time delay or phase. Since the objective is to solve for the 3-D origin of the spherical wavefront four samples of the spherical wavefront are required, Thus, the minimum configuration in this embodiment is four SAR platforms that are time or phase coherent. In the measurement of phase, it is assumed that phase unwrapping modulo 2π (referenced to a single platform) is unambiguous, making it equivalent to a time measurement.
For convenience, let the phase on one of the SAR platforms (SAR, 401 in
ΔφKJ=φKJ−φJK (4)
where
ΔφKJ is the differential phase between SARK and SARJ relative to SAR1, φM1 is the phase associated with the round trip path front SARM to the scatterer to SAR1, and λ is the wavelength of the RF carrier. The notation VM=[RM, CRM, HM], and VS=[RS, CRS, HS] are row vectors representing the position of SARM and the location of the scatterer respectively in the Range, Cross-Range, and Height coordinate system shown in
VS=VP+ΔVSP, (6)
where,
VP=[RP,CRP, HP], ΔVSP=[ΔR,ΔCR,ΔH], (7)
Four absolute phase measurements are equivalent to three differential phase measurements when one platform is the reference. While any three of the available six phase differential phase functions (Δφ21, Δφ31, Δφ41, Δφ32, Δφ42, Δφ43) would be sufficient, the best resolution will be obtained for those platforms that have the largest angular separation in cross-range, range, and height relative to the scatterer suggesting an optimal configuration of the multiple SAR platform locations.
Optionally, the preferred multiple platform constellation spans the 3-D space with a common illumination footprint 420 in FIG, 4. The “3-D space span” is in the mathematical sense, i.e., a co-planar or co-linear constellation of SAR platforms may not unambiguously sample the spherical wavefront. Optionally, the SAR platforms are on orthogonal axes. Optionally, the finite dynamic range and the well-known “geometric dilution of precision” also suggest widely spaced sample points. In practice, the requirements for adequate signal to noise, a common illumination footprint, and the unknown scatterer position place additional constraints on the SAR platform locations.
An illustration of a multiple SAR platform constellation is shown as 401, 402, 403, 404 of
The non-linear functions relating the differential phase functions to the platform, voxel, and sub-voxel positions are, for example, defined as;
Δφ31=f31(V1,V3, VPΔVSPλ) (8a)
Δφ32=f32(V1,V2,V3VP,ΔVSP,λ) (8b)
Δφ41f41(V1,V4,VP,ΔVSP,λ) (8c)
The goal is to find an exact solution for ΔVSP. If the relative platform positions V1, V2, V3, V4, are known, and the voxel position, VP, is obtained from the co-registered SARM images, this reduces the set of Equations (8a-c) to 3 coupled non-linear equations and 3 unknowns ΔVSP=[ΔR, ΔCR, ΔH]. Despite the reduction in the unknowns, inverting the coupled non-linear functions in Equations (8a-c) is non trivial and too tedious to do by hand. The solution is optionally found with symbolic root finding and factorization software such as Mathematica®.
Exact symbolic decompositions for ΔR, ΔCR, and ΔH, are found for the case when the relative platform positions, V1, V2, V3, V4, and the position of the SAR voxel, VP are known. They are shown in functional form in Equations (9a-c)
ΔCR=fCR(Δφ31,Δφ32,Δφ41,λ)|V
ΔH=fH(Δφ31,Δφ32,Δφ41,λ)|V
ΔR=fR(Δφ31,Δφ32,Δφ41,λ)|V
and are not presented here due to their length. As an example, the analytic solution for ΔCR has thousands of ΔφKJ polynomial terms; the equation is more than 214 formatted pages in length. The solutions also have multiple roofs. Extraneous roots are easily discarded by obvious constraints (the solution must fall within the illumination footprint). The Appendix has Mathematica® script files to generate the analytic solutions of Equations (9a-c) for a specified set of relative platform positions. Also included in the appendix are header files showing the analytic solution implementation as Matlab® function calls.
As an example, the analytic solution for ΔCR has thousands of ΔφKJ polynomial terms. The solutions also have multiple roots. Extraneous roots are easily discarded by constraints readily apparent to those of ordinary skill in the art (e.g., the solution must fall within the illumination footprint). The analytic solutions of Equations (9a-c) for a specified set of relative platform positions may be convened to computer languages such as C or Matlab® for efficient real time evaluation or demonstration.
As an alternative derivation of the solution, the roots of Equations (8a-c) may be found numerically. Again, the platform positions are known, V1, V2, V3, V4, and the voxel position, VP, is obtained from the co-registered SARM images. An objective function Equation (10a) below, is defined, for example, as the squared error difference between the measured differential phase functions and the calculated phase functions. The Nelder Meade non-linear unconstrained minimization algorithm is, for example, used to find the numerical roots in Equation (10b) below.
where ΔφKJ refer to the measured SAR differential phases for a given voxel.
Next, unambiguous retrieval of the sub-voxel position from the differential phase measurements is calculated for an idealized case. In the idealized case, for example, the radar center frequency is 850 MHz, the bandwidth is 187.37 MHz, and a virtual array length of 1322.6 meters. The resulting 2-D strip-map SAR images have pixel resolution of 0.8 meter in both slant and cross-range. Other radar characteristics are considered ideal so that the phase noise is negligible. an infinite dynamic range receiver, and so on. Further, the INS and GPS sensors are idealized (i.e., no error) allowing the SAR platform positions to be known exactly. The platform and voxel position offsets are shown in Table 1.
Analytic and numerical solutions of sub-voxel position retrieval are calculated and plotted in
Next, in functional component 620 of
Next, in functional component 640 of
Next, in functional component 720 of
Next, in functional component 740 of
Optionally, the sensitivity of sub-voxel position error is a function of SAR platform configuration, phase bias, phase noise, platform flight profile perturbations, SNR, etc. Optionally, the SAR constellation configuration requires optimization in the face of several conflicting constraints. For example, first, the common phase reference implies that each of the SARM platforms are not only phase or time coherent but that each of the platforms need to view the same illumination footprint simultaneously, The effective illumination footprint is determined in part by the antenna beam width and detection range. Second, from the geometric perspective, the inter-platform separation should maximize the angular angle in cross-range, range, and height with respect to a given point scatterer.
Sub-voxel position error due to phase bias and/or platform position error are optionally reduced by dilating the SAR constellation geometry. The four SAR platforms are optionally assumed to fly in the general configuration supporting the strip-map SAR data acquisition mode (
An example of compensation of sub-voxel position error induced by phase bias with constellation geometry is described as follows. For example, ideal conditions are assumed including zero position error, zero flight perturbations, the scatterer's signal to noise ratio exceeds the radar's dynamic range, etc. A scatterer is located at a specific location on the ground, and then the idealized ΔφKJ phase measurements are made. A constant phase bias is introduced, for example, φB:
ΔφKJ=ΔφKJ+φB (11)
The resulting biased differential phases are used to estimate the sub-voxel positions with the analytic solutions of Equations (9a-c), The sub-voxel position error magnitude versus phase bias for configurations A and B are shown in
An example of compensation of sub-voxel position error induced by position error with constellation geometry is described as follows. The position error may be a manifestation of INS position error, or equivalently the departure of the flight profile from the assumed offsets shown in Table 2. Again, for example, ideal conditions are assumed. The flight profiles are also straight and level, but have a spherically distributed Gaussian 3-D position constant offset with variance σP2. Thus, each of the platform positions, VK, on each simulation trial is modified thusly:
VK=[G(RK,σP), G(CRK,σP), G(HK,σP)] (12)
where G(η,σ) denotes a 1-dimensional Gaussian distribution of mean, η, and variance. σ2. These perturbed platform positions are used in the computation of the differential phase terms, ΔφKJ, in Equations (8a-c) for a specified scatterer location on the ground. The resulting perturbed differential phases are used to estimate the sub-voxel positions with the analytic solutions (Equations (9a-c)). The sub-voxel position is plotted as the 50% probability error magnitude versus the platform position noise radius, σP, in
The embodiments above are discussed, using SAR as an example of a radar mode that can be used with the instant invention. For instance, strip-map SAR is employed. Alternatively, other SAR or inverse synthetic aperture radar (ISAR) is employed.
Obviously, many modifications and variations of the instant invention are possible in light of the above teachings, It is therefore to be understood that the scope of the invention should be determined by referring to the following appended claims.
The script files to generate the symbolic solutions for Equations (9a-c) were found with the software package, Mathematica®, and are summarized by tile names in Table A1. The output of the script files are omitted here.
Some Matlab files that include the numerical optimization of Equation (10) and the simulations that generate
The symbolic solutions for Equations (9a-c) were implemented as Matlab functions in separate files. The files were truncated to retain only the text header since the complete files are hundreds of pages in length. They are summarized below in Table A3.
Number | Name | Date | Kind |
---|---|---|---|
4602257 | Grisham | Jul 1986 | A |
4975704 | Gabriel et al. | Dec 1990 | A |
5122803 | Stann et al. | Jun 1992 | A |
5463397 | Frankot | Oct 1995 | A |
5659318 | Madsen et al. | Aug 1997 | A |
6150972 | Bickel et al. | Nov 2000 | A |
6400306 | Nohara et al. | Jun 2002 | B1 |
6441376 | Glass et al. | Aug 2002 | B1 |
6552678 | Adragna | Apr 2003 | B1 |
6677884 | Moreira et al. | Jan 2004 | B2 |
6741202 | Krikorian et al. | May 2004 | B1 |
6864828 | Golubiewski et al. | Mar 2005 | B1 |
6911932 | Martinez et al. | Jun 2005 | B1 |
6982666 | Temes et al. | Jan 2006 | B2 |
7064702 | Abatzoglou | Jun 2006 | B1 |
7109911 | Cataldo | Sep 2006 | B1 |
20030122700 | Moreira et al. | Jul 2003 | A1 |
20040004569 | Lam | Jan 2004 | A1 |
20040090360 | Vincent | May 2004 | A1 |
20050057391 | Forsley et al. | Mar 2005 | A1 |
20060164288 | Voelker | Jul 2006 | A1 |
20060293853 | Chiou et al. | Dec 2006 | A1 |
Number | Date | Country |
---|---|---|
11125674 | May 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20080074313 A1 | Mar 2008 | US |