The present invention relates generally to electrical wiring devices and more particularly, to dimming devices having an air gap switch.
Dimmer switches and electrical dimming devices can include the ability to completely disconnect the power that is provided to the load. The ability to completely disconnect the power may be necessary when maintenance needs to be completed on the load. Examples of maintaining a load can include, but are not limited to, changing a burned-out light bulb or florescent tube.
In conventional dimmer switches, when the dimmer setting is set at the lowest level a load will appear to be completely off. However, in this state there is still a measurable leakage current through the dimmer that may be potentially dangerous. Therefore, conventional dimmers are required to have a mechanical switch to fully open the circuit for purposes of conducting maintenance on the load. This mechanical switch is typically referred to as an air gap switch.
Most conventional air-gap mechanisms use a plastic pull-down switch that protrudes downwardly from the bottom of the switch faceplate. This pull-down switch is oriented parallel with and against the wall. When the circuit is closed, the air-gap actuator is slightly visible below the faceplate. To open the circuit, air-gap actuator is pulled downward or outward. The actuator manipulates a mechanical air-gap switch in response to the movement. Unfortunately this conventional design has several drawbacks, including the fact that the actuator has only one function, is rarely needed yet it is visible and unattractive along its positioning on the faceplate and it when it protrudes from the faceplate.
Furthermore, due to technological advances, changes to local and national codes, and consumer preferences, modern electrical switches need to have more features and additional capabilities. Examples of these features include, occupancy sensing, night lights, ambient light level detection, dimming, dimmer level notification, as well as the numerous types of manually adjustable electrical switches themselves. Individually, the use of one of these features is not problematic. However, as more and more of these features are desired in a single switching device, the amount of space to provide for these features on the faceplate of the switch is increasingly restricted. The ability to combine one or more features with the air gap switch and also possible hiding the air gap switch along the faceplate would provide increased flexibility and consumer satisfaction.
A novel electrical switch includes an adjustable light pipe assembly that activates an air gap switch is shown and described herein. In one exemplary embodiment, an electrical switch can include a faceplate having an outer surface. The switch can also include a light pipe that can be configured to move in a substantially orthogonal direction from the outer surface of the faceplate from a first position to a second position. The light pipe can include a first end and a second distal end. In the first position, the first end of the light pipe can be positioned along the outer surface of the faceplate. In the second position the first end of the light pipe can extend out from the outer surface of the faceplate. The switch can also include an air gap switch that can be adjusted in response to movement of the light pipe. The air gap switch can include two or more contacts that are configured to open and close a circuit.
In an alternative embodiment, a method of manipulating an air gap switch can include the step of providing a switch device. The switch device can include a housing, faceplate, light pipe assembly, and an air gap switch. The faceplate can be coupled to the housing and can include an outer surface and a longitudinal axis. The light pipe assembly can include a light transmissive channel that can include a first end positioned along the outer surface of the faceplate and a second end distal from the first end. The light pipe assembly can also include a cam. The air gap switch can be positioned within the housing and can include a movable contact assembly and a stationary contact. The movable contact assembly can include a movable contact and a cam follower. The method can further include moving the light pipe assembly in a first direction that can cause the at least a portion of the light transmissive channel to extend outward from the faceplate in a substantially orthogonal direction from the longitudinal axis of the faceplate. The method can also include the cam follower engaging the cam and separating the movable contact from the stationary contact in response to the movement of the light pipe assembly.
These and other inventive concepts will be discussed herein below. The description hereinabove is not intended to be limiting in any manner and is simply a brief overview of some of the novel features of the present disclosure.
The foregoing and other features and aspects of the invention are best understood with reference to the following description of certain exemplary embodiments, when read in conjunction with the accompanying drawings, wherein:
The drawings illustrate only exemplary embodiments of the invention and are therefore not to be considered limiting of its scope, as the invention may admit to other equally effective embodiments.
One exemplary embodiment of the present invention is directed to a dimmer switch that includes a light pipe that both emits light generated by an LED and functions as an air gap switch to remove power from the dimmer switch. The end of the light pipe is designed to be flush with or substantially flush with the exterior of one of the switches, such as the dimmer switch 150 of
The upper coupling band 190 and the lower coupling band 192 are integrally formed with one-another and with a mounting plate 289 (
In one exemplary embodiment, the housing 105 is removably coupled to either the mounting plate 289 or at least one of the upper and lower coupling bands 190, 192. The exemplary housing 105 has a substantially rectangular shape. In alternative embodiments, the housing 105 is capable of being formed in other geometric or non-geometric shapes. In certain exemplary embodiments, the housing 105 includes electrical components. Some of these electrical components are shown and described with reference to
In one exemplary embodiment, the faceplate 107 is removably coupled to the mounting plate 289 (
While the exemplary dimmer switch 150 of
The exemplary dimmer switch 100 also includes a load status window 114. The load status window 114 is located adjacent to the night light 120 and the dimmer switch 150. Alternatively, the load status window 114 is capable of being positioned anywhere on the dimmer switch 100 so long as the load status window 114 is visible to a user once the in-wall dimmer switch 100 is installed within the wall box. The load status window 114 is capable of receiving a light pipe assembly, light pipe channel, or light pipe cap discussed in greater detail with regard to
In versions where the exemplary switch 100 includes a night light 120, the night light 120 includes one or more LEDs (not shown), or LED packages. Although LEDs are described in the exemplary embodiment, other light sources known to people having ordinary skill in the art including, but not limited to, organic light emitting diodes (“OLEDs”) and liquid crystal display (“LCD”) screens, are used in alternative exemplary embodiments without departing from the scope and spirit of the exemplary embodiment. In certain exemplary embodiments, the night light 120 also optionally includes a lens 122 positioned over the LEDs or LED packages. The night light LEDs emit substantially white light having a color temperature between 2500 and 5000 degrees Kelvin. However, in alternative exemplary embodiments, the night light 120 emits any color of light at various intensities of that color. The lens 122 is fabricated using an optically transmissive or clear material. In certain exemplary embodiments, the lens 122 provides environmental protection while transmitting light from the LEDs.
In certain exemplary embodiments, the lens 122 is a push-button lens that is used to turn on and off the night light 120 and/or dim the night light 120. The exemplary push-button lens is substantially rectangular; however, other geometric or non-geometric shapes for the lens are capable without departing from the scope and spirit of this disclosure. In certain exemplary embodiments, when the night light 120 turns on, the LEDs emit light through the lens 122. When the night light 120 is dimmed, the intensity of the light emitted from the LEDs through the lens 122 is varied or the number of LEDs that are on is varied according to manufacturing desires. For example, the light intensity emitted from the night light 120 is varied by increasing or decreasing the power supplied to the LEDs. In another example, if the night light 120 includes ten LEDs, the number of LEDs that emit light can be increasingly or decreasingly varied from one LED to ten LEDs or ten LEDs to one LED to produce a dimming effect.
In this exemplary embodiment, the lens 122 in pushed in and released to turn on and off the night light 120. Once the night light 120 is on, the lens 122 is pushed in and held in to achieve dimming of the night light 120. For example, once the night light 120 is turned on, the night light 120 emits light at its maximum intensity. The lens 122 is pushed in and held in to decrease the light intensity emitted from the night light 120 until the desired intensity is reached, at which time the end-user releases the lens 122. If the end-user desires to increase the intensity of the light emitted from the night light 120, the lens 122 is again pushed in and held in until the desired intensity is reached. In another embodiment, the night light 120 operation is the same, except that once the night light 120 is turned on, the night light 120 emits light at a pre-set intensity, which is set by the end-user and is between the maximum intensity and the minimum intensity. For example, the pre-set intensity is the intensity of the light that the night light 120 emitted immediately before being previously turned off. Thus, according to one exemplary embodiments, the lens 122 of the night light 120 is used to control the operation of the night light 120. In an alternate exemplary embodiment, the lens 122 is repeated tapped to increase or decrease the intensity of the light emitted through the night light 120.
An exemplary light pipe assembly 210 includes an elongated channel member that includes a first end 226 with a first aperture, a second end 227 with a second aperture opposite from and distal of the first, and a channel 211 connecting the first and second ends 226, 227 such that a pathway through the light pipe 210 is created. In certain exemplary embodiments, the second aperture is covered by a light transmissive cap 225. The light transmissive cap 225 can be clear, transparent, or translucent with a colored tint. The first end 226 of the light pipe 210 is disposed near or adjacent to the top surface 202. The light pipe 210 extends up from near the top surface 202 of the second PCB assembly 205 such that a portion of the light transmissive cap 325 is disposed along the surface of or extends through the faceplate 107.
A light source, such as, for example, an LED 215 is electrically coupled to the top surface 202 of the second PCB assembly 205. In one exemplary embodiment, power for the LED 215 is supplied through traces (not shown) on the second PCB assembly 205. The LED 215 is typically positioned adjacent to the first end 226 of the light pipe 210 so that light transmitted by the LED 215 is received by the light pipe 210 at the first end 226 transmitted through the channel 211 and emitted out of the second end 227. In alternative exemplary embodiments, the LED 215 is replaced with a light sensor or IR sensor (not shown).
The emission of light (or lack thereof) by the LED, LED chip on board, or LED package 215 provides information to the end-user as to the load status, whether motion has been detected in the monitored area, and/or the location of the switch 100. In one exemplary embodiment, the LED 215 emits a visible constant light at or near full intensity when a load associated with the in-wall dimmer switch 100 is on and emits a dimmed level of light when the load associated with the in-wall dimmer switch 100 is off. Also, in certain exemplary embodiments, the LED 215 emits a momentary flashing light when motion is detected within the monitored area and emits no light when motion is not detected within the monitored area. In alternative exemplary embodiments, other methods, such as using two or more independent LEDs or LED packages, can be used to show the load status or whether motion has been detected within the monitored area. In this alternative embodiment, for example, one LED or LED package indicates the load status while the second LED or LED package indicates whether motion has been detected in the monitored area. Distinguishing between the two could be accomplished by having each LED emit a different color of light through the light pipe 210.
In certain exemplary embodiments, an optically transmissive or clear material (not shown) encapsulates at least a portion of each LED or LED package 215. This encapsulating material provides environmental protection while transmitting light from the LEDs 215. In certain exemplary embodiments, the encapsulating material includes a conformal coating, a silicone gel, a cured/curable polymer, an adhesive, or some other material known to a person of ordinary skill in the art having the benefit of the present disclosure. In certain exemplary embodiments, phosphors are coated onto or dispersed in the encapsulating material for creating a desired light color.
For the alternative embodiments that include a light sensor (not shown), one or more light sensors are electrically coupled to the top surface 202 of the second PCB assembly 205. In one exemplary embodiment, the light sensors are coupled to the second PCB assembly 205 and are disposed adjacent to the first end 226 of the light pipe 210. In this exemplary embodiment, the light sensors receive ambient light from an area adjacent to and external to the switch 100 by the ambient light being transmitted through the cap 225 on the second end 227 of the light pipe 210, through the channel 211, and through the first end 226 of the light pipe 210 to the light sensor. Exemplary light sensors include a photocell, a photosensitive resistor, and/or a phototransistor.
For the alternative embodiments that include an IR sensor (not shown), one or more IR sensors are electrically coupled to the top surface 202 of the second PCB assembly 205, disposed adjacent to the first end 226 of the light pipe 210, and communicably coupled to a remote control transceiver or microcontroller (not shown) also disposed along one of the first and second PCB assemblies 205, 240. In this exemplary embodiment, the IR sensor receives IR control signals from a master control device or remote control device by the IR control signals being transmitted through the cap 225, through the channel 211, and through the first end 226 of the light pipe 210 to the IR sensor.
The second PCB assembly 205 also includes an occupancy sensor 232 electrically coupled to the top surface 202 of the second PCB assembly 205. The occupancy sensor 232 senses occupancy through the occupancy sensor window 110 in the monitored area and sends a signal to energize a load, maintains a signal to energize the load when sensing continuing occupancy of the monitored area, and enables settings for operating the occupancy sensor 232. According to some exemplary embodiments, the occupancy sensor 232 includes one or more passive infrared (“PIR”) sensors (not shown). Although the exemplary occupancy sensor 232 includes PIR sensors, in alternative embodiments, the occupancy sensor 232 includes any one or a combination of different occupancy sensing technologies including, but not limited to, PIR, ultrasonic, microwave, and microphonic technologies in other exemplary embodiments.
According to one exemplary embodiment, the occupancy sensor 232 using the PIR sensors to detect occupancy, passively senses the occupancy of the monitored area through the window 110, generates a signal upon detecting occupancy, and continues generating the signal upon sensing the continuing occupancy of the monitored area. In certain exemplary embodiments, when the occupancy sensor 232 generates the signal based upon detecting motion, the associated load is turned on (if the manually adjustable switch 195 is in a position designating that the load should be energized). The exemplary occupancy sensor 232 utilizes a passive technology that does not send out a signal to aid in the reception of a signal. However, in certain alternative exemplary embodiments, the occupancy sensor 232 utilizes an active technology, such as ultrasonic technology, or a combination of active and passive technologies.
In certain exemplary embodiments, the occupancy sensor 232 transmits one or more signals to the microcontroller so that the microcontroller is able to determine occupancy within a desired monitored area. In these exemplary embodiments, the occupancy sensor 232 automatically sends a signal to the microcontroller at predetermined time intervals, at random time intervals, or only when occupancy is detected. Alternatively, the microcontroller polls the occupancy sensor 232 for the occupancy detection sensor 232 to send a signal back to the microcontroller. The microcontroller is able to poll the occupancy sensor 232 automatically at predetermined time intervals or at random time intervals.
The exemplary light pipe assembly 210 also includes a slot 230, indentation, or area without material adjacent to or just below the cap 225 and along the channel 211. The slot 230 is sized and shaped to receive a fingernail, portion of a finger, or small thin object therein to pry the light pipe assembly 210 upward from the surface of the faceplate 107. Coupled along the channel 211 adjacent the first end 226 is an elongated member 235. The elongated member 235 extends downward from the channel 210 and has a longitudinal axis that is in a parallel or substantially parallel plane to the longitudinal axis of the channel 211. The elongated member 235 is coupled at a first end 236 to the channel 211 and extends from the channel 211 through an aperture in the second PCB assembly 205 and further extends toward the first PCB assembly 240. The elongated member includes a distal second end 237. Along a surface 238 of the elongated member 235 near or adjacent to the second 237, the elongated member includes a cam 245. The cam is configured to engage a cam follower 255 on a movable switch 260 to separate a movable contact 270 from a stationary contact 275. The cam 245 includes a detent 250 that the cam follower 255 engages and come to rest therein to maintain the contacts in an open configuration resulting in a short in the circuit.
The exemplary elongated member 235 also includes a position stop member 220 coupled to the elongated member. In one exemplary embodiment, the position stop member 220 extends orthogonally or substantially orthogonally outward from the longitudinal axis of the elongated member 235 and is positioned along the surface 238 of the elongated member 235 near the first end 236. The position stop 220 is sized and shaped so as to not fit through the aperture of the second PCB assembly 205 that the elongated member 235 extends through and to not fit through the aperture in the mounting plate 289 that the light pipe 210 and the first end 236 of the elongated member 235 fits through. In one exemplary embodiment, the position stop 220 is configured to engage the second PCB assembly when the light pipe 210 is in a first position, where the circuit is closed, and to engage the mounting plate 289 when the light pipe assembly 210 is in a second position having at least a portion extending out form the surface of the faceplate 107, where the circuit is shorted.
The exemplary air gap assembly includes the movable contact assembly 260 and the stationary contact assembly 290. The exemplary movable contact assembly 260 includes an elongated member that includes the cam follower 255 extending orthogonally or substantially orthogonally outward therefrom. The exemplary cam follower 255 is constructed of two adjoining members in a substantially “V” shaped formation with the members intersecting at an apex of the distance away from the elongated member of the movable switch 260. While the exemplary cam follower 255 is V-shaped, other shapes and types of cam-followers known to those of ordinary skill in the art may be substituted without affecting the operation of the exemplary device 100. The movable switch 260 also includes a contact mount 265. In one exemplary embodiment, the contact mount 265 extends orthogonally or substantially orthogonally from the elongated member of the movable switch 260. The contact mount 265 is coupled to the movable contact 270. In one exemplary embodiment, the movable contact 270 extends orthogonally or substantially orthogonally from the contact mount 265. In certain exemplary embodiments, the movable contact assembly 260 is electrically coupled to the first PCB assembly 240 along the surface 242. In addition, in certain exemplary embodiments, the movable contact assembly 260 is mechanically coupled to the first PCB assembly 240.
The exemplary stationary contact assembly 290 includes an elongated member 290. In one exemplary embodiment, the elongated member 290 has a longitudinal axis that is on a parallel plane with a longitudinal axis of the elongated member of the movable contact assembly 260. The stationary contact assembly 290 also includes a lead contact 280 electrically coupled to the stationary contact assembly 290. In one exemplary embodiment, the lead contact 280 is also mechanically coupled to the stationary contact assembly 290 along the elongated member 290. The lead contact 280 is configured to electrically couple a wire or lead to the switch assembly 290. The stationary contact assembly 290 also includes a stationary contact 275. In one exemplary embodiment, the stationary contact 275 is coupled along one end of the elongated member 290. In certain exemplary embodiments, the stationary contact assembly 290 is electrically coupled to the first PCB assembly 240 along the surface 242. In addition, in certain exemplary embodiments, the stationary contact assembly 290 is mechanically coupled to the first PCB assembly 240.
In one exemplary embodiment, the air gap switch is opened, resulting in a short in the circuit by engaging the slot 230 of the light pipe 210 with a fingernail or small device and prying the light pipe outward in an orthogonal or substantially orthogonal manner from the faceplate 107. In certain exemplary embodiments, the air gap switch is a multi-terminal normally closed switch which makes a conductive path across its terminals when it is in the “on” (closed) position and breaks the conductive path when it is in the disconnected “off” (open) position. The air gap switch is typically coupled in series with the manually operable switch 195 so that when the air gap switch is in the “on” position, the manually operable switch 195 and the dimmer switch 150 are enabled, allowing a user to operate the dimmer 100. On the other hand, when the air gap switch is in its disconnected “off” position, electrical power is disconnected from the dimmer so that the manually operable switch 195 and the dimmer switch 150 are disabled, preventing a user from operating the dimmer 100 thereby also preventing the user from activating the load electrically coupled to the dimmer 100.
As the light pipe 210 continues to be moved outward from the faceplate 107, the cam 245 moves in a direction from the first PCB assembly 240 towards the second PCB assembly 205. As the cam 245 moves, the cam follower 255 engages the cam 245 and moves along the cam 245. The movement of the cam follower 255 along the cam 245 causes a corresponding movement in the elongated member 260 of the movable contact assembly 260 the contact mount 265 and the movable contact 270 thereby separating the contacts 270, 275 and creating a short in the circuit for the device 100 or the dimmer portion of the device. As the light pipe 210 continues to be moved outward from the faceplate 107, the position stop 220 hits or engages the mounting plate 289 or other stopping member and prevents the light pipe 210 from being pulled further outward. Also, as the position stop 220 is hitting the mounting plate 289 or other stopping member, the cam follower 255 enters or is in the detent 250 of the cam 245. The cam follower 255 resting in the detent 250 allows the cam follower 255 to stay in that position, with the contacts 270, 275 still open until a subsequent force is applied to the light pipe 210. With the contacts 270, 275 separated, the power to the load is prevented and the user is safe to conduct maintenance on the load.
When a user wants to resume normal operation for the load, the light pipe 210 is pushed back in an orthogonal or substantially orthogonal manner to the longitudinal axis of the faceplate 107 towards the housing. The movement of the light pipe assembly 210 causes a corresponding movement of the cam 245. As the cam 245 moves in a direction most easily defined as from the second PCB assembly 205 towards the first PCB assembly 240, the cam follower 255 moves out of the detent 250 and along the cam 245. When the light pipe assembly 210 is pushed all the way back in, such that it is flush with or substantially flush with the surface of the faceplate 107, the position stop 220 optionally engages the second PCB assembly 205 or other stop member to prevent further movement of the light pipe 210 assembly inward. The cam 255 moves to one end of the cam follower 245 causes a corresponding movement in the elongated member 260 of the movable contact assembly 260, the contact mount 265, and the movable contact 270 thereby allowing the exemplary normally closed contacts 270, 275 to re-engage one another and complete the circuit for the device 100 or the dimmer portion of the device. While the exemplary embodiment described above teaches the contact 275 with the lead mount 280 as being stationary and the other contact assembly 260 being movable the operations of each could be switched and is within the scope of this disclosure.
Although each exemplary embodiment has been described in detail, it is to be construed that any features and modifications that are applicable to one embodiment are also applicable to the other embodiments. Furthermore, although the invention has been described with reference to specific embodiments, these descriptions are not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments of the invention will become apparent to persons of ordinary skill in the art upon reference to the description of the exemplary embodiments. It should be appreciated by those of ordinary skill in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures or methods for carrying out the same purposes of the invention. It should also be realized by those of ordinary skill in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. It is therefore, contemplated that the claims will cover any such modifications or embodiments that fall within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4783581 | Flowers et al. | Nov 1988 | A |
4880950 | Carson et al. | Nov 1989 | A |
7250580 | Kurek et al. | Jul 2007 | B2 |
7985937 | Wu et al. | Jul 2011 | B2 |
Number | Date | Country | |
---|---|---|---|
20120247935 A1 | Oct 2012 | US |