Method and apparatus for a horizontal pipe handling system on a self-elevating jack-up drilling unit

Information

  • Patent Grant
  • 6609573
  • Patent Number
    6,609,573
  • Date Filed
    Wednesday, November 24, 1999
    24 years ago
  • Date Issued
    Tuesday, August 26, 2003
    21 years ago
Abstract
A pipe handling system is designed for use on an offshore structure, particularly an offshore structure provided with a cantilevered drill floor. The pipe handling system allows to handle significantly longer sections of tubulars, up to 100 feet, if necessary. The pipe handling system transports the pipes from a horizontal pipe rack adjacent to a drill floor to a vertical orientation in a set-back area of the drill floor where the drill string or casing is made up for lowering down hole. The cantilevered drill floor allows to save valuable platform space, while not significantly increasing the cost of the drilling rig. The pipe handling system, while increasing the length of handled tubulars, reduces the number of joints for making of a drill string, thereby significantly reducing the cost of pipe handling operations.
Description




BACKGROUND OF THE INVENTION




This invention relates to pipe handling equipment, and more particularly to a system for handling pipes and moving them between a horizontal position and a vertical position for such exploration and production operations as, for example, incorporating the tubulars in a drill string.




Conventionally, large lengths of pipe are incorporated into a drill string for oil or gas exploration operations. In the past, the drilling industry utilized single lengths of pipe that are joined together by threads or other similar techniques for lowering down hole as a drilling operation progresses. In time, the depths at which the zone of interest are reached have significantly increased and an entire new industry, offshore oil and gas development has emerged in addition to land oil and gas explorations.




The new offshore drill units, by necessity, utilize longer drill strings for reaching subterranean formations of a pay zone. The evolution of the drilling industry led to the development of the ability to rack back doubles, which are two 30′ joints of drill pipe connected together and stood back in the derrick vertically. Later, triples, that is three 30′ joints, have been developed and now the length is “fourbles” of range


2


(four 30′ joints) or triples of range


3


drill pipe (40′ joints ) that make up a 120′ stand of a drill pipe length.




In offshore oil and gas exploration, the drill string is lowered through the body of water to the bottom to a desired depth for reaching a pay zone. If the particular location does not pay off, the drilling unit is usually moved to another location. Conventional jack-up designs have dictated that the drill string be laid down in order to facilitate the rig move or other operational requirement. Naturally, the fewer joints that need to be made up and then broken, the more efficient the operation of the rig becomes.




Any time that a length of pipe can be handled in longer sections, for example in 90′ lengths, as opposed to the traditional 30′ or 40′ lengths, pipe handling efficiency is dramatically improved.




Conventional jack-up units and bottom supported mobile offshore drilling units (MODU) relied on pipe handling systems capable of accommodating 30′ or 40′ lengths pipe sections.




The present invention contemplates elimination of drawbacks associated with the prior art and provision of a pipe handling system capable of handling 90′ and greater length joints of drill pipe, tubing, casing, and other tubulars.




SUMMARY OF THE INVENTION




It is, therefore, an object of the present invention to provide a pipe handling system capable of accommodating 90′ and longer joints of tubulars both on land and offshore.




It is another object of the present invention, to provide horizontal pipe handling system that can be placed for operation on a mobile offshore drilling unit for handling triples of range


2


, doubles in range


3


or longer single joints of drill pipes, casings, and other tubulars.




It is a further object of the present invention to provide a pipe handling system that can significantly lower the overall well bore construction costs and result in capital equipment cost savings.




It is another object of the present invention to provide an offshore drilling unit having a cantilevered drill floor for conducting oil and gas exploration production operations equipped with a pipe handling system for moving tubulars from a horizontal pipe rack to a vertical set-back area.




It is still a further object of the present invention to provide a method of handling tubulars in an offshore platform environment.




These and other objects of the present invention are achieved through a provision of a pipe handling system that transports pipes stored in a horizontal location adjacent to a drill floor to a cantilevered drill floor, wherein the pipe stands are set in a vertical orientation in a set-back area. The pipe handling system includes lifting means, such as a crane, an optional feeding conveyor and a vertical lifting mechanism for picking up the pipe and carrying it to a vertical position in the set-back area. By utilizing the drill floor that is extended away from the platform surface proper, greater surface facilities can be utilized for useful offshore operations.




In the method of pipe handling at an offshore rig, which can be applicable also to onshore facilities, a pipe rack is provided adjacent to the derrick and the drill floor. A crane, for example an articulated crane, lifts horizontally stored pipes from the pipe rack and carries them toward the drill floor, wherein a pipe stand or casing is picked up by a vertical lifting mechanism. The pipe is grasped by two grasping members near the top and bottom of the pipe. The pipe is then moved, while still in the vertical orientation, toward a set-back area adjacent to the mousehole. The port and the starboard rig cranes can also present a tubular to the drill floor in a similar manner.




By allowing to vertically store the pipes, valuable work space on an offshore location can be dramatically saved. The horizontal pipe handling system allows to handle longer sections of pipes, 90′ and above, if necessary, thus reducing the costs and time of forming up a drill string or casing. As a result, significant cost savings to the operator of the rig can be achieved.











BRIEF DESCRIPTION OF THE DRAWINGS




Reference will now be made to the drawings, wherein like parts are designated by like numerals, and wherein.





FIG. 1

is a schematic view of an offshore drilling unit with a cantilever drill floor.





FIG. 2

is a schematic detail view of a casing string embedded into the ocean floor.





FIG. 3

is a detail schematic view showing a drill string introduced into the cased hole below the ocean floor.





FIG. 4

is a top schematic view of the pipe handling system, as mounted in an offshore unit.





FIG. 5

is a schematic view illustrating a first step in the pipe handling operation utilizing a pipe handling crane.





FIG. 6

is a schematic view illustrating the second step in the pipe handling process, wherein the stands of a drill string are placed in a V-door of the derrick.





FIG. 7

is a schematic view illustrating the second step, but using an alternative, temporary holding/feeding mechanism for delivery of the stand by a conveyor.





FIG. 8

is a schematic view illustrating the next step in the pipe handling process, wherein the drill stand is lifted to a vertical position.





FIG. 9

is a schematic view illustrating the fourth step in the pipe handling process, wherein the section of the drill string is sent over to a vertical pipe handling mechanism.





FIG. 10

is a schematic view illustrating the next step in the pipe handling process, wherein the vertical pipe handling mechanism places the stand of drill pipe into a set-back area on the derrick.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Turning now to the drawings in more detail,

FIG. 1

schematically illustrates an offshore drilling unit, which is designated by numeral


10


in the drawings. The offshore structure


10


comprises a platform


12


supported by a plurality of legs


14


extended to the ocean floor


16


. The platform


12


is elevated by jackups or similar means above a water level


18


to a height sufficient to ensure safe operations in an offshore location. Conventionally, the height to which the platform


12


is elevated is calculated to be above the highest anticipated waves at a particular location.




The unit


10


is equipped with one or more cranes


20


mounted on the deck of the platform for handling pipes, supplies, and other necessary loads during operation of the unit


10


. Of a particular advantage for the present invention is provision of a cantilevered drill portion


22


that extends outwardly from the periphery of the platform


12


, with one side of the drill portion


22


being supported on the deck of the platform


12


.




The cantilevered drill portion


22


extends to a distance (

FIG. 1

) outside of the limits of the platform


12


and allows extension of a drill string


24


downwardly from the drill floor to the required depth in a pay zone. A derrick


26


is placed on the drill portion


22


to support drilling and casing operations.




The drill string


24


is provided with a drill bit


28


at a section of the drill string that is lowered first into the bottom


16


. As a result of drilling, an open hole


30


is developed; that hole is later cased to ensure the integrity of the well bore and to provide an opening for subsequent extensions of the drill string and, if necessary, production pipes.




The open hole


30


is cased to prevent collapse of the walls of the well bore, and then cement slurry is pumped in an annulus between the drill string and casing wall


34


(

FIGS. 2 and 3

) where the slurry hardens to cement the casing in the hole. The drill string


24


is then further extended, by adding additional stands of pipe from the drill floor until the zone of interest is reached. The casing string


24


remains in place and is added in sections to continue the exploration operations.




The extended reach drill portion


22


accommodates an extended pipe rack


60


where sections of tubulars are stored for future use in the well bore. As shown in

FIG. 4

, the pipe rack


60


can be designed to accommodate stands of range


2


drill pipe


40


, range


3


joints of casing


42


, singles of range


2


drill pipes


44


, or any combination thereof. The tubulars can be 30′ and higher in length. As seen in

FIG. 4

, some of the tubulars are considerably longer than that, reaching up to 100 feet.




Also shown in

FIG. 4

is a drill floor


46


that supports various equipment for conducting drilling and casing operations. A catwalk


50


connects the pipe rack


60


with the drill floor area


46


. A mousehole


52


is provided in the set back area


48


to facilitate pipe handling.




Turning now to

FIGS. 5-10

, the pipe handling system and method of handling the pipes will be described in more detail. The stored tubulars


40


,


42


, or


44


are positioned in the pipe rack


60


in a generally horizontal position. A crane


20


picks up a length of the tubular, as designated by numeral


62


in the drawing, and moves it to a location adjacent to a V-door


64


of the derrick


26


. One or more stands of drill pipe are moved at a time. For example, the crane


20


can handle three stands of drill pipe and move them toward the derrick


26


, with either an articulated crane


20


, or one of the rig cranes, or a bridge crane spanning the cantilever beams.




The stands


62


are lowered to a deck, or drill floor


66


of the derrick


26


where they are picked up by a stand lifting mechanism


68


. In the alternative, the stands of drill pipe may be placed in a temporary holding/feeding mechanism


70


(

FIG. 7

) for delivery to the lifting mechanism


68


by a conveyor or other similar mechanism.

FIG. 6

illustrates the design that uses an elevated platform that forms a part of the feeding assembly to facilitate movement of the tubular from the pipe rack to the drill floor.




Once the drill pipe sections are placed, with one end adjacent to the stand lifting mechanism


68


, the apparatus


68


lifts one stand at a time from the V-door


64


to a vertical position, as is schematically illustrated in FIG.


8


. There, a single stand of the drill pipe (or other tubular) is designated by numeral


62


.




The next step involves transmission of the drill pipe stand


62


to the vertical pipe lifting mechanism. The mechanism


68


has gripping jaws


71


,


72


(

FIG. 9

) or other similar means (hoisting members) for grasping the stand


62


at vertically spaced locations while retaining the segment of pipe


62


in a generally vertical orientation. Then, the vertical pipe lifting mechanism


68


places the stand


62


into the set-back area


48


for storage until needed for drilling and/or casing operations.




The stands of the drill pipe or casing joints are then connected together in a conventional manner and lowered one by one into the open hole of the well bore until the casing depth has been reached. The casings that are conventionally handled in single range


3


(40-45 feet) in length can be easily handled as doubles by the pipe handling system of the present invention. Similarly, a single 90′ joint of casing, drill pipe, tubing or any other oilfield tubular can be easily accommodated due to the provision of the cantilevered drill floor and vertical capabilities afforded by the derrick


26


.




Naturally, the longer sections of stands or casing connectors require fewer joints, which saves time in completing the tubular strings, as well as provides greater overall strength to the string of drill pipe sections lowered down hole. As a result, the pipe handling efficiency is dramatically improved. Once the pipe is completed, the tool joint maintenance will be less expensive due to fewer joints in the drill string.




The system of the present invention is capable of handling triples of range


2


, doubles of range


3


, and longer single joints of tubing or any combination thereof, significantly reducing casing wear and decreasing the cost of explorative operations. The system of the present invention allows to change out entire strings of drill pipe or other oilfield tubular off the critical path, without lowering a single joint of pipe into the mousehole or into the well bore. This is accomplished by laying down pipes in 90-feet sections and picking them up for vertical storage in 90′ sections. Additionally, the set-back area, where the horizontal surface is at a premium, becomes less occupied with pipes, and other bottom hole machinery can be placed on the derrick for greater efficiency of the operation.




The decreased set-back area would also permit making a derrick with a smaller footprint, thus further increasing the efficiency of the operation in comparison to conventional, more costly derrick designs. When the derrick footprint is smaller, the weight of the derrick, drill floor and substructure are considerably reduced which can potentially increase/the allowable hook/set-back/rotary loading combinations when the cantilever is in the extended reach mode.




The crane


20


that handles the tubulars can be an articulated crane of a conventional design or a “bridge” type crane that spans the cantilevered pipe rack. The conveyor of the feeding assembly used in the transporting step can be of a design well known to those skilled in the art.




Many changes and modifications may be made in the design of the present invention without departing from the spirit thereof. I therefore, pray that my rights to the present invention be limited only by the scope of the appended claims.



Claims
  • 1. An offshore structure comprising a platform, a cantilevered drill floor portion, a vertical storage area for tubular members formed on said cantilevered drill floor portion adjacent a well bore, anda system for system for handling tubular members, said system comprising: a rack for retaining a plurality of various length tubular members in a generally horizontal position on said platform; a lifting means for lifting at least one tubular member and lowering said at least one tubular member adjacent the vertical storage area; and a vertical lift assembly for grasping said at least one tubular member adjacent opposite ends of said at least one tubular member and moving said at least one tubular member to the vertical storage area, while retaining said at least one tubular member in a generally vertical orientation.
  • 2. The apparatus of claim 1, wherein said lifting means is an articulated crane.
  • 3. The apparatus of claim 1, further comprising a feeding assembly for transporting said lifted at least one tubular member towards the vertical lift assembly.
  • 4. The apparatus of claim 3, wherein said feeding assembly comprises a horizontal conveyor assembly.
  • 5. The apparatus of claim 3, wherein said feeding assembly comprises an elevated platform.
  • 6. The apparatus of claim 1, wherein said vertical lift assembly is provided with a pair of vertically spaced hoisting members for secure holding of said at least one tubular member while said at least one tubular member is being moved to the vertical storage area.
  • 7. A system for handling tubular members at an offshore structure, comprising:a pipe rack for retaining a plurality of double and greater lengths tubular members in a generally horizontal position; a lifting means for lifting at least one tubular member and lowering said at least one tubular member adjacent a vertical storage area; a means for socking the vertical storage area with a plurality of tubular members at a location adjacent a well bore, said means comprising a vertical lift assembly for grasping said at least one tubular member and moving said at least one tubular member to the vertical pipe storage area, said vertical lift assembly being provided with a pair of vertically spaced ripping jaws for secure holding of said at least one tubular member adjacent opposite ends of said at least one tubular member while said at least one tubular member is being moved to the vertical storage area; and a feeding assembly with a conveyor for transporting said at least one tubular member from said lifting means to said vertical lifting assembly.
  • 8. An offshore drilling unit, comprising:a platform adapted for conducting drilling and production operations at a selected offshore location, said platform being supported by a plurality of leg members at a pre-determined height above wave action; a cantilevered portion fixedly attached to said platform and having a major surface area thereof extending above water level; a drill floor located on said cantilevered portion; a vertical storage area for tubular members located on said drill floor on the cantilevered portion; a pipe rack for retaining a plurality of tubular members on said platform adjacent said drill floor; and a means for moving said tubular members from said pipe rack to the vertical storage area on said drill floor, said moving means comprising a lifting means for lifting at least one tubular member from said pipe rack, a hoisting means for picking up said lifted at least one tubular member and moving it vertically to the cantilevered portion and a vertical lift assembly for grasping said at least one tubular member adjacent opposite ends of said at least one tubular member and moving said at least one tubular member to the vertical storage area while retaining said tubular members in a generally vertical orientation in said vertical storage area.
  • 9. The apparatus of claim 8, wherein said pipe rack retains said tubular members in a generally horizontal orientation.
  • 10. The apparatus of claim 8, wherein said moving means comprises an articulated crane.
  • 11. The apparatus of claim 8, wherein said means for moving said tubular members further comprises a feeding assembly for transporting said at least one tubular member from said lifting means to said hoisting means.
  • 12. The apparatus of claim 11, wherein said feeding assembly comprises a horizontal conveyor assembly.
  • 13. The apparatus of claim 11, wherein said feeding assembly comprises an elevated platform.
  • 14. The apparatus of claim 11, wherein said vertical lift assembly comprises a pair of grasping members for grasping said at least one tubular member and moving said at least one tubular member to the vertical storage area while retaining said at least one tubular member in a generally vertical orientation.
  • 15. A method of moving tubular members from a horizontal storage area to a vertical storage area on a cantilevered drill floor, comprising the following steps:providing a pipe rack for retaining a plurality of various length tubular members in a generally horizontal position; positioning the plurality of tubular members in said pipe rack; providing a lifting means for lifting at least one tubular member; providing a vertical lift assembly for grasping said at least one tubular member; lifting at least one tubular member from the pipe rack and moving said at least one tubular member towards said vertical lift assembly; lowering said at least one tubular member adjacent said vertical lift assembly; grasping said at least one tubular member with said vertical lifting assembly adjacent opposite ends of said at least one tubular member, while moving said at least one tubular member in a generally vertical position; and forming a vertical storage area on a cantilevered drill floor for tubular members by placing said at least one tubular member in the vertical storage area.
  • 16. The method of claim 15, further comprising the step of providing a feeding assembly with a conveyor for transporting said at least one tubular member from said lifting means to said vertical lifting assembly.
  • 17. The method of claim 15, wherein said lifting means comprises a crane.
  • 18. The method of claim 15, wherein said vertical lifting assembly is provided with a pair of vertically-spaced gripping jaws for grasping said at least one tubular member while moving said at least one tubular member to the vertical storage area.
  • 19. A method of moving tubular members on an offshore structure, comprising the following steps:providing a platform with a cantilever portion; forming a drill floor on said cantilever portion; providing a pipe rack for retaining a plurality of various length tubular members in a generally horizontal position on said platform; providing a vertical storage area for said tubular members on said drill floor; positioning the plurality of tubular members in said pipe rack; providing a lifting means for lifting at least one tubular member; providing a hoisting means for hoisting said at least one tubular member and moving said at least one tubular member to a position adjacent said drill floor; providing a vertical lift assembly for grasping said at least one tubular member at locations adjacent to opposite ends of said at least one tubular member; lifting at least one tubular member from the pipe rack and moving said at least one tubular member towards said vertical lift assembly; placing said at least one tubular member adjacent the vertical lift assembly; and grasping said at least one tubular member with said vertical lift assembly, while moving said at least one tubular member to the vertical storage area on said drill floor.
  • 20. The method of claim 19, further comprising the step of providing a feeding assembly with a conveyor for transporting said at least one tubular member from said hoisting means to said vertical lift assembly.
  • 21. The method of claim 19, further comprising the step of providing a feeding assembly with an elevated platform for transporting said at least one tubular member from said hoisting means to said vertical lift assembly.
US Referenced Citations (20)
Number Name Date Kind
3575005 Sumner Apr 1971 A
3633771 Woolslayer et al. Jan 1972 A
3655071 Langowski et al. Apr 1972 A
3702640 Cintract et al. Nov 1972 A
3792783 Brown Feb 1974 A
3795326 Neilson et al. Mar 1974 A
3799364 Kelly et al. Mar 1974 A
3865256 Freeman, Sr. Feb 1975 A
3877583 Bokenkamp Apr 1975 A
4081087 Freeman, Sr. Mar 1978 A
4129221 Moller Dec 1978 A
4269542 Mueller May 1981 A
4347029 Latimer et al. Aug 1982 A
4483644 Johnson Nov 1984 A
4582133 Tambs Apr 1986 A
4586572 Myers et al. May 1986 A
4610315 Koga et al. Sep 1986 A
4834604 Brittain et al. May 1989 A
5458454 Sorokan Oct 1995 A
5647443 Broeder Jul 1997 A
Foreign Referenced Citations (1)
Number Date Country
2137261 Oct 1984 GB