METHOD AND APPARATUS FOR A OPTIMAL SEAM FOR SURROUND VIEW SYNTHESIS

Information

  • Patent Application
  • 20150139568
  • Publication Number
    20150139568
  • Date Filed
    November 18, 2014
    10 years ago
  • Date Published
    May 21, 2015
    9 years ago
Abstract
A method, apparatus and a surround view camera system for determining the optimal seem for a surround view camera system. The method includes determining the corrected side view image at bird-eye perspective, generating a cost map for overlapping region, finding a minimum cost seam for each overlapping region, computing weight based on distance to the seam, if blending of the pixel, and blending the pixel, synthesizing composite view, and generating a composite view image.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention generally relate to a method and apparatus for optimal seam for surround view synthesis.


2. Description of the Related Art


In a canonical surround view camera system, there is a geometric alignment module that corrects the lens distortion and applies perspective transform to bring all views to a common bird-eye perspective. There is also a photometric alignment module that corrects the brightness and color difference between the views. Selecting a seam that cuts through each view overlapping region, the corrected views are stitched together to generate the composite image. Since the perspective transform is based on the flat assumption of the ground plane, the two views do not coincide on non-planar objects in their overlapping region, as shown in FIG. 3. FIG. 3 is an embodiment of a stitched view with fixed seam. This issue is caused by the cameras positioning, which is different and projects the non-planar objects in different directions.


Therefore, there is a need for a method and/or apparatus for correcting the seam in surround view camera system.


SUMMARY OF THE INVENTION

Embodiments of the present invention relate to a method, apparatus and a surround view camera system for determining the optimal seem for a surround view camera system. The method includes determining the corrected side view image at bird-eye perspective, generating a cost map for overlapping region, finding a minimum cost seam for each overlapping region, computing weight based on distance to the seam, if blending of the pixel, and blending the pixel, synthesizing composite view, and generating a composite view image.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be bad by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is an embodiment of a flow diagram for a method of determining the optimal seem for a surround view camera system;



FIG. 2 is an embodiment of a valid seams, starting points and ending boundaries;



FIG. 3 is an embodiment of a stitched view with fixed seam;



FIG. 4 is an embodiment of a stitched image with optimal seam; and



FIG. 5 is an embodiment of a surround view camera system of a vehicle.





DETAILED DESCRIPTION

The objective herein is to find a seam that cut through each view's overlapping region in such a way that difference between two views along the seam is minimized. In one embodiment, the cost map for each overlapping region is generated by computing the absolute difference of local block average between two views. The block-wise operation serves two advantages: 1. Downscale the problem by the size of block; 2. Avoid noisy pixel level comparison and turn to compare local statistics instead. As such, a valid or desirable seam exists in the overlapping region of two views. It is the boundary where two adjacent views meal in the composite image. FIG. 2 is an embodiment of valid seams, starting points and ending boundaries. FIG. 2 is an example of valid seams cutting across the overlapping regions. The starting point of the seam is fixed and marked in green and possible ending boundary is marked its red for each overlapping region.


One practical concern is that shortest path is usually very sensitive to value change in the cost map. To stabilize the shortest path result, especially for real time testing, a constraint is sat to where the shortest path can only evolve from the starting point toward the boundary and restrict a backward shift. As an example, the shortest path on the upper right overlapping region usually evolves in three directions: right, up, and upper-right. Such a constraint on the shortest path solves the problem by dynamic programming.



FIG. 4 is an embodiment of a stitched image with optimal seam. As shown in FIG. 4, the seam visibility is reduced by selecting the optimal seem and blending pixels from two views near the selected seams. The synthesized pixel value is taken as the weighted average of corresponding pixel values from two views. The blending weight of pixels in one view fade off linearly as the distance to the seam grows on the other side of the seam. The distance of a pixel to the seam is defined as the smallest number of steps needed from a pixel to a seam pixel, where each step takes you to one of the 8 immediate neighbor pixels. The distances of all pixels to the seam in each overlapping region can be computed by going through every pixel ones with Breadth First Search. The final composite imago is synthesized by selecting pixels from views according to the optimal seam locations with optional blending operation near the optimal seams.



FIG. 1 is an embodiment of a flow diagram for a method of determining the optimal seem for a surround view camera system. The method determines the corrected side view image at bird-eye perspective. Next, the method generates cost map for overlapping regions. The method, than, finds a minimum cost seam for each overlapping region. At such point, the method determines if blending of the pixel is needed. If blending of the pixel is needed, the method computes weight based on distance to the seam. The method synthesizes composite view. Finally, the method generates a composite view image.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. A method of a surround view camera system for determining the optimal seem for a surround view camera system, comprising: determining the corrected side view image at bird-eye perspective;generating a cost map for overlapping region;finding a minimum cost seam for each overlapping region;computing weight baaed on distance to the seam, if blending of the pixel, and blending the pixel;synthesizing composite view; andgenerating a composite view image.
  • 2. The method of claim 1 further comprising setting a constraint wherein the shortest path for the minimum cost seam evolves from the starting point toward the boundary and is restricted from shifting backward.
  • 3. The method of claim 1, wherein the surround view camera is coupled to a vehicle.
  • 4. A non-transitory computer readable medium with executable computer instruction, when executed perform a method of a surround view camera system for determining the optimal seam for a surround view camera system, the method comprising: determining the corrected side view image at bird-eye perspective;generating a cost map for overlapping region;finding a minimum cost seam for each overlapping region;computing weight based on distance to the seam, if blending of the pixel, and blending the pixel;synthesizing composite view; andgenerating a composite view image.
  • 5. The non-transitory computer readable medium of claim 4 further comprising sating a constraint wherein the shortest path for the minimum cost seam evolves from the starting point toward the boundary and is restricted from shifting backward.
  • 6. The non-transitory computer readable medium of claim 4, wherein the surround view camera is coupled to a vehicle.
  • 7. An surround view camera system, comprising: a memory; anda processor configured to perform a method for determining the optimal seem for a surround view camera system, the method comprising: determining the corrected side view image at bird-eye perspective;generating a cost map for overlapping region;finding a minimum cost seam for each overlapping region;computing weight based on distance to the seam, if blending of the pixel, and blending the pixel;synthesizing composite view; andgenerating a composite view image.
  • 8. The surround view camera system of claim 7 further comprising setting a constraint wherein the shortest path for the minimum cost seam evolves from the starting point toward the boundary and is restricted from shifting backward.
  • 9. The surround view camera system of claim 7, wherein the surround view camera is coupled to a vehicle.
CROSS REFERENCES TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Patent Application No. 61/905,625 filed on Nov. 18, 2013, which is hereby incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
61905625 Nov 2013 US