Method and apparatus for a point of care device

Abstract
A plurality of Point-of-Care (POC) tests on a single cartridge (300) is provided such that sequential or nonsequential tests may be performed in an integrated fashion without changing the test cartridge. Each cartridge can contain a penetrating member sensor (302) combination in a radial disk format, interrogated and read by a single illumination/detection device. Alternatively a series of tests can be measured electrochemically and reported. Only those tests, which are required at the time, the sample is taken need to be reported, though all tests are carried out.
Description
BACKGROUND OF THE INVENTION

A. Technical Field


The technical field relates to using fluorescence or fluorescence lifetime decay of oxygen sensors to measure multiple parameters simultaneously such as pH, blood gases, electrolytes, immunoassay and hematology in a handheld miniaturized format using inexpensive electronics for illumination, detection, lancet actuation and data communication. Alternatively, electrochemical tests suitable for point of care testing can be employed.


B. Related Art


POC (point of care) testing is attractive because it rapidly delivers results to the medical practitioner and enables faster consultation with the patient enabling the practitioner to commence treatment sooner, perhaps leading towards improved patient outcomes. Relevant art includes the use of screening and monitoring diagnostics for early intervention, such as cardiac markers for early detection of angina, coronary artery occlusion and ruling out chest pain (triage). Examples of POC tests include blood chemistry such as glucose, lactate, electrolytes, as well as hematology, immuno-diagnostics, drugs of abuse, serum cholesterol, fecal occult blood test (“FOBT”), pregnancy, and ovulation. Examples of electrochemical Point of Care devices, which are hand, held are given by the i-STAT where electrochemical tests are carried out on a few drops of blood. Based on Microfabricated thin film electrodes, common tests include creatinine, or glucose on single cartridges, or combined tests such as sodium, potassium, hematocrit and hemoglobin on a single cartridge. Tests are combined on cartridges depending on the application e.g. blood gas panel etc. One disadvantage to this deployment of tests on panel specific cartridges is that in some cases several cartridges may be used to obtain complete POC information from the patient.


Current POC devices such as the i-STAT do not provide an integrated solution for patient self-testing for sample acquisition, testing, analysis and connectivity to remote centralized healthcare. Accordingly it is the object of this invention to provide a portable, highly integrated, multi-parameter measurement instrument where sampling is integrated with measurement processes from 1 μL of blood or less. Integration will allow the broad deployment of tests for a single sample acquisition step. This fully integrated blood sampling and measurement technology platform has been established for glucose spot monitoring, (WO 02/1000254 Lancet launching device integrated on to a blood sampling cartridge) in a multi-test format (100+ tests) employing an electronic blood-sampling device (WO 02/100460 Electric lancet actuator, WO 02/100251 Self optimizing lancing device) embedded within a glucose measurement instrument and a data management system (WO 02/101359 Integrated blood sampling and analysis system with multi use sampling module). Optical measurement of analytes provides the potential to monitor important clinical analytes for Point of Care applications. Fluorescent amplitude or lifetime decay optical measurements of glucose can be made with low-cost, low-power consumption components that are compatible with handheld instrumentation. These components include LED's, plastic optical elements, and CMOS or photodiode light detectors. The opportunity exists to carry out multiple measurements on the same sample to obtain more precise results or to analyze for components other than glucose (U.S. Pat. No. 6,379,969 Optical sensor for sensing multiple analytes)


These POC still use a body fluid sample. Obtaining such a sample using conventional lancing device can be painful. Early methods of lancing included piercing or slicing the skin with a needle or razor. Current methods utilize lancing devices that contain a multitude of spring, cam and mass actuators to drive the lancet. These include cantilever springs, diaphragms, coil springs, as well as gravity plumbs used to drive the lancet. The device may be held against the skin and mechanically triggered to ballistically launch the lancet. Unfortunately, the pain associated with each lancing event using known technology discourages patients from testing. In addition to vibratory stimulation of the skin as the driver impacts the end of a launcher stop, known spring based devices have the possibility of firing lancets that harmonically oscillate against the patient tissue, causing multiple strikes due to recoil. This recoil and multiple strikes of the lancet is one major impediment to patient compliance with a structured glucose monitoring regime.


Another impediment to uncomfortable patient experience of giving a blood sample is the lack of spontaneous blood flow generated by known lancing technology. In addition to the pain as discussed above, a patient may need more than one lancing event to obtain a blood sample since spontaneous blood generation is unreliable using known lancing technology. Thus the pain is multiplied by the number of attempts required by a patient to successfully generate spontaneous blood flow. Different skin thickness may yield different results in terms of pain perception, blood yield and success rate of obtaining blood between different users of the lancing device. Known devices poorly account for these skin thickness variations.


Measurement of glucose concentration is commonly based on the use of an enzyme such as glucose oxidase or glucose dehydrogenase. In such sensing schemes, glucose (substrate) is turned over by an enzyme layer resulting in change in the concentration of another species such as oxygen or hydrogen ion. The change in concentration of these species can be converted into some charge based or optical change at a transducer interface (sensing region). Alternatively, if the enzyme is electrically coupled to an inert electrode, such a reaction results in a change in electron flow at constant applied potential. Both types of transduction mechanisms are widely used in glucose sensing. In the former type of transduction scheme, the reaction zone can be decoupled from the sensing region. Thus, the reaction of the enzyme with the substrate can be brought about in one region and the concentration measurement can be done in another region. In the latter scheme, the enzymatic reaction has to occur in close proximity to the sensing region (electrode surface) for electrical coupling. Some devices may also include analyte detecting member for analyzing sample fluid. Unfortunately, the storage ability of these devices are limited due to the need for some of these elements to be stored in inert environments.


The current sensing technologies do not attempt the separate the reaction zone from the sensing region. One disadvantage of this approach is that the enzyme layer has to be placed in close proximity to the sensing element. This results in considerable difficulty in manufacturing and/or stabilizing the chemistries associated with enzymatic reaction and the transduction scheme. For example in the optical transduction schemes, an oxygen sensing layer such as a silicone rubber film doped with a flurophore, such as Ru Tris Diphenyl Phenanthroline, is coupled to the enzymatic layer containing glucose oxidase. The chemicals used in making these layers interfere with proper functioning of each other. There is often considerable reduction in the enzyme activity. The resultant sensors have limited dynamic range or limited shelf life or both.


SUMMARY OF THE INVENTION

The present invention provides solutions for at least some of the drawbacks discussed above. Specifically, some embodiments of the present invention provide an improved body fluid sampling device. The device may be used to perform a plurality of analyte tests on a single sample. At least some of these and other objectives described herein will be met by embodiments of the present invention.


In one embodiment, the present invention provides a multiple analyte detecting member and multiple lancet solution to measure analyte levels in the body. The invention may use a high-density analyte detecting member design of electrochemical or optical origin using multiple analyte detecting members to measure an analyte in a body fluid. It may use lancets of smaller size than known lancets. The device may be used for multiple lancing events without having to remove a disposable from the device.


The present invention provides solutions for at least some of the drawbacks discussed above. Specifically, some embodiments of the present invention provide an improved fluid sampling device. To improve shelf stable storage, devices and methods for decoupling enzyme layer from the sensing region may be provided. What is desired is a device and method that decouples the enzymatic reaction zone from the sensing region while providing appropriate contacting of the two with the sample to be analyzed. At least some of these and other objectives described herein will be met by embodiments of the present invention.


In one aspect of the present invention, the invention relates to using the electronic tissue penetration device to drive a penetrating member into tissue, causing two separated storage areas to be opened during actuation.


In one embodiment of the present invention, a method of body fluid sampling is provided. The method comprises moving a penetrating member at conforming to a selectable velocity profile or motion waveform; piercing a storage area having a sensing area; piercing another storage area having an enzyme area separate from the sensing area prior to piercing; and causing fluid to first flow to the enzyme area and then to the sensing area. The method may further comprise storing said enzyme area in an inert environment different from an environment for the sensing area.


The system may further comprise means for coupling the force generator with one of the penetrating members.


The system may further comprise a penetrating member sensor positioned to monitor a penetrating member coupled to the force generator, the penetrating member sensor configured to provide information relative to a depth of penetration of a penetrating member through a skin surface.


The depth of penetration may be about 100 to 2500 microns.


The depth of penetration may be about 500 to 750 microns.


The depth of penetration may be, in this nonlimiting example, no more than about 1000 microns beyond a stratum corneum thickness of a skin surface.


The depth of penetration may be no more than about 500 microns beyond a stratum corneum thickness of a skin surface.


The depth of penetration may be no more than about 300 microns beyond a stratum corneum thickness of a skin surface.


The depth of penetration may be less than a sum of a stratum corneum thickness of a skin surface and 400 microns.


The penetrating member sensor may be further configured to control velocity of a penetrating member.


The active penetrating member may move along a substantially linear path into the tissue.


The active penetrating member may move along an at least partially curved path into the tissue.


The driver may be a voice coil drive force generator.


The driver may be a rotary voice coil drive force generator.


The penetrating member sensor may be coupled to a processor with control instructions for the penetrating member driver.


The processor may include a memory for storage and retrieval of a set of penetrating member profiles utilized with the penetrating member driver.


The processor may be utilized to monitor position and speed of a penetrating member as the penetrating member moves in a first direction.


The processor may be utilized to adjust an application of force to a penetrating member to achieve a desired speed of the penetrating member.


The processor may be utilized to adjust an application of force to a penetrating member when the penetrating member contacts a target tissue so that the penetrating member penetrates the target tissue within a desired range of speed.


The processor may be utilized to monitor position and speed of a penetrating member as the penetrating member moves in the first direction toward a target tissue, wherein the application of a launching force to the penetrating member is controlled based on position and speed of the penetrating member.


The processor may be utilized to control a withdraw force to the penetrating member so that the penetrating member moves in a second direction away from the target tissue.


In the first direction, the penetrating member may move toward the target tissue at a speed that is different than a speed at which the penetrating member moves away from the target tissue.


In the first direction the penetrating member may move toward the target tissue at a speed that is greater than a speed at which the penetrating member moves away from the target tissue.


The speed of a penetrating member in the first direction may be the range of about 2.0 to 10.0 m/sec.


The average velocity of the penetrating member during a tissue penetration stroke in the first direction may be about 100 to about 1000 times greater than the average velocity of the penetrating member during a withdrawal stroke in a second direction.


A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an embodiment of a controllable force driver in the form of a cylindrical electric penetrating member driver using a coiled solenoid-type configuration.



FIG. 2A illustrates a displacement over time profile of a penetrating member driven by a harmonic spring/mass system.



FIG. 2B illustrates the velocity over time profile of a penetrating member driver by a harmonic spring/mass system.



FIG. 2C illustrates a displacement over time profile of an embodiment of a controllable force driver.



FIG. 2D illustrates a velocity over time profile of an embodiment of a controllable force driver.



FIG. 3 is a diagrammatic view illustrating a controlled feed-back loop.



FIG. 4 is a perspective view of a tissue penetration device having features of the invention.



FIG. 5 is an elevation view in partial longitudinal section of the tissue penetration device of FIG. 4.



FIG. 6 shows one embodiment of a radial disc for use with the present invention.



FIGS. 7A and 7B show embodiments of the present invention.



FIG. 8 shows one embodiment of the present invention for performing multiple measurements.



FIG. 9 shows one embodiment of a cartridge configured to measure different analytes.



FIG. 10 shows one embodiment of a cartridge having analyte detecting members on the underside.



FIG. 11 shows one embodiment of method for preparing fluid for measurement.





DESCRIPTION OF THE SPECIFIC EMBODIMENTS

The present invention provides a solution for body fluid sampling. Specifically, some embodiments of the present invention provides a method for improving spontaneous blood generation. Some embodiments of the present invention provide an improved body fluid sampling device. For some embodiments of these penetrating member drivers, the invention relates to a new contact point algorithm that is run immediately before the actual lance event. At least some of these and other objectives described herein will be met by embodiments of the present invention.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. It may be noted that, as used in the specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a material” may include mixtures of materials, reference to “a chamber” may include multiple chambers, and the like. References cited herein are hereby incorporated by reference in their entirety, except to the extent that they conflict with teachings explicitly set forth in this specification.


In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:


“Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, if a device optionally contains a feature for analyzing a blood sample, this means that the analysis feature may or may not be present, and, thus, the description includes structures wherein a device possesses the analysis feature and structures wherein the analysis feature is not present.


The present invention may be used with a variety of different penetrating member drivers. It is contemplated that these penetrating member drivers may be spring based, solenoid based, magnetic driver based, nanomuscle based, or based on any other mechanism useful in moving a penetrating member along a path into tissue. It should be noted that the present invention is not limited by the type of driver used with the penetrating member feed mechanism. One suitable penetrating member driver for use with the present invention is shown in FIG. 1. This is an embodiment of a solenoid type electromagnetic driver that is capable of driving an iron core or slug mounted to the penetrating member assembly using a direct current (DC) power supply. The electromagnetic driver includes a driver coil pack that is divided into three separate coils along the path of the penetrating member, two end coils and a middle coil. Direct current is alternated to the coils to advance and retract the penetrating member. Although the driver coil pack is shown with three coils, any suitable number of coils may be used, for example, 4, 5, 6, 7 or more coils may be used.


Referring to the embodiment of FIG. 1, the stationary iron housing 10 may contain the driver coil pack with a first coil 12 flanked by iron spacers 14 which concentrate the magnetic flux at the inner diameter creating magnetic poles. The inner insulating housing 16 isolates the penetrating member 18 and iron core 20 from the coils and provides a smooth, low friction guide surface. The penetrating member guide 22 further centers the penetrating member 18 and iron core 20. The penetrating member 18 is protracted and retracted by alternating the current between the first coil 12, the middle coil, and the third coil to attract the iron core 20. Reversing the coil sequence and attracting the core and penetrating member back into the housing retracts the penetrating member. The penetrating member guide 22 also serves as a stop for the iron core 20 mounted to the penetrating member 18.


As discussed above, tissue penetration devices which employ spring or cam driving methods have a symmetrical or nearly symmetrical actuation displacement and velocity profiles on the advancement and retraction of the penetrating member as shown in FIGS. 2 and 3. In most of the available lancet devices, once the launch is initiated, the stored energy determines the velocity profile until the energy is dissipated. Controlling impact, retraction velocity, and dwell time of the penetrating member within the tissue can be useful in order to achieve a high success rate while accommodating variations in skin properties and minimize pain. Advantages can be achieved by taking into account of the fact that tissue dwell time is related to the amount of skin deformation as the penetrating member tries to puncture the surface of the skin and variance in skin deformation from patient to patient based on skin hydration.


In this embodiment, the ability to control velocity and depth of penetration may be achieved by use of a controllable force driver where feedback is an integral part of driver control. Such drivers can control either metal or polymeric penetrating members or any other type of tissue penetration element. The dynamic control of such a driver is illustrated in FIG. 2C which illustrates an embodiment of a controlled displacement profile and FIG. 2D which illustrates an embodiment of a the controlled velocity profile. These are compared to FIGS. 2A and 2B, which illustrate embodiments of displacement and velocity profiles, respectively, of a harmonic spring/mass powered driver. Reduced pain can be achieved by using impact velocities of greater than about 2 m/s entry of a tissue penetrating element, such as a lancet, into tissue. Other suitable embodiments of the penetrating member driver are described in commonly assigned, copending U.S. patent application Ser. No. 10/127,395, filed Apr. 19, 2002 and previously incorporated herein.



FIG. 3 illustrates the operation of a feedback loop using a processor 60. The processor 60 stores profiles 62 in non-volatile memory. A usher inputs information 64 about the desired circumstances or parameters for a lancing event. The processor 60 selects a driver profile 62 from a set of alternative driver profiles that have been preprogrammed in the processor 60 based on typical or desired tissue penetration device performance determined through testing at the factory or as programmed in by the operator. The processor 60 may customize by either scaling or modifying the profile based on additional user input information 64. Once the processor has chosen and customized the profile, the processor 60 is ready to modulate the power from the power supply 66 to the penetrating member driver 68 through an amplifier 70. The processor 60 may measure the location of the penetrating member 72 using a position sensing mechanism 74 through an analog to digital converter 76 linear encoder or other such transducer. Examples of position sensing mechanisms have been described in the embodiments above and may be found in the specification for commonly assigned, copending U.S. patent application Ser. No. 10/127,395, filed Apr. 19, 2002 and previously incorporated herein. The processor 60 calculates the movement of the penetrating member by comparing the actual profile of the penetrating member to the predetermined profile. The processor 60 modulates the power to the penetrating member driver 68 through a signal generator 78, which may control the amplifier 70 so that the actual velocity profile of the penetrating member does not exceed the predetermined profile by more than a preset error limit. The error limit is the accuracy in the control of the penetrating member.


After the lancing event, the processor 60 can allow the user to rank the results of the lancing event. The processor 60 stores these results and constructs a database 80 for the individual user. Using the database 79, the processor 60 calculates the profile traits such as degree of painlessness, success rate, and blood volume for various profiles 62 depending on user input information 64 to optimize the profile to the individual user for subsequent lancing cycles. These profile traits depend on the characteristic phases of penetrating member advancement and retraction. The processor 60 uses these calculations to optimize profiles 62 for each user. In addition to user input information 64, an internal clock allows storage in the database 79 of information such as the time of day to generate a time stamp for the lancing event and the time between lancing events to anticipate the user's diurnal needs. The database stores information and statistics for each user and each profile that particular user uses.


In addition to varying the profiles, the processor 60 can be used to calculate the appropriate penetrating member diameter and geometry suitable to realize the blood volume required by the user. For example, if the user requires about 1-5 microliter volume of blood, the processor 60 may select a 200 micron diameter penetrating member to achieve these results. For each class of lancet, both diameter and lancet tip geometry, is stored in the processor 60 to correspond with upper and lower limits of attainable blood volume based on the predetermined displacement and velocity profiles.


The lancing device is capable of prompting the user for information at the beginning and the end of the lancing event to more adequately suit the user. The goal is to either change to a different profile or modify an existing profile. Once the profile is set, the force driving the penetrating member is varied during advancement and retraction to follow the profile. The method of lancing using the lancing device comprises selecting a profile, lancing according to the selected profile, determining lancing profile traits for each characteristic phase of the lancing cycle, and optimizing profile traits for subsequent lancing events.



FIG. 4 illustrates an embodiment of a tissue penetration device, more specifically, a lancing device 80 that includes a controllable driver 179 coupled to a tissue penetration element. The lancing device 80 has a proximal end 81 and a distal end 82. At the distal end 82 is the tissue penetration element in the form of a penetrating member 83, which is coupled to an elongate coupler shaft 84 by a drive coupler 85. The elongate coupler shaft 84 has a proximal end 86 and a distal end 87. A driver coil pack 88 is disposed about the elongate coupler shaft 84 proximal of the penetrating member 83. A position sensor 91 is disposed about a proximal portion 92 of the elongate coupler shaft 84 and an electrical conductor 94 electrically couples a processor 93 to the position sensor 91. The elongate coupler shaft 84 driven by the driver coil pack 88 controlled by the position sensor 91 and processor 93 form the controllable driver, specifically, a controllable electromagnetic driver.


Referring to FIG. 5, the lancing device 80 can be seen in more detail, in partial longitudinal section. The penetrating member 83 has a proximal end 95 and a distal end 96 with a sharpened point at the distal end 96 of the penetrating member 83 and a drive head 98 disposed at the proximal end 95 of the penetrating member 83. A penetrating member shaft 201 is disposed between the drive head 98 and the sharpened point 97. The penetrating member shaft 201 may be comprised of stainless steel, or any other suitable material or alloy and have a transverse dimension of about 0.1 to about 0.4 mm. The penetrating member shaft may have a length of about 3 mm to about 50 mm, specifically, about 15 mm to about 20 mm. The drive head 98 of the penetrating member 83 is an enlarged portion having a transverse dimension greater than a transverse dimension of the penetrating member shaft 201 distal of the drive head 98. This configuration allows the drive head 98 to be mechanically captured by the drive coupler 85. The drive head 98 may have a transverse dimension of about 0.5 to about 2 mm.


A magnetic member 102 is secured to the elongate coupler shaft 84 proximal of the drive coupler 85 on a distal portion 203 of the elongate coupler shaft 84. The magnetic member 102 is a substantially cylindrical piece of magnetic material having an axial lumen 204 extending the length of the magnetic member 102. The magnetic member 102 has an outer transverse dimension that allows the magnetic member 102 to slide easily within an axial lumen 105 of a low friction, possibly lubricious, polymer guide tube 105′ disposed within the driver coil pack 88. The magnetic member 102 may have an outer transverse dimension of about 1.0 to about 5.0 mm, specifically, about 2.3 to about 2.5 mm. The magnetic member 102 may have a length of about 3.0 to about 5.0 mm, specifically, about 4.7 to about 4.9 mm. The magnetic member 102 can be made from a variety of magnetic materials including ferrous metals such as ferrous steel, iron, ferrite, or the like. The magnetic member 102 may be secured to the distal portion 203 of the elongate coupler shaft 84 by a variety of methods including adhesive or epoxy bonding, welding, crimping or any other suitable method.


Proximal of the magnetic member 102, an optical encoder flag 206 is secured to the elongate coupler shaft 84. The optical encoder flag 206 is configured to move within a slot 107 in the position sensor 91. The slot 107 of the position sensor 91 is formed between a first body portion 108 and a second body portion 109 of the position sensor 91. The slot 107 may have separation width of about 1.5 to about 2.0 mm. The optical encoder flag 206 can have a length of about 14 to about 18 mm, a width of about 3 to about 5 mm and a thickness of about 0.04 to about 0.06 mm.


The optical encoder flag 206 interacts with various optical beams generated by LEDs disposed on or in the position sensor body portions 108 and 109 in a predetermined manner. The interaction of the optical beams generated by the LEDs of the position sensor 91 generates a signal that indicates the longitudinal position of the optical flag 206 relative to the position sensor 91 with a substantially high degree of resolution. The resolution of the position sensor 91 may be about 200 to about 400 cycles per inch, specifically, about 350 to about 370 cycles per inch. The position sensor 91 may have a speed response time (position/time resolution) of 0 to about 120,000 Hz, where one dark and light stripe of the flag constitutes one Hertz, or cycle per second. The position of the optical encoder flag 206 relative to the magnetic member 102, driver coil pack 88 and position sensor 91 is such that the optical encoder 91 can provide precise positional information about the penetrating member 83 over the entire length of the penetrating member's power stroke.


An optical encoder that is suitable for the position sensor 91 is a linear optical incremental encoder, model HEDS 9200, manufactured by Agilent Technologies. The model HEDS 9200 may have a length of about 20 to about 30 mm, a width of about 8 to about 12 mm, and a height of about 9 to about 11 mm. Although the position sensor 91 illustrated is a linear optical incremental encoder, other suitable position sensor embodiments could be used, provided they posses the requisite positional resolution and time response. The HEDS 9200 is a two channel device where the channels are 90 degrees out of phase with each other. This results in a resolution of four times the basic cycle of the flag. These quadrature outputs make it possible for the processor to determine the direction of penetrating member travel. Other suitable position sensors include capacitive encoders, analog reflective sensors, such as the reflective position sensor discussed above, and the like.


A coupler shaft guide 111 is disposed towards the proximal end 81 of the lancing device 80. The guide 111 has a guide lumen 112 disposed in the guide 111 to slidingly accept the proximal portion 92 of the elongate coupler shaft 84. The guide 111 keeps the elongate coupler shaft 84 centered horizontally and vertically in the slot 102 of the optical encoder 91.


Referring now to FIG. 6, a still further embodiment of a cartridge according to the present invention will be described. FIG. 6 shows one embodiment of a cartridge 300 which may be removably inserted into an apparatus for driving penetrating members to pierce skin or tissue. The cartridge 300 has a plurality of penetrating members 302 that may be individually or otherwise selectively actuated so that the penetrating members 302 may extend outward from the cartridge, as indicated by arrow 304, to penetrate tissue. In the present embodiment, the cartridge 300 may be based on a flat disc with a number of penetrating members such as, but in no way limited to, (25, 50, 75, 100, . . . ) arranged radially on the disc or cartridge 300. It should be understood that although the cartridge 300 is shown as a disc or a disc-shaped housing, other shapes or configurations of the cartridge may also work without departing from the spirit of the present invention of placing a plurality of penetrating members to be engaged, singly or in some combination, by a penetrating member driver.


Each penetrating member 302 may be contained in a cavity 306 in the cartridge 300 with the penetrating member's sharpened end facing radially outward and may be in the same plane as that of the cartridge. The cavity 306 may be molded, pressed, forged, or otherwise formed in the cartridge. Although not limited in this manner, the ends of the cavities 306 may be divided into individual fingers (such as one for each cavity) on the outer periphery of the disc. The particular shape of each cavity 306 may be designed to suit the size or shape of the penetrating member therein or the amount of space desired for placement of the analyte detecting members 308. For example and not limitation, the cavity 306 may have a V-shaped cross-section, a U-shaped cross-section, C-shaped cross-section, a multi-level cross section or the other cross-sections. The opening 310 through which a penetrating member 302 may exit to penetrate tissue may also have a variety of shapes, such as but not limited to, a circular opening, a square or rectangular opening, a U-shaped opening, a narrow opening that only allows the penetrating member to pass, an opening with more clearance on the sides, a slit, a configuration as shown in FIG. 75, or the other shapes.


In this embodiment, after actuation, the penetrating member 302 is returned into the cartridge and may be held within the cartridge 300 in a manner so that it is not able to be used again. By way of example and not limitation, a used penetrating member may be returned into the cartridge and held by the launcher in position until the next lancing event. At the time of the next lancing, the launcher may disengage the used penetrating member with the cartridge 300 turned or indexed to the next clean penetrating member such that the cavity holding the used penetrating member is position so that it is not accessible to the user (i.e. turn away from a penetrating member exit opening). In some embodiments, the tip of a used penetrating member may be driven into a protective stop that hold the penetrating member in place after use. The cartridge 300 is replaceable with a new cartridge 300 once all the penetrating members have been used or at such other time or condition as deemed desirable by the user.


Referring still to the embodiment in FIG. 6, the cartridge 300 may provide sterile environments for penetrating members via seals, foils, covers, polymeric, or similar materials used to seal the cavities and provide enclosed areas for the penetrating members to rest in. In the present embodiment, a foil or seal layer 320 is applied to one surface of the cartridge 300. The seal layer 320 may be made of a variety of materials such as a metallic foil or other seal materials and may be of a tensile strength and other quality that may provide a sealed, sterile environment until the seal layer 320 is penetrate by a suitable or penetrating device providing a preselected or selected amount of force to open the sealed, sterile environment. Each cavity 306 may be individually sealed with a layer 320 in a manner such that the opening of one cavity does not interfere with the sterility in an adjacent or other cavity in the cartridge 800. As seen in the embodiment of FIG. 6, the seal layer 320 may be a planar material that is adhered to a top surface of the cartridge 800.


Depending on the orientation of the cartridge 300 in the penetrating member driver apparatus, the seal layer 320 may be on the top surface, side surface, bottom surface, or other positioned surface. For ease of illustration and discussion of the embodiment of FIG. 6, the layer 320 is placed on a top surface of the cartridge 800. The cavities 306 holding the penetrating members 302 are sealed on by the foil layer 320 and thus create the sterile environments for the penetrating members. The foil layer 320 may seal a plurality of cavities 306 or only a select number of cavities as desired.


In a still further feature of FIG. 6, the cartridge 300 may optionally include a plurality of analyte detecting members 308 on a substrate 322 which may be attached to a bottom surface of the cartridge 300. The substrate may be made of a material such as, but not limited to, a polymer, a foil, or other material suitable for attaching to a cartridge and holding the analyte detecting members 308. As seen in FIG. 6, the substrate 322 may hold a plurality of analyte detecting members, such as but not limited to, about 10-50, 50-100, or other combinations of analyte detecting members. This facilitates the assembly and integration of analyte detecting members 308 with cartridge 300. These analyte detecting members 308 may enable an integrated body fluid sampling system where the penetrating members 302 create a wound tract in a target tissue, which expresses body fluid that flows into the cartridge for analyte detection by at least one of the analyte detecting members 308. The substrate 322 may contain any number of analyte detecting members 308 suitable for detecting analytes in cartridge having a plurality of cavities 306. In one embodiment, many analyte detecting members 308 may be printed onto a single substrate 322 which is then adhered to the cartridge to facilitate manufacturing and simplify assembly. The analyte detecting members 308 may be electrochemical in nature. The analyte detecting members 308 may further contain enzymes, dyes, or other detectors which react when exposed to the desired analyte. Additionally, the analyte detecting members 308 may comprise of clear optical windows that allow light to pass into the body fluid for analyte analysis. The number, location, and type of analyte detecting member 308 may be varied as desired, based in part on the design of the cartridge, number of analytes to be measured, the need for analyte detecting member calibration, and the sensitivity of the analyte detecting members. If the cartridge 300 uses an analyte detecting member arrangement where the analyte detecting members are on a substrate attached to the bottom of the cartridge, there may be through holes (as shown in FIG. 76), wicking elements, capillary tube or other devices on the cartridge 300 to allow body fluid to flow from the cartridge to the analyte detecting members 308 for analysis. In other configurations, the analyte detecting members 308 may be printed, formed, or otherwise located directly in the cavities housing the penetrating members 302 or areas on the cartridge surface that receive blood after lancing.


The use of the seal layer 320 and substrate or analyte detecting member layer 322 may facilitate the manufacture of these cartridges 10. For example, a single seal layer 320 may be adhered, attached, or otherwise coupled to the cartridge 300 as indicated by arrows 324 to seal many of the cavities 306 at one time. A sheet 322 of analyte detecting members may also be adhered, attached, or otherwise coupled to the cartridge 300 as indicated by arrows 325 to provide many analyte detecting members on the cartridge at one time. During manufacturing of one embodiment of the present invention, the cartridge 300 may be loaded with penetrating members 302, sealed with layer 320 and a temporary layer (not shown) on the bottom where substrate 322 would later go, to provide a sealed environment for the penetrating members. This assembly with the temporary bottom layer is then taken to be sterilized. After sterilization, the assembly is taken to a clean room (or it may already be in a clear room or equivalent environment) where the temporary bottom layer is removed and the substrate 322 with analyte detecting members is coupled to the cartridge as shown in FIG. 6. This process allows for the sterile assembly of the cartridge with the penetrating members 302 using processes and/or temperatures that may degrade the accuracy or functionality of the analyte detecting members on substrate 322. As a nonlimiting example, the entire cartridge 300 may then be placed in a further sealed container such as a pouch, bag, plastic molded container, etc . . . to facilitate contact, improve ruggedness, and/or allow for easier handling.


In some embodiments, more than one seal layer 320 may be used to seal the cavities 306. As examples of some embodiments, multiple layers may be placed over each cavity 306, half or some selected portion of the cavities may be sealed with one layer with the other half or selected portion of the cavities sealed with another sheet or layer, different shaped cavities may use different seal layer, or the like. The seal layer 320 may have different physical properties, such as those covering the penetrating members 302 near the end of the cartridge may have a different color such as red to indicate to the user (if visually inspectable) that the user is down to say 10, 5, or other number of penetrating members before the cartridge should be changed out.


Chemical sensor formulations have been developed that are capable of conducting numerous different chemical analyses on small samples, so that the, maximum number of medical tests can be made using the minimum amount of sample. Volume of less than 100 nL are possible. These blood chemistry tests include small molecules such as glucose and lactate, blood gasses (including pO2, pCO2), blood pH, ions (Na+, Ca++, K+), and hematology, hematocrit and coagulation and hemoglobin factors, as well as immuno-diagnostics, and DNA testing. Parallel testing can be performed on the sensing cartridge using fluorescence-based detection using oxygen sensors so that a wide variety of tests can be performed using optical sensors for several species that can be interrogated with one illumination source and read with one detector (Wolfbeis O. Sensors and Actuators B 51 (1998) 17-24). Analysis of multiple analytes from a fluid of unknown composition has been described (U.S. Pat. No. 6,379,969 Mauze et al). Analysis of a plurality of metabolites in a hand held diagnostic device using a single cartridge using about 1-3 μL of blood has also been described (US2003/0073931 Universal Diagnostic platform, US2003/0073089 Companion cartridge for disposable diagnostic testing). There is a need for a plurality of POC tests on a single cartridge such that sequential tests may be performed in an integrated fashion without changing the test cartridge.


In one embodiment of the present invention, each cartridge may contain a penetrating member/analyte detecting member combination on a radial disc format, interrogated and read by a single illumination/detection device. Alternatively a series of tests can be measured electrochemically and reported. In one embodiment, only those tests, which are desired at the time the sample is taken need to be reported, though all tests are carried out. This avoids having to change cartridges for a specific combination or panel since bundled tests with menu option. Of course, in some alternative embodiments, several cartridges, each with specific analyte testing capabilities, may be used for given disease state as desired. Test combinations may include a plurality of tests for a single penetrating member/analyte detecting member combination repeated up to 100 times. In one embodiment, the nominal test panel would include blood gasses, electrolytes, metabolites, immunoassay and coagulation as a first choice. Cell counting and hematology are complex and may require almost 75% more space in the analyte detecting member area to complete. This may be accomplished by using the underside of the disk and a second layer if more surface area is required, as seen in FIG. 10. In one embodiment, the cartridge may contain microfluidic channels to fluidly connect fluid receiving sites on the top of the cartridge to those on the bottom.


In one embodiment, the invention is comprised of an electronic lancet driver to penetrate tissue, a single disposable cartridge 400 containing penetrating member/analyte detecting member pairs 402 arranged on a radial disk of about 6 cm in diameter. Penetrating members are coupled to the electronic actuator, which can actuate the penetrating members radially outward from the cartridge to penetrate tissue. As seen in FIG. 7, optical or electrochemical analyte detecting members 410 may be coupled to the cartridge, and positioned on the cartridge to receive blood from the wound created by the penetrating member. In some embodiments, the portion 412 may be an annular ring attached to the cartridge 410, instead of being integrally formed. In one embodiment, capillary forces draw the blood or other fluid sample, which flows from the wound to the surface of the skin, through an opening and then to the analyte detecting member chamber situated, on the support disc (FIGS. 8 and 9). In this embodiment, once blood fills the analyte detecting member, analytical testing can be performed on the sample. Results may be read optically via transparent windows aligned with optical analyte detecting members, or electrochemically from electrodes in contact with the biosensor chemistry.


In one embodiment as seen in FIG. 8, chemical tests are started simultaneously by having the blood fill a prefill chamber 450. It is microfluidically designed so that when enough sample has arrived to fill all the analyte detecting members, the chamber 450 is primed to empty and fill the analyte detecting member chemistry zones 454 instantaneously. It should be understood that the zone 454 associated with each penetrating member may vary. Some embodiments may have 2, 3, 4, 5, 6, 7, 8, 9, 10, or more zones, depending on the types of tests being run and the fluid requirements for each zone. In some embodiments, more than one zone may be measuring the same analyte or they may all be measuring for the same analyte. Some of the zones may be on the top of the cartridge while the remaining are on the underside of the cartridge.


In some embodiments, a blister 460 may be included. The blister 460 may be manufactured under pressure. When the blister 460 is broken (either by the indexing mechanism or another method) the pressure is released and calibration and or washing fluid can be released throughout the test area or zones 454 prior to the arrival of blood or other fluid sample to the test region 454 so that equilibration can take place if required. A vent may also be included to prevent overfill of the cartridge if too much sample is delivered. Additionally and fill indicator may be present to indicate adequate sample fill of the sample chamber. In some embodiments; the vent and/or fill indicator may be coupled to the sample chamber or to the chemistry zones.



FIG. 9 shows a still further embodiment of the present invention where different zones are on each cartridge 400. The cartridge may be divided by different test chemistry regions. In some embodiments, the cartridge 400 may have the same tests associated with each penetrating member. In other embodiments, the cartridge 400 may be divided into 2, 3, 4, 5, 6, 7, 8, 9, 10, or more zones, depending on which tests should be run. Some tests may vary based on the time of day that the testing occurs. The cartridge may be rotated as desired to bring the desired test into position for use with fluid sampling.


It should be understood that embodiments of the present invention may provide at least some of the following advantages. All of the advantages miniaturized, disposable, biohazard etc, as described in commonly assigned copending U.S. patent application Ser. Nos. 10/127,395, 10/324,053, and 10/429,196. The device may have handheld, two way communication, data management (as per US 2003/0073931 A1 Universal diagnostic platform). The device may have integrated sampling/POC testing device for one step sample to read. The device may have blood volume requirement less than 1 microL. The device may have many tests on single analyte detecting member/penetrating member combination. Each segment may have the same test or the cartridge can be divided into regions with a plurality of specific tests. All tests run, subset reported, cost of test only for tests required. Analyte detecting members may be electrochemical or optical (or any combination of both or other analyte detecting member types). The device may include companion cartridge for more complex less common tests, only used if required. In some embodiments as shown in FIG. 10, the underside of a cartridge as described in Ser. No. 10/429,196 may be used for tests requiring larger surface area e.g. washing steps in hematology or cell counting. All tests may start simultaneously by means of an upstream fixed volume chamber which empties instantaneously when full. The device may have vents, seals, fill detectors as described in 10/324,053. Cartridge vent system opens by piercing mechanism to allow on board calibration fluids to start flowing into relevant fluidic structures. The device may optically interrogate from bottom as in F1 optical disclosure. Array detection may be used as in Ser. No. 10/324,053.


In another aspect of the present invention, an improved analyte measurement storage device will be described. The current invention teaches devices and methods for isolating the enzymatic region from the sensing region in such a way that they can be fabricated and stored without interacting with each other during their pre-use phase. However the regions can be properly coupled during their use for proper functioning.


Referring now to FIG. 11, a penetrating member 500 such as one driven by device as taught herein (though not limited in that manner) may be used to puncture a structure 502 containing an enzyme area 504 and a sensing area 506. Septums or seals 508, 510, 512 and may be used to keep these two areas separated prior to use. As a nonlimiting example, the area 504 may be stored in an inert gas (non oxygen) environment, while the area 506 is stored in a different environment. The flow of fluid 520 into the region may be due to gravity, capillary force, vacuum, or other technique. The flow allows the fluid to first gather material from the enzyme area 504 which may prepare the fluid for sensing the area 506. These sensing techniques may be used with optical analyte detecting member as known to those skilled in the art.


In one embodiment of this invention, the enzyme layer is deposited on the surface of a capillary region through which the sample to be analyzed flows to the sensing region where the transduction takes place. The coating can be placed on the wall of the capillary itself, or on the surface of any component of the device such as a penetrating member that comes in contact with the sample as it flows toward the sensing region. As the sample moves through this region it either dissolves the enzyme layer or extracts the enzyme into the sample. The rate of this enzyme uptake by the sample can be adjusted such that by the time sample reaches the sensing region the enzyme has adequately interacted with the analyte to present appropriate sample for detection by the analyte detecting member. This can be achieved by adjusting one or more of the following factors: 1) the length of the coated region along the sample flow path, 2) thickness of the coating, 3) chemical composition of the coating, 4) porosity of the coating, 5) speed of the flow of the sample. These methods and means of achieving the appropriate enzyme uptake may be dependent upon the particular chemistry of enzyme and other reagents and would be readily determined by those familiar with the art of enzyme chemistry. These alternatives are included in this invention by reference.


In another embodiment of this invention, the sensing regions can be located along the flow path of the sample. In such a configuration, the enzyme layer is still coated on the walls along the flow path; the sample picks up different amount of the enzyme as it passes over each of the sensing regions. Thus the sensing region closest to the sample entry port has the least amount of enzyme and the one furthest along the flow path has the most amount of the enzyme. Such as scheme can be advantageously used where the amount of enzyme required for getting optimal analyte detecting member signal depends upon the (unknown) amount of the analyte in the sample. Since the analyte content is not known a priori, series of signals obtained from the sensing regions as a function of the amount of enzyme taken up by the sample can be evaluated and the optimal signal can be used for determining the analyte concentration.


Although these embodiments refer to the enzyme as an example of the chemical that is taken up by the sample for analysis, any other chemical species that is required to be dissolved in on contacted with the sample before analysis could be thus disposed using the teachings of this invention.


The current invention results in several advantages in the devices for analyte sensing and methods of manufacturing the same. Isolation of the enzyme from the sensing regions allows one to use different or incompatibles chemistries such as solvents for manufacturing and depositing the sensing layer and the enzyme layer.


An example is a glucose analyte detecting member based on sensing of oxygen depletion by the reaction of glucose with glucose oxidase. In this type of analyte detecting members, the oxygen analyte detecting member could be made of a silicone rubber layer containing an oxygen sensing fluorophore. The solvents required for depositing this layer are usually lipophilic and will readily reduce the activity of glucose oxidase. These solvents, even in minute quantities, can outgas from the layer and over time gradually deactivate the enzyme. Based on the teachings of this invention, the oxygen-sensing layer and the enzyme layer can be physically isolated from each other. Or, they can be fabricated separately and then assembled together after adequate out gassing of the harmful solvents etc. Alternatively, the two layers can be separated by a physical barrier such as septum during the pre-use storage of the device. At the time of analysis, the barrier can be broken by application of energy (thermal or electrical) or by impact of an object such as a penetrating member. Using such a barrier would enable one to store the layers in different atmospheres. For example, the enzyme could be stored in nitrogen atmosphere while the oxygen sensing layer could be stored in oxygen or another gas composition adequate for calibration at the time of use or stability during storage. If the oxygen analyte detecting member is stored in an oxygen rich atmosphere, the dissolved oxygen could act as a reagent for the glucose-GOD reaction. Such a scheme will provide a baseline for the oxygen consumed by the reaction of glucose that is not limited by the dissolved oxygen content of the sample.


While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. For example, with any of the above embodiments, the location of the penetrating member drive device may be varied, relative to the penetrating members or the cartridge. With any of the above embodiments, the penetrating member tips may be uncovered during actuation (i.e. penetrating members do not pierce the penetrating member enclosure or protective foil during launch). With any of the above embodiments, the penetrating members may be a bare penetrating member during launch. With any of the above embodiments, the penetrating members may be bare penetrating members prior to launch as this may allow for significantly tighter densities of penetrating members. In some embodiments, the penetrating members may be bent, curved, textured, shaped, or otherwise treated at a proximal end or area to facilitate handling by an actuator. The penetrating member may be configured to have a notch or groove to facilitate coupling to a gripper. The notch or groove may be formed along an elongate portion of the penetrating member. With any of the above embodiments, the cavity may be on the bottom or the top of the cartridge, with the gripper on the other side. In some embodiments, analyte detecting members may be printed on the top, bottom, or side of the cavities. The front end of the cartridge maybe in contact with a user during lancing. The same driver may be used for advancing and retraction of the penetrating member. The penetrating member may have a diameters and length suitable for obtaining the blood volumes described herein. The penetrating member driver may also be in substantially the same plane as the cartridge. The driver may use a through hole or other opening to engage a proximal end of a penetrating member to actuate the penetrating member along a path into and out of the tissue. The embodiments herein are adapted for use with lancing devices described in U.S. patent applications Ser. No. 10/127,395 and U.S. Ser. No. 10/323,624. It should also be understood that the multiple measurement zone configuration is not limited to a radial disc and may be adapted for use with cartridges that are rectangular, square, oval, polygonal, hexagonal, or other shaped in outline. They may be associated with single penetrating member cartridges or multiple penetrating member cartridges.


Any of the features described in this application or any reference disclosed herein may be adapted for use with any embodiment of the present invention. For example, the devices of the present invention may also be combined for use with injection penetrating members or needles as described in commonly assigned, copending U.S. patent application Ser. No. 10/127,395 filed Apr. 19, 2002. An analyte detecting member to detect the presence of foil may also be included in the lancing apparatus. For example, if a cavity has been used before, the foil or sterility barrier will be punched. The analyte detecting member can detect if the cavity is fresh or not based on the status of the barrier. It should be understood that in optional embodiments, the sterility barrier may be designed to pierce a sterility barrier of thickness that does not dull a tip of the penetrating member. The lancing apparatus may also use improved drive mechanisms. For example, a solenoid force generator may be improved to try to increase the amount of force the solenoid can generate for a given current. A solenoid for use with the present invention may have five coils and in the present embodiment the slug is roughly the size of two coils. One change is to increase the thickness of the outer metal shell or windings surround the coils. By increasing the thickness, the flux will also be increased. The slug may be split; two smaller slugs may also be used and offset by ½ of a coil pitch. This allows more slugs to be approaching a coil where it could be accelerated. This creates more events where a slug is approaching a coil, creating a more efficient system.


In another optional alternative embodiment, a gripper in the inner end of the protective cavity may hold the penetrating member during shipment and after use, eliminating the feature of using the foil, protective end, or other part to retain the used penetrating member. Some other advantages of the disclosed embodiments and features of additional embodiments include: same mechanism for transferring the used penetrating members to a storage area; a high number of penetrating members such as 25, 50, 75, 100, 500, or more penetrating members may be put on a disk or cartridge; molded body about a penetrating member becomes unnecessary; manufacturing of multiple penetrating member devices is simplified through the use of cartridges; handling is possible of bare rods metal wires, without any additional structural features, to actuate them into tissue; maintaining extreme (better than 50 micron -lateral- and better than 20 micron vertical) precision in guiding; and storage system for new and used penetrating members, with individual cavities/slots is provided. The housing of the lancing device may also be sized to be ergonomically pleasing. In one embodiment, the device has a width of about 56 mm, a length of about 105 mm and a thickness of about 15 mm. Additionally, some embodiments of the present invention may be used with non-electrical force generators or drive mechanism. For example, the punch device and methods for releasing the penetrating members from sterile enclosures could be adapted for use with spring based launchers. The gripper using a frictional coupling may also be adapted for use with other drive technologies.


Still further optional features may be included with the present invention. For example, with any of the above embodiments, the location of the penetrating member drive device may be varied, relative to the penetrating members or the cartridge. With any of the above embodiments, the penetrating member tips may be uncovered during actuation (i.e. penetrating members do not pierce the penetrating member enclosure or protective foil during launch). The penetrating members may be a bare penetrating member during launch. In some embodiments, the penetrating member may be a patent needle. The same driver may be used for advancing and retraction of the penetrating member. Different analyte detecting members detecting different ranges of glucose concentration, different analytes, or the like may be combined for use with each penetrating member. Non-potentiometric measurement techniques may also be used for analyte detection. For example, direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode may be used to measure glucose levels. In some embodiments, the analyte detecting members may formed to flush with the cartridge so that a “well” is not formed. In some other embodiments, the analyte detecting members may formed to be substantially flush (within 200 microns or 100 microns) with the cartridge surfaces. In all methods, nanoscopic wire growth can be carried out via chemical vapor deposition (CVD). In all of the embodiments of the invention, preferred nanoscopic wires may be nanotubes. Any method useful for depositing a glucose oxidase or other analyte detection material on a nanowire or nanotube may be used with the present invention. Additionally, for some embodiments, any of the cartridge shown above may be configured without any of the penetrating members, so that the cartridge is simply an analyte detecting device. Still further, the indexing of the cartridge may be such that adjacent cavities may not necessarily be used serially or sequentially. As a nonlimiting example, every second cavity may be used sequentially, which means that the cartridge will go through two rotations before every or substantially all of the cavities are used. As another nonlimiting example, a cavity that is 3 cavities away, 4 cavities away, or N cavities away may be the next one used. This may allow for greater separation between cavities containing penetrating members that were just used and a fresh penetrating member to be used next. For any of the embodiments herein, they may be configured to provide the various velocity profiles described.


Application Ser. No. 10/127,395 filed Apr. 19, 2002. This application is also a continuation-in-part of commonly assigned, copending U.S. patent application Ser. No. 10/237,261 filed Sep. 5, 2002. This application is further a continuation-in-part of commonly assigned, copending U.S. patent application Ser. No. 10/420,535 filed Apr. 21, 2003. This application is further a continuation-in-part of commonly assigned, copending U.S. patent application Ser. No. 10/335,142 filed Dec. 31, 2002. All applications listed above are incorporated herein by reference for all purposes. The U.S. provisional applications Ser. Nos. 60/478,693 and 60/478,681 are fully incorporated herein by reference.


The publications discussed or cited herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. All publications mentioned herein are incorporated herein by reference to disclose and describe the structures and/or methods in connection with which the publications are cited.


Expected variations or differences in the results are contemplated in accordance with the objects and practices of the present invention. It is intended, therefore, that the invention be defined by the scope of the claims which follow and that such claims be interpreted as broadly as is reasonable.

Claims
  • 1. A body fluid sampling device comprising: a cartridge containing a plurality of penetrating members;a drive force generator coupled to a processor and configured to be coupled to an active one of said penetrating members and to move said active one of said penetrating members;the processor configured to provide information relative to a depth of penetration of said active one of said penetrating members through a skin surface when said active one of said penetrating members is moved; anda plurality of analyte detecting members each associated with one of said penetrating members, the plurality of analyte detecting members being attached to a bottom surface of said cartridge, wherein a first portion of the analyte detecting members measure a first analyte and a second portion of the analyte detecting members measure a second analyte.
  • 2. The device of claim 1 wherein the penetrating member driver is coupled to a position sensor in communication with the processor, said position sensor used to detect a position of the active one of said penetrating members while penetrating tissue.
  • 3. The device of claim 1 wherein said first portion of analyte detecting members are all located on one area of the cartridge while said second portion of analyte detecting members are all located on a second area of the cartridge.
  • 4. The device of claim 1 wherein said first portion of analyte detecting members measure analytes related to blood gases.
  • 5. The device of claim 1 wherein said second portion of analyte detecting members measure analytes related to electrolytes.
  • 6. The device of claim 1 wherein said second portion of analyte detecting members measure analytes related to at least one of the following: blood gases, electrolytes, coagulation, or metabolites.
  • 7. The device of claim 1 further comprising a handheld, two way communication, data management system.
  • 8. The device of claim 1 further comprising an integrated sampling/POC testing device for one step sample to read.
  • 9. The device of claim 1 wherein body fluid requirement for each analyte detecting member is less than 1 microliter.
  • 10. The device of claim 1 wherein the processor is configured to measure the first and the second analyte while reporting only those results which are desired at the time the sample is taken.
  • 11. The device of claim 1 wherein said analyte detecting members use either electrochemical, optical, or combinations of the measurement techniques.
  • 12. The device of claim 1 further comprising a companion cartridge wherein additional analyte detecting members are coupled for more complex less common tests if required.
  • 13. The device of claim 1 further comprising vents, seals, and/or fill detectors.
  • 14. The device of claim 1 further comprising a cartridge vent system that opens by piercing mechanism to allow on board calibration fluids to start flowing into relevant fluidic structures.
  • 15. A body fluid sampling device comprising: a cartridge containing a plurality of penetrating members;a plurality of analyte detecting members each associated with one of the plurality of penetrating members on said cartridge, wherein a first portion of the analyte detecting members measure a first analyte and a second portion of the analyte detecting members measure a second analyte;a penetrating member driver for moving an active one of said penetrating members from a first position outward to penetrate tissue; andmany tests on a single penetrating member/analyte detecting member combination.
  • 16. A body fluid sampling device comprising: a cartridge containing a plurality of penetrating members;a plurality of analyte detecting members each associated with one of the plurality of penetrating members on said cartridge, wherein a first portion of the analyte detecting members measure a first analyte and a second portion of the analyte detecting members measure a second analyte;a penetrating member driver for moving an active one of said penetrating members from a first position outward to penetrate tissue;an upstream fixed volume chamber which empties instantaneously when full so that all tests start simultaneously.
  • 17. A body fluid sampling device comprising: a cartridge containing a plurality of penetrating members;a plurality of analyte detecting members each associated with one of the plurality of penetrating members on said cartridge, wherein a first portion of the analyte detecting members measure a first analyte and a second portion of the analyte detecting members measure a second analyte;a penetrating member driver for moving an active one of said penetrating members from a first position outward to penetrate tissue;an array detection having a storage area having a sensing area;another storage area having an enzyme area separate from the sensing area prior to tissue piercing;wherein said storage areas and sensing area are positioned to cause fluid to first flow to the enzyme area and then to the sensing area.
  • 18. A method of body fluid sampling comprising: moving a penetrating member conforming to a selectable velocity profile or motion waveform;piercing a storage area having a sensing area;piercing another storage area having an enzyme area separate from the sensing area prior to piercing;causing fluid to first flow to the enzyme area and then to the sensing area.
  • 19. The method of claim 18 further comprising storing said enzyme area in an inert environment different from an environment for the sensing area.
  • 20. A device for body fluid sampling usable with a cartridge housing a plurality of penetrating members, the device comprising: a housing;a penetrating member driver coupled to said housing and for use with said cartridge;a processor for controlling said penetrating member driver to move at least one of said penetrating members at velocities which conform with a selectable velocity profile;a storage area having a sensing area;another storage area having an enzyme area separate from the sensing area prior to piercing;wherein said penetrating member pierces opens both storage areas upon member actuation and causes body fluid to first flow to the enzyme area and then to the sensing area.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2004/019129 6/14/2004 WO 00 8/16/2006
Publishing Document Publishing Date Country Kind
WO2004/112602 12/29/2004 WO A
US Referenced Citations (1627)
Number Name Date Kind
2801633 Mauze et al. Aug 1957 A
3358689 Higgins Dec 1967 A
3494358 Grossenbacher Feb 1970 A
3626929 Sanz Dec 1971 A
3742954 Strickland Jul 1973 A
3832776 Sawyer Sep 1974 A
3953172 Shapiro Apr 1976 A
4224125 Nakamura Sep 1980 A
4230118 Holman et al. Oct 1980 A
4338174 Tamura Jul 1982 A
4340669 Bauer Jul 1982 A
4353984 Yamada Oct 1982 A
4360016 Sarrine Nov 1982 A
4391905 Bauer Jul 1983 A
4391906 Bauer Jul 1983 A
4414975 Ryder Nov 1983 A
4420564 Tsuji Dec 1983 A
4426451 Columbus Jan 1984 A
4426884 Polchaninoff Jan 1984 A
4469110 Slama Sep 1984 A
4517978 Levin May 1985 A
4539988 Shirley Sep 1985 A
4545382 Higgins Oct 1985 A
4553541 Burns Nov 1985 A
4577630 Nitzsche Mar 1986 A
4580564 Anderson Apr 1986 A
4580565 Cornell Apr 1986 A
4590411 Kelly May 1986 A
4595479 Kimura Jun 1986 A
4608997 Conway Sep 1986 A
4615340 Cronenberg Oct 1986 A
4616649 Burns Oct 1986 A
4619754 Niki Oct 1986 A
4622974 Coleman Nov 1986 A
4624253 Burns Nov 1986 A
4637393 Ray Jan 1987 A
4643189 Mintz Feb 1987 A
4648408 Hutcheson Mar 1987 A
4653511 Goch Mar 1987 A
4676244 Enstrom Jun 1987 A
4677979 Burns Jul 1987 A
4711245 Higgins Dec 1987 A
4712548 Enstrom Dec 1987 A
4715374 Maggio Dec 1987 A
4735203 Ryder Apr 1988 A
4758323 Davis Jul 1988 A
4794926 Munsch et al. Jan 1989 A
4814142 Gleisner Mar 1989 A
4814661 Ratzlaff Mar 1989 A
4820010 Sciefres Apr 1989 A
4820399 Senda Apr 1989 A
4824639 Hildenbrand Apr 1989 A
RE32922 Levin May 1989 E
4827763 Bourland May 1989 A
4830959 McNeil May 1989 A
4836904 Armstron Jun 1989 A
4844095 Chiodo Jul 1989 A
4850973 Jordan Jul 1989 A
4857274 Simon Aug 1989 A
4869249 Crossman Sep 1989 A
4869265 McEwen Sep 1989 A
4873993 Meserol Oct 1989 A
4882013 Turner Nov 1989 A
4883068 Dechow Nov 1989 A
4886499 Cirelli Dec 1989 A
4889529 Haindl Dec 1989 A
4892097 Ranalletta Jan 1990 A
4895147 Bodicky Jan 1990 A
4897173 Nankai Jan 1990 A
4900424 Birch Feb 1990 A
4911794 Parce Mar 1990 A
4920977 Haynes May 1990 A
4945045 Forrest Jul 1990 A
4948727 Cass Aug 1990 A
4952515 Gleisner Aug 1990 A
4953552 DeMarzo Sep 1990 A
4966671 Nylander Oct 1990 A
4976724 Nieto Dec 1990 A
4983178 Schnell Jan 1991 A
4990154 Brown Feb 1991 A
4999582 Parks Mar 1991 A
5010772 Bourland Apr 1991 A
5010774 Kikuo Apr 1991 A
5014718 Mitchen May 1991 A
5019974 Beckers May 1991 A
5026388 Ingalz Jun 1991 A
5029583 Meserol Jul 1991 A
5047044 Smith et al. Sep 1991 A
5054499 Swierczek Oct 1991 A
5059789 Salcudean Oct 1991 A
5060174 Gross Oct 1991 A
5070886 Mitchen Dec 1991 A
5074872 Brown Dec 1991 A
5089112 Skotheim Feb 1992 A
5092842 Bechtold Mar 1992 A
5100427 Crossman Mar 1992 A
5100428 Mumford Mar 1992 A
5104380 Holman Apr 1992 A
5104619 Castro Apr 1992 A
5108564 Szuminsky Apr 1992 A
5108889 Smith et al. Apr 1992 A
5116759 Klainer May 1992 A
5120420 Nankai Jun 1992 A
5122244 Hoenes Jun 1992 A
5126034 Carter Jun 1992 A
5128015 Szuminsky Jul 1992 A
5128171 Gleisner Jul 1992 A
5133730 Biro Jul 1992 A
5139685 Castro Aug 1992 A
5141868 Shanks Aug 1992 A
5156611 Haynes Oct 1992 A
5163442 Ono Nov 1992 A
5170364 Gross Dec 1992 A
D332490 Brown et al. Jan 1993 S
5178142 Harjunmaa Jan 1993 A
5181910 Scanlon Jan 1993 A
5181914 Zook Jan 1993 A
5183042 Harjunmaa Feb 1993 A
5185256 Nankai Feb 1993 A
5187100 Matzinger Feb 1993 A
5192415 Yoshioka Mar 1993 A
5196025 Ranalletta Mar 1993 A
5201324 Swierczek Apr 1993 A
5205920 Oyama Apr 1993 A
5212879 Biro May 1993 A
5216597 Beckers Jun 1993 A
5217480 Haber Jun 1993 A
5228972 Osaka Jul 1993 A
5229282 Yoshioka Jul 1993 A
5230866 Shartle Jul 1993 A
5231993 Haber et al. Aug 1993 A
5250066 Lambert Oct 1993 A
5251126 Kahn Oct 1993 A
5253656 Rincoe Oct 1993 A
5256998 Becker Oct 1993 A
5264103 Yoshioka Nov 1993 A
5264105 Gregg Nov 1993 A
5264106 McAleer Nov 1993 A
5266179 Nankai Nov 1993 A
D342573 Cerola Dec 1993 S
5272087 El Murr Dec 1993 A
5277181 Mendelson Jan 1994 A
5282822 Macors Feb 1994 A
5286362 Hoenes Feb 1994 A
5286364 Yacynych Feb 1994 A
5288636 Pollmann Feb 1994 A
5304192 Crouse Apr 1994 A
5304193 Zhadanov Apr 1994 A
5312590 Gunasingham May 1994 A
5314441 Cusack May 1994 A
5314442 Morita May 1994 A
5316012 Siegal May 1994 A
5318583 Rabenau Jun 1994 A
5320607 Ishibashi Jun 1994 A
5324302 Crouse Jun 1994 A
5324303 Strong Jun 1994 A
5332479 Uenoyama Jul 1994 A
5350392 Purcell Sep 1994 A
5352351 White Oct 1994 A
5354287 Wacks Oct 1994 A
5354447 Uenoyama Oct 1994 A
5356420 Czernecki Oct 1994 A
5360410 Wacks Nov 1994 A
5366469 Steg Nov 1994 A
5366470 Ramel Nov 1994 A
5366609 White Nov 1994 A
5371687 Holmes Dec 1994 A
5375397 Ferrand Dec 1994 A
5378628 Graetzel Jan 1995 A
5382346 Uenoyama Jan 1995 A
5383885 Bland Jan 1995 A
5389534 Gentezkow Feb 1995 A
5393903 Graetzel Feb 1995 A
5395387 Burns Mar 1995 A
5397334 Schenk Mar 1995 A
5401376 Foos Mar 1995 A
5402798 Swierczek Apr 1995 A
5405511 White Apr 1995 A
5407545 Hirose Apr 1995 A
5407554 Saurer Apr 1995 A
5407818 Gentezkow Apr 1995 A
5409583 Yoshioka Apr 1995 A
5409664 Allen Apr 1995 A
5410059 Fraser Apr 1995 A
5423847 Strong et al. Jun 1995 A
5436161 Bergstrom Jul 1995 A
5437999 Diebold Aug 1995 A
5438271 White Aug 1995 A
5443701 Willner Aug 1995 A
5445920 Saito Aug 1995 A
D362719 Kaplan Sep 1995 S
5454828 Schraga Oct 1995 A
5456875 Lambert Oct 1995 A
5464418 Schraga Nov 1995 A
5471102 Becker Nov 1995 A
5476474 Davis Dec 1995 A
5480387 Gabriel Jan 1996 A
5487748 Marshall Jan 1996 A
5496453 Uenoyama Mar 1996 A
5498542 Corey Mar 1996 A
5507288 Bocker Apr 1996 A
5508171 Walling Apr 1996 A
5509410 Hill Apr 1996 A
5510266 Bonner et al. Apr 1996 A
5512159 Yoshioka Apr 1996 A
5514152 Smith May 1996 A
5518006 Mawhirt May 1996 A
5524636 Sarvazyan Jun 1996 A
5525511 D'Costa Jun 1996 A
5527333 Nikkels Jun 1996 A
5527334 Kanner Jun 1996 A
5540709 Ramel Jul 1996 A
5543326 Heller Aug 1996 A
5545174 Schenk Aug 1996 A
5547702 Gleisner Aug 1996 A
5554166 Lange Sep 1996 A
5558834 Chu Sep 1996 A
5569286 Peckham Oct 1996 A
5569287 Tezuka Oct 1996 A
5571132 Mawhirt Nov 1996 A
5575895 Ikeda Nov 1996 A
5582697 Ikeda Dec 1996 A
5584846 Mawhirt Dec 1996 A
5593852 Heller Jan 1997 A
5609749 Yamauchi Mar 1997 A
5613978 Harding Mar 1997 A
5620279 Genshaw Apr 1997 A
5624537 Turner Apr 1997 A
D379516 Rutter May 1997 S
5628764 Schraga May 1997 A
5628765 Morita May 1997 A
5628890 Carter May 1997 A
5640954 Pfeiffer Jun 1997 A
5643306 Schraga Jul 1997 A
5645555 Davis Jul 1997 A
5650062 Ikeda Jul 1997 A
5653863 Genshaw Aug 1997 A
5657760 Ying et al. Aug 1997 A
5658444 Black Aug 1997 A
5662127 De Vaughn Sep 1997 A
5662672 Pambianchi Sep 1997 A
5676143 Simonsen Oct 1997 A
5680858 Hansen Oct 1997 A
5680872 Sesekura Oct 1997 A
5682884 Hill Nov 1997 A
5683562 Schaffar Nov 1997 A
5695947 Guo Dec 1997 A
5700695 Yassinzadeh Dec 1997 A
5705045 Park Jan 1998 A
5708247 McAleer Jan 1998 A
5709668 Wacks Jan 1998 A
5709699 Warner Jan 1998 A
5710011 Forrow Jan 1998 A
5720862 Hamamoto Feb 1998 A
5720924 Eikmeier Feb 1998 A
D392391 Douglas et al. Mar 1998 S
5723284 Ye Mar 1998 A
5727548 Hill Mar 1998 A
5730753 Morita Mar 1998 A
5733300 Pambianchi Mar 1998 A
D393716 Brenneman et al. Apr 1998 S
D393717 Brenneman et al. Apr 1998 S
5738244 Charlton et al. Apr 1998 A
5741228 Lambrecht Apr 1998 A
5741634 Nozoe Apr 1998 A
RE35803 Lange May 1998 E
5746217 Erickson May 1998 A
5746898 Preidel May 1998 A
5755733 Morita May 1998 A
5759364 Charlton Jun 1998 A
5762770 Pritchard Jun 1998 A
5770086 Indriksons et al. Jun 1998 A
5770369 Meade Jun 1998 A
5772586 Heinonen Jun 1998 A
5772677 Mawhirt Jun 1998 A
5773270 D'Orazio Jun 1998 A
5776719 Douglas Jul 1998 A
5782770 Mooradian et al. Jul 1998 A
5782852 Foggia Jul 1998 A
5788652 Rahn Aug 1998 A
5794219 Brown Aug 1998 A
5795725 Buechler Aug 1998 A
5795774 Matsumoto Aug 1998 A
5797940 Mawhirt Aug 1998 A
5797942 Schraga Aug 1998 A
5798030 Raguse Aug 1998 A
5798031 Charlton Aug 1998 A
5800781 Gavin Sep 1998 A
5801057 Smart Sep 1998 A
5807375 Gross Sep 1998 A
5820551 Hill Oct 1998 A
5822715 Worthington Oct 1998 A
5824491 Priest Oct 1998 A
5828943 Brown Oct 1998 A
5830219 Bird et al. Nov 1998 A
5832448 Brown Nov 1998 A
5840020 Heinonen Nov 1998 A
5840171 Birch Nov 1998 A
5849174 Sanghera Dec 1998 A
5853373 Griffith Dec 1998 A
D403975 Douglas et al. Jan 1999 S
5857983 Douglas Jan 1999 A
5860922 Gordon et al. Jan 1999 A
5866353 Berneth Feb 1999 A
5868135 Kaufman Feb 1999 A
5868772 LeVaughn Feb 1999 A
5869972 Birch Feb 1999 A
5871494 Simons et al. Feb 1999 A
5872713 Douglas Feb 1999 A
5873887 King Feb 1999 A
5876957 Douglas Mar 1999 A
5879163 Brown Mar 1999 A
5879310 Sopp Mar 1999 A
5879373 Roper Mar 1999 A
5882494 van Antwerp Mar 1999 A
5885211 Eppstein Mar 1999 A
5887133 Brown Mar 1999 A
RE36191 Solomon Apr 1999 E
5893870 Talen Apr 1999 A
5897493 Brown Apr 1999 A
5899855 Brown May 1999 A
5899915 Saadat May 1999 A
5900130 Benvegnu May 1999 A
5906921 Ikeda May 1999 A
D411619 Duchon Jun 1999 S
5913310 Brown Jun 1999 A
5916156 Hildenbrand Jun 1999 A
5916229 Evans Jun 1999 A
5916230 Brenneman Jun 1999 A
5918603 Brown Jul 1999 A
5921963 Erez Jul 1999 A
5922188 Ikeda Jul 1999 A
RE36268 Szuminsky Aug 1999 E
5933136 Brown Aug 1999 A
5935075 Casscells et al. Aug 1999 A
5942102 Hodges Aug 1999 A
5951300 Brown Sep 1999 A
5951492 Douglas Sep 1999 A
5951493 Douglas et al. Sep 1999 A
5951836 McAleer Sep 1999 A
5954738 LeVaughn Sep 1999 A
5956501 Brown Sep 1999 A
5958199 Miyamoto Sep 1999 A
5960403 Brown Sep 1999 A
5964718 Duchon Oct 1999 A
5965380 Heller Oct 1999 A
5972199 Heller Oct 1999 A
5972715 Celentano Oct 1999 A
5974124 Schlueter Oct 1999 A
5983193 Heinonen Nov 1999 A
5985116 Ikeda Nov 1999 A
5985559 Brown Nov 1999 A
5993400 Rincoe Nov 1999 A
5997476 Brown Dec 1999 A
5997561 Boecker Dec 1999 A
5997817 Crismore Dec 1999 A
5997818 Hackner Dec 1999 A
6001067 Shults Dec 1999 A
6015392 Douglas Jan 2000 A
6020110 Williams Feb 2000 A
6022324 Skinner Feb 2000 A
6022366 Schraga Feb 2000 A
6023686 Brown Feb 2000 A
6030399 Ignotz Feb 2000 A
6030827 Davis Feb 2000 A
6032119 Brown Feb 2000 A
6033421 Theiss Mar 2000 A
6033866 Guo Mar 2000 A
6041253 Kost Mar 2000 A
6048352 Douglas Apr 2000 A
D424696 Ray et al. May 2000 S
6056701 Duchon May 2000 A
6060327 Keen May 2000 A
6061128 Zweig May 2000 A
6063039 Cunningham May 2000 A
6066103 Duchon May 2000 A
6066296 Brady May 2000 A
6067463 Jeng May 2000 A
6068615 Brown May 2000 A
D426638 Ray et al. Jun 2000 S
6071249 Cunningham Jun 2000 A
6071250 Douglas Jun 2000 A
6071251 Cunningham Jun 2000 A
6074360 Haar et al. Jun 2000 A
6077408 Miyamoto Jun 2000 A
6080172 Fujiwara Jun 2000 A
6083710 Heller Jul 2000 A
6086545 Roe Jul 2000 A
6086562 Jacobsen Jul 2000 A
6090078 Erskine Jul 2000 A
6093146 Filangeri Jul 2000 A
6101478 Brown Aug 2000 A
6103033 Say Aug 2000 A
6107083 Collins Aug 2000 A
6113578 Brown Sep 2000 A
6120676 Heller Sep 2000 A
6121009 Heller Sep 2000 A
6122536 Sun Sep 2000 A
6129823 Hughes Oct 2000 A
6133837 Riley Oct 2000 A
6134461 Say Oct 2000 A
6144837 Quy Nov 2000 A
6151586 Brown Nov 2000 A
6153069 Pottgen Nov 2000 A
RE36991 Yamamoto Dec 2000 E
6155267 Nelson Dec 2000 A
6155992 Henning et al. Dec 2000 A
6157442 Raskas Dec 2000 A
6161095 Brown Dec 2000 A
6162611 Heller Dec 2000 A
6167362 Brown Dec 2000 A
6167386 Brown Dec 2000 A
6168563 Brown Jan 2001 B1
6171325 Mauze et al. Jan 2001 B1
6175752 Say Jan 2001 B1
6177000 Peterson Jan 2001 B1
6177931 Alexander et al. Jan 2001 B1
6186145 Brown Feb 2001 B1
6190612 Berger Feb 2001 B1
6191852 Paffhausen Feb 2001 B1
6192891 Gravel Feb 2001 B1
6194900 Freeman Feb 2001 B1
6197257 Raskas Mar 2001 B1
6206841 Cunningham et al. Mar 2001 B1
6210272 Brown Apr 2001 B1
6212417 Ikeda Apr 2001 B1
6214804 Felgner Apr 2001 B1
6221238 Grundig Apr 2001 B1
6225078 Ikeda May 2001 B1
6230501 Bailey May 2001 B1
6233471 Berner May 2001 B1
6233539 Brown May 2001 B1
6240393 Brown May 2001 B1
6241862 McAleer Jun 2001 B1
6245060 Loomis Jun 2001 B1
6246992 Brown Jun 2001 B1
6248065 Brown Jun 2001 B1
6251260 Heller Jun 2001 B1
6254831 Barnard Jul 2001 B1
6256533 Vuzhakov Jul 2001 B1
6258229 Winarta Jul 2001 B1
6258254 Miyamoto Jul 2001 B1
6268161 Han Jul 2001 B1
6270455 Brown Aug 2001 B1
6270637 Crismore Aug 2001 B1
6272359 Kivela Aug 2001 B1
6281006 Heller Aug 2001 B1
6283982 Levaughn Sep 2001 B1
6284478 Heller Sep 2001 B1
6285448 Kuenstner Sep 2001 B1
6290683 Erez Sep 2001 B1
6294897 Champlin Sep 2001 B1
6295506 Heinonen Sep 2001 B1
6299757 Feldman Oct 2001 B1
6302844 Walker Oct 2001 B1
6302855 Lav Oct 2001 B1
6305804 Rice Oct 2001 B1
6306347 Mason Oct 2001 B1
6309535 Williams Oct 2001 B1
6312612 Sherman Nov 2001 B1
6322574 Lloyd Nov 2001 B1
6329161 Heller Dec 2001 B1
6330426 Brown Dec 2001 B2
6331163 Kaplan Dec 2001 B1
6334363 Testud Jan 2002 B1
6334778 Brown Jan 2002 B1
6334856 Allen Jan 2002 B1
6338790 Feldman Jan 2002 B1
6349229 Watanabe Feb 2002 B1
6350273 Minagawa Feb 2002 B1
6350451 Horn Feb 2002 B1
6352523 Brown Mar 2002 B1
6353753 Flock Mar 2002 B1
6364889 Kheiri et al. Apr 2002 B1
6368273 Brown Apr 2002 B1
6375469 Brown Apr 2002 B1
6379301 Worthington Apr 2002 B1
6379324 Gartstein Apr 2002 B1
6381577 Brown Apr 2002 B1
6387709 Mason May 2002 B1
6399394 Dahm Jun 2002 B1
6413410 Hodges Jul 2002 B1
6413411 Pottgen Jul 2002 B1
6421633 Heinonen Jul 2002 B1
6423014 Churchill et al. Jul 2002 B1
6428664 Bhullar Aug 2002 B1
6436256 Williams Aug 2002 B1
6436721 Kuo Aug 2002 B1
6440645 Yon-Hin Aug 2002 B1
6451040 Purcell Sep 2002 B1
6458258 Taniike Oct 2002 B2
6462162 van Antwerp Oct 2002 B2
6464649 Duchon Oct 2002 B1
6471903 Sherman Oct 2002 B2
6475436 Schabbach Nov 2002 B1
6475750 Han et al. Nov 2002 B1
6477394 Rice Nov 2002 B2
6477424 Thompson Nov 2002 B1
6484046 Say Nov 2002 B1
6494830 Wessel Dec 2002 B1
6501404 Walker Dec 2002 B2
6503231 Praunsnitz Jan 2003 B1
6503381 Gotoh Jan 2003 B1
6506168 Fathallah Jan 2003 B1
6508785 Eppstein Jan 2003 B1
6514270 Schraga Feb 2003 B1
6514460 Fendrock Feb 2003 B1
6519241 Theimer Feb 2003 B1
6520326 McIvor Feb 2003 B2
6527778 Athanasiou Mar 2003 B2
6530892 Kelly Mar 2003 B1
6530937 Schraga Mar 2003 B1
6533949 Yeshurun Mar 2003 B1
6537207 Rice Mar 2003 B1
6537242 Palmer Mar 2003 B1
6537292 Lee Mar 2003 B1
6540672 Simonsen Apr 2003 B1
6540675 Aceti Apr 2003 B2
6540762 Bertling Apr 2003 B1
6540891 Stewart Apr 2003 B1
6541266 Modzelewski Apr 2003 B2
6547954 Ikeda Apr 2003 B2
6549796 Sohrab Apr 2003 B2
6551494 Heller Apr 2003 B1
6553244 Lesho Apr 2003 B2
6554381 Locher Apr 2003 B2
6555061 Leong Apr 2003 B1
6558320 Causey May 2003 B1
6558361 Yeshurun May 2003 B1
6558402 Chelak May 2003 B1
6558528 Matzinger May 2003 B1
6560471 Heller May 2003 B1
6561978 Conn May 2003 B1
6561989 Whitson May 2003 B2
6562210 Bhullar May 2003 B1
6565509 Say May 2003 B1
6565808 Hudak May 2003 B2
6569157 Shain May 2003 B1
6571651 Hodges Jun 2003 B1
6572566 Effenhauser Jun 2003 B2
6574490 Abbink Jun 2003 B2
6575905 Knobbe Jun 2003 B2
6576101 Heller Jun 2003 B1
6576117 Iketaki Jun 2003 B1
6576416 Haviland Jun 2003 B2
6582573 Douglas Jun 2003 B2
6587705 Kim Jul 2003 B1
6589260 Schmelzeisen-R Jul 2003 B1
6589261 Abulhaj Jul 2003 B1
6591125 Buse Jul 2003 B1
6592745 Feldman Jul 2003 B1
6595919 Berner Jul 2003 B2
6599407 Taniike Jul 2003 B2
6599693 Webb Jul 2003 B1
6602205 Erickson Aug 2003 B1
6602268 Kuhr Aug 2003 B2
6602678 Kwon Aug 2003 B2
6604050 Trippel Aug 2003 B2
6607494 Fowler Aug 2003 B1
6607658 Heller Aug 2003 B1
6616616 Fritz Sep 2003 B2
6616819 Liamos Sep 2003 B1
6618934 Feldman Sep 2003 B1
6620112 Klitmose Sep 2003 B2
6623501 Heller Sep 2003 B2
6626851 Hirao Sep 2003 B2
6635222 Kent Oct 2003 B2
6638772 Douglas Oct 2003 B1
6641533 Causey Nov 2003 B2
6645142 Braig Nov 2003 B2
6645219 Roe Nov 2003 B2
6645368 Beatty Nov 2003 B1
6650915 Routt Nov 2003 B2
6652720 Mansouri Nov 2003 B1
6656702 Yugawa Dec 2003 B1
6659966 Essenpreis Dec 2003 B2
6660018 Lum Dec 2003 B2
6671527 Peterson Dec 2003 B2
6679841 Bojan Jan 2004 B2
6679852 Schmelzeisen-R Jan 2004 B1
6706000 Perez Mar 2004 B2
6706049 Moerman Mar 2004 B2
6706159 Moerman Mar 2004 B2
6706232 Hasegawa Mar 2004 B2
6713660 Roe Mar 2004 B1
6719887 Hasegawa Apr 2004 B2
6719923 Stiene Apr 2004 B2
6721586 Kiser Apr 2004 B2
6723046 Lichtenstein Apr 2004 B2
6723111 Abulhaj Apr 2004 B2
6723371 Chih-hui Apr 2004 B2
6723500 Yu Apr 2004 B2
6726818 Cui et al. Apr 2004 B2
6733493 Gruzdev May 2004 B2
6736777 Kim May 2004 B2
6740215 Nakaminami et al. May 2004 B1
6743211 Prausnitz Jun 2004 B1
6743635 Neel Jun 2004 B2
6749618 Levaughn Jun 2004 B2
6749792 Olson Jun 2004 B2
6751491 Lew Jun 2004 B2
6752817 Flora Jun 2004 B2
6759190 Lin Jul 2004 B2
6764496 Schraga Jul 2004 B2
6764581 Forrow Jul 2004 B1
6767441 Cai Jul 2004 B1
6773671 Lewis Aug 2004 B1
6776888 Yamamoto Aug 2004 B2
6780645 Hayter Aug 2004 B2
6780647 Fujiwara Aug 2004 B2
6783502 Orloff Aug 2004 B2
6783537 Kuhr Aug 2004 B1
6784274 van Antwerp Aug 2004 B2
6786874 Grace Sep 2004 B2
6787013 Chang Sep 2004 B2
6787109 Haar Sep 2004 B2
6790327 Ikeda Sep 2004 B2
6790599 Madou Sep 2004 B1
6792791 Sato Sep 2004 B2
6793632 Sohrab Sep 2004 B2
6793633 Douglas Sep 2004 B2
6793802 Lee Sep 2004 B2
6797150 Kermani Sep 2004 B2
6800488 Khan Oct 2004 B2
6801041 Karinka Oct 2004 B2
6801804 Miller Oct 2004 B2
6802199 Hilgers Oct 2004 B2
6802811 Slepian Oct 2004 B1
6802957 Jung Oct 2004 B2
6805780 Ryu Oct 2004 B1
6808499 Churchill Oct 2004 B1
6808908 Yao Oct 2004 B2
6808937 Ligler Oct 2004 B2
6809807 Erickson Oct 2004 B1
6811406 Grubge Nov 2004 B2
6811557 Schraga Nov 2004 B2
6811659 Vachon Nov 2004 B2
6811753 Hirao Nov 2004 B2
6811792 Roser Nov 2004 B2
6812031 Carlsson Nov 2004 B1
6814843 Bhullar Nov 2004 B1
6814844 Bhullar Nov 2004 B2
6814845 Wilson Nov 2004 B2
6815186 Clark Nov 2004 B2
6816742 Kim Nov 2004 B2
6818180 Douglas Nov 2004 B2
6821483 Phillips Nov 2004 B2
6823750 Hodges Nov 2004 B2
6825047 Woudenberg Nov 2004 B1
6827250 Uhland Dec 2004 B2
6827829 Kawanaka Dec 2004 B2
6830551 Uchigaki Dec 2004 B1
6830668 Musho Dec 2004 B2
6830669 Miyazaki Dec 2004 B2
6833540 MacKenzie Dec 2004 B2
6835184 Sage Dec 2004 B1
6835553 Han Dec 2004 B2
6837858 Cunningham Jan 2005 B2
6837976 Cai Jan 2005 B2
6837988 Leong Jan 2005 B2
6840912 Kloepfer et al. Jan 2005 B2
6841052 Musho Jan 2005 B2
6843254 Tapper Jan 2005 B2
6844149 Goldman Jan 2005 B2
6847451 Pugh Jan 2005 B2
6849052 Uchigaki et al. Feb 2005 B2
6849168 Crumly Feb 2005 B2
6849216 Rappin Feb 2005 B2
6850790 Berner et al. Feb 2005 B2
6869418 Marano-Ford Mar 2005 B2
6872200 Mann Mar 2005 B2
6875208 Santini Apr 2005 B2
6875223 Argauer Apr 2005 B2
6875613 Shartle Apr 2005 B2
6878120 Roe Apr 2005 B2
6878251 Hodges Apr 2005 B2
6878255 Wang Apr 2005 B1
6878262 Taniike Apr 2005 B2
6880968 Haar Apr 2005 B1
6881203 Delmore Apr 2005 B2
6881322 Tokunaga Apr 2005 B2
6881378 Zimmer Apr 2005 B1
6881541 Petersen et al. Apr 2005 B2
6881550 Phillips Apr 2005 B2
6881551 Heller Apr 2005 B2
6881578 Otake Apr 2005 B2
6882940 Potts Apr 2005 B2
6884592 Matzinger Apr 2005 B2
6885196 Taniike Apr 2005 B2
6885883 Parris Apr 2005 B2
6887239 Elstrom May 2005 B2
6887253 Schraga May 2005 B2
6887254 Curie May 2005 B1
6887426 Phillips May 2005 B2
6887709 Leong May 2005 B2
6889069 Routt May 2005 B2
6890319 Crocker May 2005 B1
6890421 Ohara May 2005 B2
6890484 Bautista May 2005 B2
6891936 Kai May 2005 B2
6892085 McIvor May 2005 B2
6893396 Schulze May 2005 B2
6893545 Gotoh May 2005 B2
6893552 Wang May 2005 B1
6895263 Shin May 2005 B2
6895264 Rice May 2005 B2
6895265 Silver May 2005 B2
6896793 Erdosy May 2005 B2
6897788 Khair May 2005 B2
6902905 Burson Jun 2005 B2
6904301 Raskas Jun 2005 B2
6905733 Russel Jun 2005 B2
6908008 Pugh Jun 2005 B2
6908535 Rankin Jun 2005 B2
6908591 MacPhee Jun 2005 B2
6908593 Shartle Jun 2005 B1
6911130 Brenneman Jun 2005 B2
6911131 Miyazaki Jun 2005 B2
6911621 Bhullar Jun 2005 B2
6916410 Katsuki Jul 2005 B2
6918874 Hatch Jul 2005 B1
6918901 Theeuwes et al. Jul 2005 B1
6918918 Schraga Jul 2005 B1
6922576 Raskas Jul 2005 B2
6922578 Eppstein Jul 2005 B2
6923764 Aceti Aug 2005 B2
6923894 Huang Aug 2005 B2
6923936 Swanson Aug 2005 B2
6924093 Haviland Aug 2005 B2
6925317 Samuels Aug 2005 B1
6925393 Kalatz Aug 2005 B1
6929649 Pugh Aug 2005 B2
6929650 Fukuzawa Aug 2005 B2
6931327 Goode Aug 2005 B2
6931328 Braig Aug 2005 B2
6939310 Matzinger Sep 2005 B2
6939312 Hodges Sep 2005 B2
6939450 Karinka Sep 2005 B2
6940591 Sopp Sep 2005 B2
6942518 Liamos Sep 2005 B2
6942769 Cheng Sep 2005 B2
6942770 Cai Sep 2005 B2
6944486 Braig Sep 2005 B2
6945943 Pugh Sep 2005 B2
6946067 Hodges Sep 2005 B2
6946098 Miekka Sep 2005 B2
6946299 Neel Sep 2005 B2
6949111 Schraga Sep 2005 B2
6949221 Kiser Sep 2005 B2
6951631 Catt Oct 2005 B1
6951728 Qian Oct 2005 B2
6952603 Gerber Oct 2005 B2
6952604 DeNuzzio Oct 2005 B2
6953693 Neel Oct 2005 B2
6954662 Freger Oct 2005 B2
6958072 Schraga Oct 2005 B2
6958129 Galen Oct 2005 B2
6958809 Sterling Oct 2005 B2
6959211 Rule Oct 2005 B2
6959247 Neel Oct 2005 B2
6960287 Charlton Nov 2005 B2
6960289 Hodges Nov 2005 B2
6964871 Bell Nov 2005 B2
6965791 Hitchcock Nov 2005 B1
6966880 Boecker Nov 2005 B2
6966977 Hasegawa Nov 2005 B2
6967105 Nomura Nov 2005 B2
6968375 Brown Nov 2005 B1
6969359 Duchon Nov 2005 B2
6969450 Taniike Nov 2005 B2
6969451 Shin Nov 2005 B2
6973706 Say Dec 2005 B2
6975893 Say Dec 2005 B2
6977032 Hasegawa Dec 2005 B2
6979544 Keen Dec 2005 B2
6979571 Modzelewski Dec 2005 B2
6982027 Yagi Jan 2006 B2
6982431 Modlin et al. Jan 2006 B2
6983176 Gardner Jan 2006 B2
6983177 Rule Jan 2006 B2
6984307 Zweig Jan 2006 B2
6986777 Kim Jan 2006 B2
6986869 Tuohy Jan 2006 B2
6988996 Roe Jan 2006 B2
6989243 Yani Jan 2006 B2
6989891 Braig Jan 2006 B2
6990365 Parker Jan 2006 B1
6990366 Say Jan 2006 B2
6990367 Kiser Jan 2006 B2
6990849 Bohm Jan 2006 B2
6991918 Keith Jan 2006 B2
6991940 Carroll Jan 2006 B2
6994825 Haviland Feb 2006 B2
6997317 Catelli Feb 2006 B2
6997343 May Feb 2006 B2
6997344 Brown Feb 2006 B2
6997936 Marshall Feb 2006 B2
6998247 Monfre Feb 2006 B2
6998248 Yani Feb 2006 B2
6999810 Berner Feb 2006 B2
7001343 Erickson Feb 2006 B2
7001344 Freeman Feb 2006 B2
7003337 Harjunmaa Feb 2006 B2
7003340 Say Feb 2006 B2
7003341 Say Feb 2006 B2
7004928 Aceti Feb 2006 B2
7005048 Watanabe Feb 2006 B1
7005273 Heller Feb 2006 B2
7005459 Hekal Feb 2006 B2
7005857 Stiene Feb 2006 B2
7006857 Braig Feb 2006 B2
7006858 Silver Feb 2006 B2
7008384 Tapper Mar 2006 B2
7010432 Kermani Mar 2006 B2
7011630 Desai Mar 2006 B2
7011954 Ouyang Mar 2006 B2
7014615 Erickson Mar 2006 B2
7015262 Leong Mar 2006 B2
7016713 Gardner Mar 2006 B2
7018568 Tierney Mar 2006 B2
7018848 Douglas Mar 2006 B2
7022217 Hodges Apr 2006 B2
7022218 Taniike Apr 2006 B2
7022286 Lemke Apr 2006 B2
7024236 Ford Apr 2006 B2
7024248 Penner Apr 2006 B2
7024399 Sumner Apr 2006 B2
7025425 Kovatchev Apr 2006 B2
7025774 Freeman Apr 2006 B2
7027848 Robinson Apr 2006 B2
7029444 Shin Apr 2006 B2
7033322 Silver Apr 2006 B2
7033371 Alden Apr 2006 B2
7039560 Kawatahara May 2006 B2
7041057 Faupel May 2006 B1
7041063 Abreu May 2006 B2
7041068 Freeman May 2006 B2
7041254 Haviland May 2006 B2
7041468 Drucker May 2006 B2
7043287 Khalil May 2006 B1
7044911 Drinan May 2006 B2
7045054 Buck May 2006 B1
7045097 Kovacs May 2006 B2
7045310 Buck May 2006 B2
7045361 Heiss May 2006 B2
7047070 Wilkinson May 2006 B2
7047795 Sato May 2006 B2
7049130 Carroll May 2006 B2
7050843 Shartle May 2006 B2
7051495 Lang May 2006 B2
7052268 Powell May 2006 B2
7052591 Gao May 2006 B2
7052652 Zanzucchi May 2006 B2
7052864 Durkop May 2006 B2
7054682 Young May 2006 B2
7054759 Fukunaga May 2006 B2
D523555 Loerwald Jun 2006 S
7056425 Hasegawa Jun 2006 B2
7056495 Roser Jun 2006 B2
7058437 Buse Jun 2006 B2
7060059 Keith Jun 2006 B2
7060192 Yuzhakov Jun 2006 B2
7061593 Braig Jun 2006 B2
7063234 Giraud Jun 2006 B2
7063774 Bhullar Jun 2006 B2
7063775 Yamaoka Jun 2006 B2
7063776 Huang Jun 2006 B2
7066884 Custer Jun 2006 B2
7066885 Erickson Jun 2006 B2
7070564 Matzinger Jul 2006 B2
7070680 Bae Jul 2006 B2
7073246 Bhullar Jul 2006 B2
7074307 Simpson Jul 2006 B2
7074308 Mao Jul 2006 B2
7077328 Krishnaswamy Jul 2006 B2
7077828 Kuhr Jul 2006 B2
7078480 Nagel Jul 2006 B2
7081188 Cho Jul 2006 B1
7083712 Morita Aug 2006 B2
7086277 Tess Aug 2006 B2
7087149 Muguruma Aug 2006 B1
7090764 Iyengar Aug 2006 B2
7096053 Loeb Aug 2006 B2
7096124 Sterling Aug 2006 B2
7097631 Trautman Aug 2006 B2
7098038 Fukuoka Aug 2006 B2
7103578 Beck Sep 2006 B2
7105066 Schraga Sep 2006 B2
7107253 Sumner Sep 2006 B1
7108680 Rohr Sep 2006 B2
7108778 Simpson Sep 2006 B2
7109271 Liu Sep 2006 B2
7110112 Uchida Sep 2006 B2
7110803 Shults Sep 2006 B2
7112265 McAleer Sep 2006 B1
7112451 Takahashi Sep 2006 B2
7115362 Douglas Oct 2006 B2
7118351 Effenhauser Oct 2006 B2
7118667 Lee Oct 2006 B2
7118668 Edelbrock Oct 2006 B1
7118916 Matzinger Oct 2006 B2
7118919 Yatscoff Oct 2006 B2
7120483 Russell Oct 2006 B2
7122102 Wogoman Oct 2006 B2
7122110 Deng Oct 2006 B2
7122111 Tokunaga Oct 2006 B2
7125481 Musho Oct 2006 B2
7129038 Gopalan Oct 2006 B2
RE39390 Hasegawa Nov 2006 E
D531725 Loerwald Nov 2006 S
7131342 Hodges Nov 2006 B2
7131984 Sato Nov 2006 B2
7132041 Deng Nov 2006 B2
7133710 Acosta Nov 2006 B2
7134999 Brauker Nov 2006 B2
7135100 Lau Nov 2006 B1
7137957 Erickson Nov 2006 B2
7138041 Su Nov 2006 B2
7138089 Aitken Nov 2006 B2
7141058 Briggs Nov 2006 B2
7144404 Whitson Dec 2006 B2
7144485 Hsu Dec 2006 B2
7144495 Teodorezyk Dec 2006 B2
7144496 Meserol Dec 2006 B2
7147825 Matsuda Dec 2006 B2
7150755 Levaughn Dec 2006 B2
7150975 Tamada Dec 2006 B2
7150995 Xie Dec 2006 B2
7153696 Fukuoka Dec 2006 B2
7155371 Kawatahara Dec 2006 B2
7160251 Neel Jan 2007 B2
7160313 Galloway Jan 2007 B2
7160678 Kayyem et al. Jan 2007 B1
7163616 Vreeke Jan 2007 B2
7166074 Reghabi Jan 2007 B2
7167734 Khalil Jan 2007 B2
7167818 Brown Jan 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226461 Boecker et al. Jun 2007 B2
20010011157 Latterell Aug 2001 A1
20010016682 Berner Aug 2001 A1
20010017269 Heller Aug 2001 A1
20010027328 Lum Oct 2001 A1
20010054319 Heller Dec 2001 A1
20020016606 Moerman Feb 2002 A1
20020019748 Brown Feb 2002 A1
20020025469 Heller Feb 2002 A1
20020029058 Levaughn Mar 2002 A1
20020040230 Kuhr Apr 2002 A1
20020042090 Heller Apr 2002 A1
20020044890 Black Apr 2002 A1
20020052618 Haar May 2002 A1
20020053523 Liamos May 2002 A1
20020057993 Maisey May 2002 A1
20020076349 Aitken Jun 2002 A1
20020078091 Vu Jun 2002 A1
20020081559 Brown Jun 2002 A1
20020081588 Lumley-Woodyear Jun 2002 A1
20020084196 Liamos Jul 2002 A1
20020087056 Aceti Jul 2002 A1
20020092612 Davies Jul 2002 A1
20020120216 Fritz Aug 2002 A1
20020120261 Morris Aug 2002 A1
20020130042 Moerman Sep 2002 A1
20020133377 Brown Sep 2002 A1
20020136667 Subramanian Sep 2002 A1
20020136863 Subramanian Sep 2002 A1
20020137998 Smart Sep 2002 A1
20020138040 Flora Sep 2002 A1
20020148739 Liamos Oct 2002 A2
20020160520 Orloff Oct 2002 A1
20020161289 Hopkins Oct 2002 A1
20020168290 Yuzhakov Nov 2002 A1
20020176984 Smart Nov 2002 A1
20020177761 Orloff Nov 2002 A1
20020188224 Roe Dec 2002 A1
20030018282 Effenhauser Jan 2003 A1
20030018300 Duchon Jan 2003 A1
20030028125 Yuzhakov Feb 2003 A1
20030028126 List Feb 2003 A1
20030050537 Wessel Mar 2003 A1
20030050573 Kuhr Mar 2003 A1
20030050656 Schraga Mar 2003 A1
20030060730 Perez Mar 2003 A1
20030069753 Brown Apr 2003 A1
20030073089 Mauze Apr 2003 A1
20030073229 Greenstein Apr 2003 A1
20030073931 Boecker Apr 2003 A1
20030083685 Freeman May 2003 A1
20030083686 Freeman May 2003 A1
20030088160 Halleck May 2003 A1
20030088191 Freeman et al. May 2003 A1
20030089730 May May 2003 A1
20030093010 Essenpreis May 2003 A1
20030100040 Bonnecaze May 2003 A1
20030106810 Douglas Jun 2003 A1
20030109777 Kloepfer Jun 2003 A1
20030111357 Black Jun 2003 A1
20030113827 Burkoth Jun 2003 A1
20030116447 Sturridge Jun 2003 A1
20030135333 Aceti Jul 2003 A1
20030139653 Manser Jul 2003 A1
20030143113 Yuzhakov Jul 2003 A2
20030144608 Kojima Jul 2003 A1
20030144609 Kennedy Jul 2003 A1
20030146110 Karinka Aug 2003 A1
20030149348 Raskas Aug 2003 A1
20030149377 Erickson Aug 2003 A1
20030153900 Aceti Aug 2003 A1
20030159944 Pottgen Aug 2003 A1
20030163351 Brown Aug 2003 A1
20030178322 Iyengar Sep 2003 A1
20030191415 Moerman Oct 2003 A1
20030195435 Williams Oct 2003 A1
20030195540 Moerman Oct 2003 A1
20030199744 Buse Oct 2003 A1
20030199789 Boecker Oct 2003 A1
20030199790 Boecker Oct 2003 A1
20030199791 Boecker Oct 2003 A1
20030199891 Argauer Oct 2003 A1
20030199893 Boecker Oct 2003 A1
20030199894 Boecker Oct 2003 A1
20030199895 Boecker Oct 2003 A1
20030199896 Boecker Oct 2003 A1
20030199897 Boecker Oct 2003 A1
20030199898 Boecker Oct 2003 A1
20030199899 Boecker Oct 2003 A1
20030199900 Boecker Oct 2003 A1
20030199901 Boecker Oct 2003 A1
20030199902 Boecker Oct 2003 A1
20030199903 Boecker Oct 2003 A1
20030199904 Boecker Oct 2003 A1
20030199905 Boecker Oct 2003 A1
20030199906 Boecker Oct 2003 A1
20030199907 Boecker Oct 2003 A1
20030199908 Boecker Oct 2003 A1
20030199909 Boecker Oct 2003 A1
20030199910 Boecker Oct 2003 A1
20030199911 Boecker Oct 2003 A1
20030199912 Pugh Oct 2003 A1
20030201194 Heller Oct 2003 A1
20030203352 Haviland Oct 2003 A1
20030206828 Bell Nov 2003 A1
20030208140 Pugh Nov 2003 A1
20030212344 Yuzhakov Nov 2003 A1
20030212345 McAllister Nov 2003 A1
20030212346 McAllister Nov 2003 A1
20030212347 Sohrab Nov 2003 A1
20030212423 Pugh Nov 2003 A1
20030212424 Briggs Nov 2003 A1
20030212579 Brown Nov 2003 A1
20030216767 List Nov 2003 A1
20030217918 Davies Nov 2003 A1
20030220552 Reghabi Nov 2003 A1
20030220663 Fletcher Nov 2003 A1
20030223906 McAllister Dec 2003 A1
20030225317 Schell Dec 2003 A1
20030225429 Garthe Dec 2003 A1
20030225430 Schraga Dec 2003 A1
20030228637 Wang Dec 2003 A1
20030229514 Brown Dec 2003 A2
20030232370 Trifiro Dec 2003 A1
20030233055 Erickson Dec 2003 A1
20030233112 Alden et al. Dec 2003 A1
20030233113 Alden et al. Dec 2003 A1
20040006285 Douglas Jan 2004 A1
20040007585 Griffith Jan 2004 A1
20040009100 Simons Jan 2004 A1
20040010279 Freeman Jan 2004 A1
20040015064 Parsons Jan 2004 A1
20040019250 Catelli Jan 2004 A1
20040019259 Brown Jan 2004 A1
20040026243 Davies Feb 2004 A1
20040030353 Schmelzeisen-R Feb 2004 A1
20040031682 Wilsey Feb 2004 A1
20040034318 Fritz Feb 2004 A1
20040038045 Smart Feb 2004 A1
20040039303 Wurster Feb 2004 A1
20040039342 Eppstein Feb 2004 A1
20040039407 Schraga Feb 2004 A1
20040039408 Abulhaj Feb 2004 A1
20040049219 Briggs Mar 2004 A1
20040049220 Boecker Mar 2004 A1
20040050694 Yang Mar 2004 A1
20040054267 Feldman Mar 2004 A1
20040055898 Heller et al. Mar 2004 A1
20040059256 Perez Mar 2004 A1
20040060818 Feldman Apr 2004 A1
20040061841 Black Apr 2004 A1
20040064068 DeNuzzio Apr 2004 A1
20040087990 Boecker May 2004 A1
20040092842 Boecker May 2004 A1
20040092994 Briggs May 2004 A1
20040092995 Boecker May 2004 A1
20040096991 Zhang May 2004 A1
20040098009 Boecker May 2004 A1
20040098010 Davison May 2004 A1
20040102803 Boecker May 2004 A1
20040106855 Brown Jun 2004 A1
20040106858 Say Jun 2004 A1
20040106859 Say Jun 2004 A1
20040106860 Say Jun 2004 A1
20040106904 Gonnelli Jun 2004 A1
20040106941 Roe Jun 2004 A1
20040107116 Brown Jun 2004 A1
20040115754 Chang Jun 2004 A1
20040115831 Meathrel Jun 2004 A1
20040116780 Brown Jun 2004 A1
20040116829 Raney Jun 2004 A1
20040117207 Brown Jun 2004 A1
20040117208 Brown Jun 2004 A1
20040117209 Brown Jun 2004 A1
20040117210 Brown Jun 2004 A1
20040122339 Roe Jun 2004 A1
20040127818 Roe Jul 2004 A1
20040127819 Roe Jul 2004 A1
20040127928 Whitson Jul 2004 A1
20040127929 Roe Jul 2004 A1
20040132167 Rule Jul 2004 A1
20040133125 Miyashita Jul 2004 A1
20040133127 Roe Jul 2004 A1
20040137640 Hirao Jul 2004 A1
20040138541 Ward Jul 2004 A1
20040138588 Saikley Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040146958 Bae Jul 2004 A1
20040154932 Deng Aug 2004 A1
20040157017 Mauze Aug 2004 A1
20040157149 Hofmann Aug 2004 A1
20040157319 Keen Aug 2004 A1
20040157338 Burke Aug 2004 A1
20040157339 Burke Aug 2004 A1
20040158137 Eppstein Aug 2004 A1
20040158271 Hamamoto Aug 2004 A1
20040161737 Yang Aug 2004 A1
20040162473 Sohrab Aug 2004 A1
20040162474 Kiser Aug 2004 A1
20040162506 Duchon Aug 2004 A1
20040162573 Keheiri Aug 2004 A1
20040167383 Kim Aug 2004 A1
20040171057 Yang Sep 2004 A1
20040171968 Katsuki Sep 2004 A1
20040172000 Roe Sep 2004 A1
20040173472 Jung Sep 2004 A1
20040173488 Griffin Sep 2004 A1
20040176705 Stevens Sep 2004 A1
20040176732 Frazier Sep 2004 A1
20040178066 Miyazaki Sep 2004 A1
20040178067 Miyazaki Sep 2004 A1
20040178216 Brickwood Sep 2004 A1
20040180379 van Duyne Sep 2004 A1
20040182703 Bell Sep 2004 A1
20040185568 Matsumoto Sep 2004 A1
20040186359 Beaudoin Sep 2004 A1
20040186394 Roe Sep 2004 A1
20040186500 Koilke Sep 2004 A1
20040193201 Kim Sep 2004 A1
20040193377 Brown Sep 2004 A1
20040194302 Bhullar Oct 2004 A1
20040197231 Katsuki Oct 2004 A1
20040197821 Bauer Oct 2004 A1
20040199062 Petersson Oct 2004 A1
20040199409 Brown Oct 2004 A1
20040200720 Musho Oct 2004 A1
20040200721 Bhullar Oct 2004 A1
20040202576 Aceti Oct 2004 A1
20040204662 Perez Oct 2004 A1
20040206625 Bhullar Oct 2004 A1
20040206636 Hodges Oct 2004 A1
20040206658 Hammerstedt Oct 2004 A1
20040209307 Valkirs Oct 2004 A1
20040209350 Sakata Oct 2004 A1
20040209354 Mathies Oct 2004 A1
20040210279 Gruzdev Oct 2004 A1
20040211666 Pamidi Oct 2004 A1
20040214253 Paek Oct 2004 A1
20040215224 Sakata Oct 2004 A1
20040215225 Nakayama Oct 2004 A1
20040216516 Sato Nov 2004 A1
20040217019 Cai Nov 2004 A1
20040219500 Brown Nov 2004 A1
20040219535 Bell Nov 2004 A1
20040220456 Eppstein Nov 2004 A1
20040220495 Cahir Nov 2004 A1
20040220564 Ho Nov 2004 A1
20040220603 Rutynowski Nov 2004 A1
20040222092 Musho Nov 2004 A1
20040224369 Cai Nov 2004 A1
20040225230 Liamos Nov 2004 A1
20040225311 Levaughn Nov 2004 A1
20040225312 Orloff Nov 2004 A1
20040230216 Levaughn Nov 2004 A1
20040231984 Lauks Nov 2004 A1
20040232009 Okuda Nov 2004 A1
20040236250 Hodges Nov 2004 A1
20040236251 Roe Nov 2004 A1
20040236268 Mitragotri Nov 2004 A1
20040236362 Shraga Nov 2004 A1
20040238357 Bhullar Dec 2004 A1
20040238358 Forrow Dec 2004 A1
20040238359 Ikeda Dec 2004 A1
20040241746 Adlassnig Dec 2004 A1
20040242977 Dosmann Dec 2004 A1
20040243164 D'Agostino Dec 2004 A1
20040243165 Koike Dec 2004 A1
20040245101 Willner Dec 2004 A1
20040248282 Sobha Dec 2004 A1
20040248312 Vreeke Dec 2004 A1
20040249254 Racchini Dec 2004 A1
20040249310 Shartle Dec 2004 A1
20040249311 Haar Dec 2004 A1
20040249405 Watanabe Dec 2004 A1
20040249406 Griffin Dec 2004 A1
20040251131 Ueno Dec 2004 A1
20040253634 Wang Dec 2004 A1
20040254434 Goodnow Dec 2004 A1
20040254599 Lipoma Dec 2004 A1
20040256228 Huang Dec 2004 A1
20040256248 Burke Dec 2004 A1
20040256685 Chou Dec 2004 A1
20040258564 Charlton Dec 2004 A1
20040260204 Boecker Dec 2004 A1
20040260324 Fukuzawa Dec 2004 A1
20040260325 Kuhr Dec 2004 A1
20040260326 Lipoma Dec 2004 A1
20040260511 Burke Dec 2004 A1
20040267105 Monfre Dec 2004 A1
20040267160 Perez Dec 2004 A9
20040267229 Moerman Dec 2004 A1
20040267299 Kuriger Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050000806 Hsieh Jan 2005 A1
20050000807 Wang Jan 2005 A1
20050000808 Cui Jan 2005 A1
20050003470 Nelson Jan 2005 A1
20050004437 Kaufmann Jan 2005 A1
20050004494 Perez Jan 2005 A1
20050008537 Mosolu Jan 2005 A1
20050008851 Ezoe Jan 2005 A1
20050009191 Swenson Jan 2005 A1
20050010090 Acosta Jan 2005 A1
20050010093 Ford Jan 2005 A1
20050010134 Douglas Jan 2005 A1
20050010137 Hodges Jan 2005 A1
20050010198 Marchitto Jan 2005 A1
20050011759 Moerman Jan 2005 A1
20050013731 Burke Jan 2005 A1
20050014997 Ruchti Jan 2005 A1
20050015020 Levaughn Jan 2005 A1
20050016844 Burke Jan 2005 A1
20050019212 Bhullar Jan 2005 A1
20050019219 Oshiman Jan 2005 A1
20050019805 Groll Jan 2005 A1
20050019945 Groll Jan 2005 A1
20050019953 Groll Jan 2005 A1
20050021066 Kuhr Jan 2005 A1
20050027181 Goode et al. Feb 2005 A1
20050027211 Kuhr Feb 2005 A1
20050027562 Brown Feb 2005 A1
20050033341 Vreeke Feb 2005 A1
20050034983 Chambers Feb 2005 A1
20050036020 Li Feb 2005 A1
20050036146 Braig Feb 2005 A1
20050036906 Nakahara Feb 2005 A1
20050036909 Erickson Feb 2005 A1
20050037482 Braig Feb 2005 A1
20050038329 Morris Feb 2005 A1
20050038330 Jansen Feb 2005 A1
20050038463 Davar Feb 2005 A1
20050038464 Schraga Feb 2005 A1
20050038465 Schraga Feb 2005 A1
20050038674 Braig Feb 2005 A1
20050042766 Ohman Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050043965 Heller Feb 2005 A1
20050045476 Neel Mar 2005 A1
20050049473 Desai Mar 2005 A1
20050050859 Coppeta Mar 2005 A1
20050054082 Pachl Mar 2005 A1
20050059895 Brown Mar 2005 A1
20050060194 Brown Mar 2005 A1
20050067280 Reid Mar 2005 A1
20050067737 Rappin Mar 2005 A1
20050070771 Rule Mar 2005 A1
20050070819 Poux Mar 2005 A1
20050070945 Schraga Mar 2005 A1
20050072670 Hasegawa Apr 2005 A1
20050077176 Hodges Apr 2005 A1
20050077584 Uhland Apr 2005 A1
20050079542 Cullen Apr 2005 A1
20050080652 Brown Apr 2005 A1
20050085839 Allen Apr 2005 A1
20050085840 Yi Apr 2005 A1
20050086083 Brown Apr 2005 A1
20050090754 Wolf Apr 2005 A1
20050090850 Toes Apr 2005 A1
20050096520 Maekawa May 2005 A1
20050096565 Chang May 2005 A1
20050096586 Trautman May 2005 A1
20050096587 Santini, Jr. May 2005 A1
20050096686 Allen May 2005 A1
20050098431 Hodges May 2005 A1
20050098432 Grundel May 2005 A1
20050098433 Grundel May 2005 A1
20050098434 Grundel May 2005 A1
20050100880 Chang May 2005 A1
20050101841 Kaylor May 2005 A9
20050101979 Alden May 2005 A1
20050101980 Alden May 2005 A1
20050101981 Alden May 2005 A1
20050103624 Bhullar May 2005 A1
20050106713 Phan May 2005 A1
20050109637 Iyengar May 2005 A1
20050112782 Buechler May 2005 A1
20050113658 Jacobson May 2005 A1
20050113717 Matzinger May 2005 A1
20050114062 Davies May 2005 A1
20050114154 Wolkowiez May 2005 A1
20050114444 Brown May 2005 A1
20050118056 Swanson Jun 2005 A1
20050119681 Marshall Jun 2005 A1
20050123443 Fujiwara Jun 2005 A1
20050123680 Kang Jun 2005 A1
20050124869 Hefti Jun 2005 A1
20050125017 Kudrna Jun 2005 A1
20050125018 Galloway Jun 2005 A1
20050125019 Kudrna Jun 2005 A1
20050126929 Mansouri Jun 2005 A1
20050130248 Willner Jun 2005 A1
20050130249 Parris Jun 2005 A1
20050130292 Ahn Jun 2005 A1
20050131286 Parker Jun 2005 A1
20050131441 Iio Jun 2005 A1
20050133368 Davies Jun 2005 A1
20050136471 Bhullar Jun 2005 A1
20050136501 Kuriger Jun 2005 A1
20050136529 Yang Jun 2005 A1
20050136550 Yang Jun 2005 A1
20050137536 Gonnelli Jun 2005 A1
20050143675 Neel Jun 2005 A1
20050143713 Delmore Jun 2005 A1
20050143771 Stout Jun 2005 A1
20050145490 Shinno Jul 2005 A1
20050145491 Amano Jul 2005 A1
20050145520 Ilo Jul 2005 A1
20050149088 Fukuda Jul 2005 A1
20050149089 Trissel Jul 2005 A1
20050150762 Butters Jul 2005 A1
20050150763 Butters Jul 2005 A1
20050154277 Ting Jul 2005 A1
20050154374 Hunter Jul 2005 A1
20050154410 Conway Jul 2005 A1
20050154616 Iliff Jul 2005 A1
20050158850 Kubo Jul 2005 A1
20050159656 Hockersmith Jul 2005 A1
20050159768 Boehm Jul 2005 A1
20050164322 Heller Jul 2005 A1
20050164329 Wallace-Davis Jul 2005 A1
20050165285 Iliff Jul 2005 A1
20050165393 Eppstein Jul 2005 A1
20050165622 Neel Jul 2005 A1
20050169961 Hunter Aug 2005 A1
20050170448 Burson Aug 2005 A1
20050171567 DeHart Aug 2005 A1
20050172021 Brown Aug 2005 A1
20050172022 Brown Aug 2005 A1
20050173245 Feldman Aug 2005 A1
20050173246 Hodges Aug 2005 A1
20050175509 Nakaminami Aug 2005 A1
20050176084 Burkoth Aug 2005 A1
20050176133 Miyashita Aug 2005 A1
20050177071 Nakayama Aug 2005 A1
20050177201 Freeman Aug 2005 A1
20050177398 Watanabe Aug 2005 A1
20050178218 Montagu Aug 2005 A1
20050181010 Hunter Aug 2005 A1
20050181497 Salto Aug 2005 A1
20050182307 Currie Aug 2005 A1
20050187439 Blank Aug 2005 A1
20050187444 Hubner Aug 2005 A1
20050192488 Bryenton Sep 2005 A1
20050196821 Monfre Sep 2005 A1
20050197666 Raney Sep 2005 A1
20050201897 Zimmer Sep 2005 A1
20050202567 Zanzucchi Sep 2005 A1
20050203358 Monfre Sep 2005 A1
20050203364 Monfre Sep 2005 A1
20050204939 Krejci Sep 2005 A1
20050205422 Moser Sep 2005 A1
20050205816 Hayenga Sep 2005 A1
20050209515 Hockersmith Sep 2005 A1
20050209564 Bonner Sep 2005 A1
20050209625 Chan Sep 2005 A1
20050211571 Schulein Sep 2005 A1
20050211572 Buck Sep 2005 A1
20050214881 Azarnia Sep 2005 A1
20050214892 Kovatchev Sep 2005 A1
20050215871 Feldman Sep 2005 A1
20050215872 Berner Sep 2005 A1
20050215923 Wiegel Sep 2005 A1
20050215925 Chan Sep 2005 A1
20050216046 Yeoh Sep 2005 A1
20050218024 Lang Oct 2005 A1
20050221276 Rozakis Oct 2005 A1
20050221470 Matsumoto Oct 2005 A1
20050222599 Czernecki Oct 2005 A1
20050227372 Khan Oct 2005 A1
20050228242 Kawamura Oct 2005 A1
20050228883 Brown Oct 2005 A1
20050230252 Tsai Oct 2005 A1
20050230253 Marquant Oct 2005 A1
20050232813 Karmali Oct 2005 A1
20050232815 Ruhl Oct 2005 A1
20050234368 Wong Oct 2005 A1
20050234486 Allen Oct 2005 A1
20050234487 Shi Oct 2005 A1
20050234488 Allen Oct 2005 A1
20050234489 Allen Oct 2005 A1
20050234490 Allen Oct 2005 A1
20050234491 Allen Oct 2005 A1
20050234492 Tsai Oct 2005 A1
20050234494 Conway Oct 2005 A1
20050234495 Schraga Oct 2005 A1
20050235060 Brown Oct 2005 A1
20050239154 Feldman Oct 2005 A1
20050239156 Drucker Oct 2005 A1
20050239194 Takahashi Oct 2005 A1
20050240090 Ruchti Oct 2005 A1
20050240119 Draudt Oct 2005 A1
20050240207 Marshall Oct 2005 A1
20050240778 Saito Oct 2005 A1
20050245798 Yamaguchi Nov 2005 A1
20050245843 Day Nov 2005 A1
20050245844 Mace Nov 2005 A1
20050245845 Roe Nov 2005 A1
20050245846 Day Nov 2005 A1
20050245954 Roe Nov 2005 A1
20050245955 Schraga Nov 2005 A1
20050256534 Alden Nov 2005 A1
20050258035 Harding Nov 2005 A1
20050258036 Harding Nov 2005 A1
20050258050 Harding Nov 2005 A1
20050265094 Harding Dec 2005 A1
20050276133 Harding Dec 2005 A1
20050278945 Feldman Dec 2005 A1
20050279631 Celentano Dec 2005 A1
20050279647 Beaty Dec 2005 A1
20050283094 Thym Dec 2005 A1
20050284110 Lang Dec 2005 A1
20050284757 Allen Dec 2005 A1
20050287620 Heller Dec 2005 A1
20050288637 Kuhr Dec 2005 A1
20050288698 Matsumoto Dec 2005 A1
20050288699 Schraga Dec 2005 A1
20060000549 Lang Jan 2006 A1
20060003398 Heller Jan 2006 A1
20060004270 Bedard Jan 2006 A1
20060004271 Peyser Jan 2006 A1
20060004272 Shah Jan 2006 A1
20060006574 Lang Jan 2006 A1
20060008389 Sacherer Jan 2006 A1
20060015129 Shahrokni Jan 2006 A1
20060016698 Lee Jan 2006 A1
20060020228 Fowler Jan 2006 A1
20060024774 Zocchi Feb 2006 A1
20060025662 Buse Feb 2006 A1
20060029979 Bai Feb 2006 A1
20060029991 Hagino Feb 2006 A1
20060030028 Nakaminami Feb 2006 A1
20060030788 Wong Feb 2006 A1
20060034728 Kloepfer Feb 2006 A1
20060040333 Zocchi Feb 2006 A1
20060047220 Sakata Mar 2006 A1
20060047294 Mori Mar 2006 A1
20060052723 Roe Mar 2006 A1
20060052724 Roe Mar 2006 A1
20060052809 Karbowniczek Mar 2006 A1
20060052810 Freeman Mar 2006 A1
20060058827 Sakata Mar 2006 A1
20060058828 Shi Mar 2006 A1
20060062852 Holmes Mar 2006 A1
20060063988 Schurman Mar 2006 A1
20060064035 Wang Mar 2006 A1
20060079739 Chen Wang Apr 2006 A1
20060079810 Patel Apr 2006 A1
20060079811 Roe Apr 2006 A1
20060079920 Schraga Apr 2006 A1
20060081469 Lee Apr 2006 A1
20060085020 Freeman Apr 2006 A1
20060085137 Bartkowiak Apr 2006 A1
20060086624 Tapsak Apr 2006 A1
20060088945 Douglas Apr 2006 A1
20060089566 DeHart Apr 2006 A1
20060091006 Wang May 2006 A1
20060094944 Chuang May 2006 A1
20060094947 Kovatchev May 2006 A1
20060094986 Neel May 2006 A1
20060095061 Trautman May 2006 A1
20060096859 Lau May 2006 A1
20060099107 Yamamoto May 2006 A1
20060099703 Choi May 2006 A1
20060100542 Wong May 2006 A9
20060100543 Raney May 2006 A1
20060100654 Fukuda May 2006 A1
20060100655 Leong May 2006 A1
20060100656 Olson May 2006 A1
20060106373 Cahir May 2006 A1
20060108236 Kasielke May 2006 A1
20060113187 Deng Jun 2006 A1
20060115857 Keen Jun 2006 A1
20060116562 Acosta Jun 2006 A1
20060116704 Ashby Jun 2006 A1
20060116705 Schraga Jun 2006 A1
20060119362 Kermani Jun 2006 A1
20060121547 McIntire Jun 2006 A1
20060121625 Clemens Jun 2006 A1
20060121759 Kasai Jun 2006 A1
20060122099 Aoki Jun 2006 A1
20060122536 Haar Jun 2006 A1
20060129065 Matsumoto Jun 2006 A1
20060129172 Crossman Jun 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060134713 Rylatt Jun 2006 A1
20060140457 Simshauser Jun 2006 A1
20060144704 Ghesquiere Jul 2006 A1
20060151323 Cho Jul 2006 A1
20060155215 Cha Jul 2006 A1
20060155316 Perez Jul 2006 A1
20060155317 List Jul 2006 A1
20060156796 Burke Jul 2006 A1
20060157362 Schraga Jul 2006 A1
20060161078 Schraga Jul 2006 A1
20060161194 Freeman Jul 2006 A1
20060166302 Clarke Jul 2006 A1
20060167382 Deshmukh Jul 2006 A1
20061051342 Yaguchi Jul 2006
20060169599 Feldman Aug 2006 A1
20060173254 Acosta Aug 2006 A1
20060173255 Acosta Aug 2006 A1
20060173379 Rasch-Menges Aug 2006 A1
20060173380 Hoenes Aug 2006 A1
20060173478 Schraga Aug 2006 A1
20060175216 Freeman Aug 2006 A1
20060178573 Kermani Aug 2006 A1
20060178599 Faupel Aug 2006 A1
20060178600 Kennedy Aug 2006 A1
20060178686 Schraga Aug 2006 A1
20060178687 Freeman Aug 2006 A1
20060178688 Freeman Aug 2006 A1
20060178689 Freeman Aug 2006 A1
20060178690 Freeman Aug 2006 A1
20060183871 Ward Aug 2006 A1
20060183983 Acosta Aug 2006 A1
20060184101 Srinivasan Aug 2006 A1
20060188395 Taniike Aug 2006 A1
20060189895 Neel Aug 2006 A1
20060191787 Wang Aug 2006 A1
20060195023 Acosta Aug 2006 A1
20060195047 Freeman Aug 2006 A1
20060195128 Alden Aug 2006 A1
20060195129 Freeman Aug 2006 A1
20060195130 Freeman Aug 2006 A1
20060195131 Freeman Aug 2006 A1
20060195132 Freeman Aug 2006 A1
20060195133 Freeman Aug 2006 A1
20060196031 Hoenes Sep 2006 A1
20060196795 Windus-Smith Sep 2006 A1
20060200044 Freeman Sep 2006 A1
20060200045 Roe Sep 2006 A1
20060200046 Windus-Smith Sep 2006 A1
20060200181 Fukuzawa Sep 2006 A1
20060200981 Bhullar Sep 2006 A1
20060200982 Bhullar Sep 2006 A1
20060204399 Freeman Sep 2006 A1
20060205029 Heller Sep 2006 A1
20060205060 Kim Sep 2006 A1
20060206135 Uehata Sep 2006 A1
20060211127 Iwaki Sep 2006 A1
20060211927 Acosta Sep 2006 A1
20060211931 Blank Sep 2006 A1
20060219551 Edelbrock Oct 2006 A1
20060222567 Kloepfer Oct 2006 A1
20060224171 Sakata Oct 2006 A1
20060224172 Levaughn Oct 2006 A1
20060229532 Wong Oct 2006 A1
20060229533 Hoenes Oct 2006 A1
20060229651 Marshall Oct 2006 A1
20060231396 Yamaoka Oct 2006 A1
20060231418 Harding Oct 2006 A1
20060231442 Windus-Smith Oct 2006 A1
20060234369 Sih Oct 2006 A1
20060235284 Lee Oct 2006 A1
20060235454 LeVaughn Oct 2006 A1
20060241517 Fowler Oct 2006 A1
20060241666 Briggs Oct 2006 A1
20060241667 Freeman Oct 2006 A1
20060241668 Schraga Oct 2006 A1
20060241669 Stout Oct 2006 A1
20060247554 Roe Nov 2006 A1
20060247555 Harttig Nov 2006 A1
20060247670 LeVaughn Nov 2006 A1
20060247671 Levaughn Nov 2006 A1
20060259057 Kim Nov 2006 A1
20060259058 Schiff Nov 2006 A1
20060259060 Whitson Nov 2006 A1
20060264718 Ruchti Nov 2006 A1
20060264996 Levaughn Nov 2006 A1
20060264997 Colonna Nov 2006 A1
20060271083 Boecker Nov 2006 A1
20060271084 Schraga Nov 2006 A1
20060276724 Freeman Dec 2006 A1
20060277048 Kintzig Dec 2006 A1
20060278545 Henning Dec 2006 A1
20060282109 Jansen Dec 2006 A1
20060286620 Werner Dec 2006 A1
20060287664 Grage Dec 2006 A1
20060293577 Morrison Dec 2006 A1
20070004989 Dhillon Jan 2007 A1
20070004990 Kistner Jan 2007 A1
20070007183 Schulat Jan 2007 A1
20070009381 Schulat Jan 2007 A1
20070010839 Galloway Jan 2007 A1
20070010841 Teo Jan 2007 A1
20070015978 Kanayama Jan 2007 A1
20070016079 Freeman Jan 2007 A1
20070016103 Calasso Jan 2007 A1
20070016104 Jansen Jan 2007 A1
Foreign Referenced Citations (243)
Number Date Country
4420232 Dec 1995 DE
29824204 Oct 2000 DE
10032042 Jan 2002 DE
10057832 Feb 2002 DE
10057832 Feb 2002 DE
10142232 Mar 2003 DE
10208575 Aug 2003 DE
10245721 Dec 2003 DE
10361560 Jul 2005 DE
0199484 Oct 1986 EP
0289 269 Nov 1988 EP
0320109 Jun 1989 EP
0 364 208 Apr 1990 EP
0170375 May 1990 EP
0136362 Dec 1990 EP
0453283 Oct 1991 EP
0263948 Feb 1992 EP
0374355 Jun 1993 EP
0351891 Sep 1993 EP
0593096 Apr 1994 EP
0415388 May 1995 EP
0505494 Jul 1995 EP
0359831 Aug 1995 EP
0471986 Oct 1995 EP
0368474 Dec 1995 EP
0461601 Dec 1995 EP
0429076 Jan 1996 EP
0552223 Jul 1996 EP
0735363 Oct 1996 EP
0505504 Mar 1997 EP
0406304 Aug 1997 EP
0537761 Aug 1997 EP
0795601 Sep 1997 EP
0562370 Nov 1997 EP
0415393 Dec 1997 EP
0560336 May 1998 EP
0878 708 Nov 1998 EP
0 898 936 Mar 1999 EP
0505475 Mar 1999 EP
0901018 Mar 1999 EP
0470649 Jun 1999 EP
0 951 939 Oct 1999 EP
0847447 Nov 1999 EP
0964059 Dec 1999 EP
0969097 Jan 2000 EP
1021950 Jul 2000 EP
0894869 Feb 2001 EP
1074832 Feb 2001 EP
1093854 Apr 2001 EP
1101443 May 2001 EP
1114995 Jul 2001 EP
0736607 Aug 2001 EP
0874984 Nov 2001 EP
0730037 Dec 2001 EP
0636879 Jan 2002 EP
01174083 Jan 2002 EP
0851224 Mar 2002 EP
0759553 May 2002 EP
0856586 May 2002 EP
0817809 Jul 2002 EP
0872728 Jul 2002 EP
0795748 Aug 2002 EP
0685737 Sep 2002 EP
0958495 Nov 2002 EP
0937249 Dec 2002 EP
0880692 Jan 2004 EP
01374770 Jan 2004 EP
1246688 May 2004 EP
1502614 Feb 2005 EP
2168815 Jun 1986 GB
233936 Jun 1999 GB
2335860 Oct 1999 GB
2335990 Oct 1999 GB
WO 8001389 Jul 1980 WO
WO 8504089 Sep 1985 WO
WO 8607632 Dec 1986 WO
WO 9109139 Jun 1991 WO
WO 9306979 Apr 1993 WO
WO 9325898 Dec 1993 WO
WO 9427140 Nov 1994 WO
WO 9429703 Dec 1994 WO
WO 9429704 Dec 1994 WO
WO 9429731 Dec 1994 WO
WO 9500662 Jan 1995 WO
WO 9506240 Mar 1995 WO
WO 9510223 Apr 1995 WO
WO 9522597 Aug 1995 WO
WO 9630431 Oct 1996 WO
WO 9702359 Jan 1997 WO
WO 9702487 Jan 1997 WO
WO 9718464 May 1997 WO
WO 9730344 Aug 1997 WO
WO 9742882 Nov 1997 WO
WO 9745720 Dec 1997 WO
WO 9803431 Jan 1998 WO
WO 9819159 May 1998 WO
WO 9820332 May 1998 WO
WO 9820348 May 1998 WO
WO 9824366 Jun 1998 WO
WO 9824373 Jun 1998 WO
WO 9835225 Aug 1998 WO
WO 9903584 Jan 1999 WO
WO 9905966 Feb 1999 WO
WO 9907431 Feb 1999 WO
WO 9913100 Mar 1999 WO
WO 9917854 Apr 1999 WO
WO 9918532 Apr 1999 WO
WO 9919507 Apr 1999 WO
WO 9919717 Apr 1999 WO
WO 9927483 Jun 1999 WO
WO 9927852 Jun 1999 WO
WO 9962576 Dec 1999 WO
WO 9964580 Dec 1999 WO
WO 0006024 Feb 2000 WO
WO 0009184 Feb 2000 WO
WO 0011578 Mar 2000 WO
WO 0015103 Mar 2000 WO
WO 0017799 Mar 2000 WO
WO 0017800 Mar 2000 WO
WO 0018293 Apr 2000 WO
WO 0019346 Apr 2000 WO
WO 0030186 May 2000 WO
WO 0032097 Jun 2000 WO
WO 0032098 Jun 2000 WO
WO 0033236 Jun 2000 WO
WO 0039914 Jul 2000 WO
WO 0042422 Jul 2000 WO
WO 0044084 Jul 2000 WO
WO 0050771 Aug 2000 WO
WO 0060340 Oct 2000 WO
WO 0064022 Oct 2000 WO
WO 0067245 Nov 2000 WO
WO 0067268 Nov 2000 WO
WO 0072452 Nov 2000 WO
WO 0100090 Jan 2001 WO
WO 0115807 Mar 2001 WO
WO 0116578 Mar 2001 WO
WO 0175433 Mar 2001 WO
WO 0123885 Apr 2001 WO
WO 0125775 Apr 2001 WO
WO 0126813 Apr 2001 WO
WO 0133216 May 2001 WO
WO 0134029 May 2001 WO
WO 0136955 May 2001 WO
WO 0137174 May 2001 WO
WO 0145014 Jun 2001 WO
WO 0140788 Jul 2001 WO
WO 0157510 Aug 2001 WO
WO 0164105 Sep 2001 WO
WO 0166010 Sep 2001 WO
WO 0169505 Sep 2001 WO
WO 0172225 Oct 2001 WO
WO 0173124 Oct 2001 WO
WO 0173395 Oct 2001 WO
WO 0189691 Nov 2001 WO
WO 0200101 Jan 2002 WO
WO 0202796 Jan 2002 WO
WO 0208750 Jan 2002 WO
WO 0208753 Jan 2002 WO
WO 0208950 Jan 2002 WO
WO 0218940 Mar 2002 WO
WO 0221317 Mar 2002 WO
WO 0225551 Mar 2002 WO
WO 0232559 Apr 2002 WO
WO 0241227 May 2002 WO
WO 0241779 May 2002 WO
WO 0244948 Jun 2002 WO
WO 02059734 Aug 2002 WO
WO 02069791 Sep 2002 WO
WO 02077638 Oct 2002 WO
WO 02100251 Dec 2002 WO
WO 02100252 Dec 2002 WO
WO 02100253 Dec 2002 WO
WO 02100254 Dec 2002 WO
WO 02100460 Dec 2002 WO
WO 02100461 Dec 2002 WO
WO 02101343 Dec 2002 WO
WO 02101359 Dec 2002 WO
WO 03000321 Jan 2003 WO
WO 03023389 Mar 2003 WO
WO 03042691 May 2003 WO
WO 03045557 Jun 2003 WO
WO 03046542 Jun 2003 WO
WO 03049609 Jun 2003 WO
WO 03050534 Jun 2003 WO
WO 03066128 Aug 2003 WO
WO 03070099 Aug 2003 WO
WO 03071940 Sep 2003 WO
WO 03088851 Oct 2003 WO
WO 03094752 Nov 2003 WO
WO 03101297 Dec 2003 WO
WO 2004008130 Jan 2004 WO
WO 2004022133 Mar 2004 WO
WO 2004026130 Apr 2004 WO
WO 2004040285 May 2004 WO
WO 2004040287 May 2004 WO
WO 2004040948 May 2004 WO
WO 2004041082 May 2004 WO
WO 2004054455 Jul 2004 WO
WO 2004060174 Jul 2004 WO
WO 2004060446 Jul 2004 WO
WO 2004091693 Oct 2004 WO
WO 2004098405 Nov 2004 WO
WO 2004003147 Dec 2004 WO
WO 2004107964 Dec 2004 WO
WO 2004107975 Dec 2004 WO
WO 2004112602 Dec 2004 WO
WO 2005001418 Jan 2005 WO
WO 2005006939 Jan 2005 WO
WO 2005011774 Feb 2005 WO
WO 2005016125 Feb 2005 WO
WO 2005018425 Mar 2005 WO
WO 2005018430 Mar 2005 WO
WO 2005018454 Mar 2005 WO
WO 2005018709 Mar 2005 WO
WO 2005018710 Mar 2005 WO
WO 2005018711 Mar 2005 WO
WO 2005022143 Mar 2005 WO
WO 2005023088 Mar 2005 WO
WO 2005033659 Apr 2005 WO
WO 2005034720 Apr 2005 WO
WO 2005034721 Apr 2005 WO
WO 2005034741 Apr 2005 WO
WO 2005034778 Apr 2005 WO
WO 2005035017 Apr 2005 WO
WO 2005035018 Apr 2005 WO
WO 2005037095 Apr 2005 WO
WO 2005046477 May 2005 WO
WO 2005065399 Jul 2005 WO
WO 2005065414 Jul 2005 WO
WO 2005065415 Jul 2005 WO
WO 2005065545 Jul 2005 WO
WO 2005072604 Aug 2005 WO
WO 2005084557 Sep 2005 WO
WO 2005116622 Dec 2005 WO
WO 2005119234 Dec 2005 WO
WO 2005121759 Dec 2005 WO
WO 2006001973 Jan 2006 WO
WO 2006011062 Feb 2006 WO
WO 2006013045 Feb 2006 WO
WO 2006027702 Mar 2006 WO
WO 2006032391 Mar 2006 WO
WO 2006072004 Jul 2006 WO
Related Publications (1)
Number Date Country
20060276724 A1 Dec 2006 US