Sleep can have several states; some are the “light sleep state”, “deep sleep state” and an REM (Rapid Eye Movement) state. Being awoken from these different states can influence the state of the awoken sleeper. Ideally, once being awoken from a sleep, a desirable situation would be to wake in a pleasant state from a pleasant dream. In a paper by RebecCa Carroll of the National Geographic News “Smells Influence Dreams, Study Says,” Boris Stuck of the University Hospital Mannheim in Germany has shown that when a scent is smelled by a person in REM sleep, one minute prior to waking, that the person's dreams will be affected. When the scent is positive, such as that of a rose, the person will recall having positive dreams.
There are several existing devices that have the intention of affecting the user's sleep and dreams. One such device, the Sleeptracker (manufactured by Innovative Sleep Solutions, Inc., of Atlanta, Ga., USA), is worn on the wrist and wakens the user during light sleep, which is determined by tracking the movement of the user's body.
Stanford University holds U.S. Pat. No. 6,468,234, entitled “SleepSmart”, and was published on 22 Aug. 1998. This document relates to a method and apparatus for measuring sleep quality that utilizes pressure and temperature sensors incorporated in a sheet, which can be laid on top of a conventional mattress. The apparatus comprises one or more layers of arrays of integrated pressure and/or temperature sensor pads for collecting data relating to physical properties such as an individual's position, temperature, sound, vibration and movement.
Brown University has US patent application number 2006/0293608 that was published on Dec. 28, 2006. This application describes a device and a method for waking a user in a desired sleep state. The device may predict an occurrence when the user will be in the desired sleep state, such as light sleep, and wake the user during that predicted occurrence.
This device, by Axon Sleep Research Laboratories (Providence, R.I., USA) is an intelligent alarm clock (also called “SleepSmart”) that monitors sleep cycles and attempts to awaken the user at an optimal point in the sleep cycle. It appears that the name “SleepSmart” is used by both the Stanford and Axon's references but refer to different aspects of sleep. SleepSmart in Axon requires the user to sleep with a headband that measures physiological data. It has also been suggested that sleep staging can be obtained from respiration and heart rate information during sleep.
Another device is the aXbo Sleep Phase Alarm Clock which is a wristband that reads body movements. In addition, a Wake n' Bacon is a device that starts cooking bacon ten minutes before wake-up time. There are also devices that awake the users by light rather than by sound.
The aforementioned effect is the central idea behind an alarm clock that will emit a scent one minute prior to going off, in order to affect the dreams of the user.
The proposed device can awake the user while the user is in the dream-heavy REM state. This is in fact the more natural state to be awoken. Dr. Gregory Belenky, a sleep expert at Washington State University Spokane, said light stage sleep isn't the best time to be woken by an alarm. He says that you are instead most likely to wake up out of a dream, and that “(a light sleep stage) is the hardest time to wake a person up unnaturally.”
One minute prior to the alarm, a scent will be emitted by the device. If the scent is pleasant, then the dreams of the user will be pleasant. At alarm time, the user will be awakened, either by sound, by light, or by both.
Please note that the drawings shown in this specification may not be drawn to scale and the relative dimensions of various elements in the diagrams are depicted schematically and not to scale.
A positive scent 2-3, hie that of a rose, candy, perfume, etc. can be extracted from a container 2-5 as depicted in
A negative scent 3-3, like that of a rotten egg, spoiled meat, waste products, etc. can be extracted from a aerosol can 3-4 as depicted in
A system 4-1 to detect when the subject is in REM sleep 4-2 is illustrated in
The sleep state detector in
It is understood that the above description are only illustrative of the principle of the current invention. It is understood that the various embodiments of the invention, although different, are not mutually exclusive. In accordance with these principles, those skilled in the art may devise numerous modifications without departing from the spirit and scope of the invention. For example, the sound in