The present invention relates to the field of reclining chairs and, more particularly, reclining chairs providing at least three distinct operating positions without substantial rearward displacement and while retaining essentially the same aesthetics of the chair body.
Reclining chairs and other so-called “motion furniture” have become fixtures in the home decorator's lexicon. This type of furniture is unique in the combination of comfort and convenience afforded by its selective body positioning capability, and is considered by many to be an essential element of the complete home.
In general, the recliners available today are classified as either two or three position. The first position is a conventional seating, or so-called “closed” position, which places the user's feet on the floor with the seat back in a relatively erect position, typically tilted at an angle in the range from approximately vertical to approximately twenty-five degrees (25°), although a more reclined angle could be used if desired. The second is known as the “TV” position, wherein a leg rest is extended to at least somewhat support the user's legs in an ottoman-like manner, while the seat back remains either substantially unchanged from the closed position or is tilted further. Typically, the seat back is tilted at an angle in the neighborhood of approximately thirty degrees (30°) from vertical, although other angles equal to or greater than seat back angle in the closed position could be used if desired. The third position is known as the “reclining” position, wherein the seat back is generally tilted backwards a greater amount than in the TV position, typically approximately thirty or more degrees from the vertical, or as otherwise desired. In the reclining position, the leg rest is also extended to a greater degree than in the TV position. For purposes of both comfort and aesthetics, the seat back is often covered by an upholstered “T” shaped back cushion, which fits down to the seat cushion and extends over the chair arms. The central portion of the cushion extends downwardly between the chair arms, close to or touching a seat cushion.
Typical three-position motion furniture has placement limitations in a room because the rearward tilting of the seat back results in wall contact, unless sufficient clearance is allowed when positioning the furniture. A number of so-called, “wall-avoiding” designs have been offered. Three-position recliners, including wall-avoiding recliners, tend to be less pleasing to the eye than similar, two-position or static furniture, especially from the rear. This is because of the irregular rear surface and the unsightly vertical and horizontal gaps left between the moving and stationary portions of the back and sides. Also, “T” shaped back cushions do not work very well with three-position recliners, because the relative movement between the seat back and the arms causes binding with the chair arms and displacement or distortion primarily of the “wings” forming the “T” shape of the back cushion. As a result, back cushions that do not extend over the arms are usually used on three-position wall-avoiding recliners and the frontal appearance is less finished looking than a similar two-position piece or a chair that does not recline.
There are a number of three-position operating mechanisms in the prior art, both powered and manually operated. In a common arrangement, the leg rest is raised, so as to place the chair in the “TV” position. Then, the seat back acts as a lever to raise the seat slightly as the back is pushed into the full reclining position. Shifting the full weight of the user to the seat reverses the back movement and restores the chair to the “TV” position. Significant displacement of the seat back in rearward and downward directions takes place relative to the arms as it is moved to the full reclining position. Gaps in the upholstery, unsightly deformation of the back cushion and discontinuities in the outline or surface of the chair may result, diminishing or destroying the aesthetic appeal of the chair design.
An object of the present invention is therefore to provide three position reclining motion in a wall-avoiding configuration. A second object is to improve the appearance of furniture employing this three position reclining motion by eliminating unsightly gaps and discontinuities in the chair outline or surface to retain the aesthetic appeal of the furniture piece. A third object is to provide this three position reclining motion without significant distortion of a “T” shaped back cushion. A fourth object is to provide three position reclining motion in a form, which may be either powered or manually operated.
The present invention comprises a method and apparatus for effecting a three position reclining motion in a reclining chair, seat, couch or other motion furniture. A chair incorporating the invention generally comprises a front leg rest, one or more arms, a seat and seat cushion and a seat back and back cushion. Beginning with the chair in the first, closed position, a mechanism effects forward translation of the seat with respect to the arms. Forward movement of the seat combines with extension of the leg rest to provide a leg support that approaches the height of the seat cushion, in an ottoman-like relationship, in a TV position. Movement of the seat from the closed to the TV position may alternatively be slightly upward in addition to a more substantial forward movement. By maintaining approximately the same or increasing somewhat the height of the seat relative to the chair arms during forward movement of the seat, support of the back cushion is maintained. As the chair operates from the TV position toward the reclining position, the seat mechanism effects forward and preferably upward movement of the seat and forward movement of the seat back lower edge, more or less following the seat forward, as the seat back rotates into a reclined position. As the seat moves toward its fully forward position, the mechanism raises the seat assembly with respect to the chair arms. Movement of the seat and seat back cooperate to further support the cushion against substantial vertical displacement or distortion, which is particularly beneficial when the back cushion is a “T” shaped back cushion.
In one aspect of the invention, the motion furniture piece comprises a frame or shell having back and side panels surrounding the seat and seat back, forming an outline and exterior surface of the furniture piece that does not change substantially in appearance during movement between the closed, TV and reclining positions.
In another aspect of the invention, the back panel remains stationary as the seat back moves, thus allowing operation between the closed and reclining positions with little or no clearance required behind the furniture piece.
In another aspect of the invention, the arms remain stationary during movement between the closed and reclining positions.
In still another aspect of the invention, the mechanism effectuating the reclining movement is supported by the furniture frame or shell, which in turn is supported directly on the floor or on legs attached to the sides or arms of the frame or shell.
The accompanying drawings are incorporated into the specification to assist in explaining the present invention. The drawings illustrate preferred and alternative examples of how the invention can be made and used and are not to be construed as limiting the invention to only those examples illustrated and described. Moreover, drawings of linkage members are generally not to scale, but only illustrate the relative positions and general movement of linkage members during operation. The various advantages and features of the present invention will be apparent from a consideration of the drawings in which:
The preferred embodiment of the invention is described as follows by referring to the accompanying drawings. In these drawings, reference characters are used throughout the views to indicate like or corresponding parts. The designations “L” and “R” used with the same reference numeral denote location of the structure identified on the left and right sides, respectively, of the chair illustrated, from the perspective of a person sitting in the chair. Such structures identified by reference numerals differing only in the use of “L” and “R” designations are constructed and operate as virtually mirror images, in accordance with the preferred embodiment of the invention. The embodiment shown and described herein is exemplary. Many details are well known in the reclining furniture arts, and as such are neither shown nor described.
The operating linkage assembly 10 of the preferred embodiment of the invention shown is a “constrained” linkage mechanism, which provides a more fluid motion than certain other mechanisms, such as those employing “stops” at predetermined positions. The assembly 10 thus allows continuous, fluid movement and adjustment of the positions of the seat 17, leg rests 13A and 13B and seat back 15, without noticeable, abrupt variations of resistance to movement or speed of movement often caused by mechanisms employing “stops” or other structures to transition between movement from the TV position to either the closed or reclining positions. However, it will be apparent that a perhaps less desirable mechanism that is not constrained might be employed to provide numerous desirable aspects of the present invention.
The operating linkage assembly 10 comprises two assembly sides 10L (not shown) and 10R, each supported by opposite longitudinal sides 19L (partially shown) and 19R of the chair. Operating linkages 10 of the present invention are in three interconnected functional groups, leg rest linkage group 12, seat back linkage group 14 and seat supporting group 16. Each of the functional groups 12, 14 and 16 comprise two halves, designated by “L” and “R,” that are interconnected and operate substantially synchronously, to support and position the respective leg rests 13A and 13B, seat 17 and seat back 15 during operation of the linkage assembly 10. It will be understood by those skilled in the art, that the various linkage parts are formed from stamped steel, with offsets where needed to make a connection or avoid interference.
The operating linkage assembly 10 is supported by a chair exterior frame 18 comprising longitudinal sides 19L and 19R, an upstanding, essentially rectangular and undivided rear panel 21 and, preferably, a front cross-member 23. Although longitudinal sides 19L and 19R each form an arm of the chair, it will be apparent that certain features of the invention may be employed with one or no arms formed by the sides 19L and 19R, such as, for example, where the chair has no arms or comprises an end- or mid-section of a sofa, wherein the section has one or no arms.
In comparison with prior art recliners, leg rest linkage group 12 has a relatively short height dimension, when retracted and the chair is in the closed position, relative to the extended length of the group. Amongst a number of advantages, the configuration of the leg rest linkage group 12 permits placement of the leg rests 13A and 13B and front cross member 23 adjacent the front of exterior frame 18. It will be apparent from the drawings that the leg rest linkage group 12 comprises three scissor linkages, which cooperate to extend the leg rests 13A and 13B forward a distance that is approximately two to three times the height of the linkage group when it is retracted. It will also be apparent that the height of the leg rest linkage group 12 when in the closed position is substantially lessened by the use of three scissor cross linkages, rather than using one or two scissor linkages that would require longer scissor members, resulting in a greater retracted height. The height of the leg rest linkage group 12 allows placement of the seat 17 at a lower height, in turn resulting in a lower seating height than otherwise. It also allows placement of cross member 23 across the front of the frame 18.
Front cross member 23 serves as a back stop or support stabilizing the leg rest 13A against unwanted movement when the leg rest 13A is fully retracted. Cross member 23 is positioned below the path of travel of the leg rest linkage group 12, to provide both rigidity to the construction of the frame 18 and avoid interference with extension of the leg rests 13A and 13B. This placement of cross member 23 is very desirable for its provision of added space for the linear actuator 90, later shown in
Together, the sides 19L and 19R and rear panel 21 form the outline and exterior surface of the chair, which may be designed and constructed to provide a variety of aesthetics, designs and appearances in addition to structural support of the chair. Arms 25 are mounted to the sides 19L and R. Seat cushion 31 covers seat 17 and extends under and at least partially supports “T” shaped back cushion 27, which rests against seat back 15. Wings 29 of “T” shaped back cushion 27 extend over and are at least partially supported by arms 25. Extending across the width of the top of the rear panel 21 is a cap 21A, forming a partial enclosure for the upper end of the seat back 15, when the chair is in the closed position. The enclosure blocks a substantial portion of the seat back 15 from view. Note that portions of the seat back 15, seat 17, “T” shaped back cushion 27 and seat cushion 31 that would otherwise obstruct the view of components of the operating linkage assembly 10 in
Although the term “T” shaped back cushion is used with reference to the cushion of the preferred embodiment shown, the term also encompasses other back cushion shapes in which the upper end of the cushion is wider than the lower end of the cushion, particularly above one or more sides or arms of a chair, sofa, sofa component or other seating device. Thus, a cushion shape that gradually widens, for example, toward the upper end would be encompassed by this term. It will be apparent that cushion shapes that are wider above a side or arm of a chair present the possibility of deforming or binding as the cushion is reclined. Accordingly, “T” shaped back cushions comprise numerous shapes in addition to the shape shown in the accompanying drawings, having an abrupt and substantially rectilinear angle extending the wings transversely and outwardly from the central portion of the seat cushion 27. Correspondingly, the term “wings” of a “T” shaped back cushion encompasses a variety of shapes and need not extend abruptly and at substantially right angles from the cushion in the manner of wings 29 of cushion 27. Instead, the term “wings” encompasses any portion of a back cushion that forms a wider portion than an adjacent portion of the cushion.
The central, basic groups are the right and left hand seat supporting groups 16L (not shown) and 16R. Attachment plates 22 are rigidly mounted to the inside surfaces of an exterior frame 18, to support the linkage assembly 10. Seat supporting linkage groups include seat supporting members 20, connected to longitudinal base members 24 by first forward and rearward links 32 and 30, respectively, so as to form four-bar linkages. Longitudinal base members 24 are also included as part of a second set of four-bar linkages, through their connection to attachment plates 22 by second forward and rearward links 26 and 28 respectively. The opposite operating linkages 10L (not shown) are connected to the shown linkages 10R by tubular cross-members P1 and P2 at the indicated locations. These cross-members P1 and P2 hold the two sides in alignment and coordinate the pivotal movement of the first and second forward and rearward links 32L/32R 28L/28R respectively, so that linkages 10R and 10L move in unison. Should a power operated recliner be desired, a linear motor connected between cross members P1 and P2 will serve to actuate linkages 10 to any of the three positions.
Referring to
As is best illustrated in
Scissor linkage members 44 are connected to seat support linkage groups 16 at connecting points A/A′ with pivot pins, and working members 48 are connected to seat support linkage groups 16 at connecting points B/B′ in a similar manner. Bell cranks 52 are connected to seat support linkage groups 16 at connecting points C/C′ and links 54 are connected to seat support linkage groups 16 at connecting points D/D′. Seat support members 20 move forward with respect to longitudinal base members 24, push on links 54 at connecting point D/D′ (shown in
As shown in
Referring particularly to
As the seat back 15 is moved toward the reclining position, the virtual transverse axis 100 rises, gradually diminishing the rate at which the upper end of the members 56 and seat back 15 fall back from or reclines relative to the seat 17 as the forward and upward movement of the seat 17 continues. At the same time, rising of the transverse axis 100 causes the lower end of members 56 and seat back to gradually move forwardly at a faster rate than the seat 17 and to gradually decrease its downward movement relative to the seat 17. Clearance from the rear panel of the frame 18 for the reclining movement of the seat back 15 is provided by the forward movement of both the seat 17 and the seat back 15 during movement from the closed position to the TV position. Additional clearance is provided for the reclining seat back 15 by the continued forward movement of both the seat 17 and seat back 15 as the chair moves from the TV position to the reclining position. It will be appreciated that the substantially synchronous forward movement of the seat 17 and seat back 15 as the chair moves from the closed position to the reclining position maintains the back cushion 27 in contact with and supported by the seat cushion 31 against downward movement and substantial deformation. More specifically, this positions the central portion of the back cushion 27 in contact with the upwardly moving seat cushion 31 during movement from the TV position to the reclining position, supporting the seat cushion 27 from substantial displacement downwardly relative to the chair arms 25 and avoiding substantial distortion of the back cushion wings 29.
As is seen best in
Referring primarily to
In movement to the TV position, the substantially horizontal distance D1 separating the seat back support member 56 the seat 17 is maintained relatively constant by the coupling of the seat back linkage group 14 and the seat support linkage group 16. Thus, as the seat 17 moves in a forward direction as the chair is moved into the TV position, the lower end of seat back 15 is drawn forward approximately the same distance as is the seat 17, away from the rear panel 21 of the exterior frame 18. Preferably, the pitch of the seat 17 is increased gradually to approximately 5 degrees and the angle of recline A between the back cushion 27 and seat cushion 31 outward surfaces is gradually increased to approximately 114 degrees or about 23 degrees rearward of vertical, or as otherwise desired. However, while the relative positions of seat 17 and seat back 15 may be held constant or moved in another manner during movement to the TV position, forward movement of the seat should nevertheless also displace the upper end of the seat back 15 forward a sufficient distance to allow further reclining movement of the seat back 15 into the reclining position.
In the preferred embodiment, initial movement of the seat 17 from the closed position causes a gradual, but slight, initial tilt of the seat toward the rear of the chair. While the seat cushion 31 will be tilted upwardly in the front during this movement, linkage members 20 and 58 of the operating linkage group 10 will recline the seat back 15 and seat cushion 27 approximately the same amount during movement to the TV position. This coupling also maintains substantially constant the distance D2 between the wings 29 and the area of the seat cushion 31 contacting and at least partially supporting the middle section of the back cushion 27, thereby maintaining substantially constant support for the back cushion 27 against downward movement, binding against the arms 25 and deformation.
Referring primarily to
Continued forward and upward movement of the seat 17 and cushion 31 provides space for the forward movement of the lower end of seat back support member 56 relative to the frame 18. It will be appreciated that the seat back support member 56 also moves forward relative to the seat 17. Forward movement of the lower end of the support member 56 relative to the seat 17 results in a decreasing horizontal distance D3 between the lower end of the member 56 and the seat 17, allowing a greater reclining angle A to be achieved with less clearance between seat back 15 and the frame 18 than would otherwise be required. It will be apparent the back cushion 27 essentially pivots about the area of contact with the seat cushion 31 as the chair moves between the TV and reclining position. Correspondingly, the area of contact between the seat back 27 and the seat 31 essentially pivots about the area of contact between the wings 29 and the arms 25.
Referring to
As is shown in
Although the preferred embodiment is shown in
It will be appreciated that at the relative positions of the three primary support components of the chair, leg rests 13A and 13B, seat 17 and seat back 15, and their respective linkage assemblies 12, 16 and 14, change in operation from the closed position to the TV position. During movement of the chair from the closed position to the TV position
Swinging link 70 is connected to longitudinal base member 24R, where it is free to rotate about pivot connection 72. Handle 74 is pivotally connected to swinging link 70 at pin 76 and extends upwardly, between attachment plate 22 and seat support member 20, where it will be situated between the seat cushion 31 and the chair side 19R for user access. Connecting pins 78 and 80, located in handle 74, respectively located at points below and above swinging link connection 76, provide for pivotal connection of compression links 82 and 84. Forwardly extending compression link 82 connects to forward first four-bar linkage member 32 at pivot point 88, while rearwardly extending compression link 84 connects to rearward second four-bar linkage member 28 at pivot point 89: Cross-member 86 rigidly connects swinging link 74 to a mirror companion linkage at the left side, identical in every respect except that the handle member 74L does not extend upwardly. Thus, both right and left linkage groups are actuated in unison. It can be seen that pulling handle 74 in a clockwise direction pushes on compression links 82 and 84 to urge seat support 20 from the first position as shown here and in
Shown in
The assembly 200 has an upwardly facing faceplate 240 to which is mounted an upwardly facing three position, momentary electrical micro-switch 220. The faceplate 240 and micro-switch 220 are recessed below an upwardly extending lip 230 formed by the housing 210, to protect against unintended actuation of the micro-switch 220. The microswitch 220 is biased toward the central, neutral position shown in
The embodiments shown and described above are exemplary. Even though many characteristics and advantages of the present invention have been described in the drawings and accompanying text, the description is illustrative only. Changes may be made in the detail, especially in matters of shape, size, and arrangement of the parts within the scope and principles of the invention. The restrictive description and drawings of the specific examples above do not point out what an infringement of this patent would be, but are to provide at least one explanation of how to use and make the invention. The limits of the invention and the bounds of the patent protection are measured by and defined in the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US01/27666 | 9/5/2001 | WO | 00 | 8/25/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/21973 | 3/21/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2973027 | Navell et al. | Feb 1961 | A |
3100668 | Rogers et al. | Aug 1963 | A |
3370884 | Rogers, Jr. | Feb 1968 | A |
3400975 | Rogers, Jr. | Sep 1968 | A |
3537747 | Rogers, Jr. | Nov 1970 | A |
3652125 | Rogers, Jr. | Mar 1972 | A |
3730585 | Rogers, Jr. et al. | May 1973 | A |
3743348 | Sloan | Jul 1973 | A |
3767257 | Rogers, Jr. et al. | Oct 1973 | A |
3768859 | Rogers, Jr. et al. | Oct 1973 | A |
3815954 | Rogers, Jr. et al. | Jun 1974 | A |
3865432 | Rogers, Jr. et al. | Feb 1975 | A |
3904240 | Rogers, Jr. et al. | Sep 1975 | A |
4071275 | Rogers, Jr. | Jan 1978 | A |
4108491 | Rogers, Jr. | Aug 1978 | A |
4185869 | Rogers, Jr. | Jan 1980 | A |
4188062 | Rogers, Jr. et al. | Feb 1980 | A |
4226469 | Rogers, Jr. et al. | Oct 1980 | A |
4249772 | Rogers, Jr. | Feb 1981 | A |
4337977 | Rogers, Jr. et al. | Jul 1982 | A |
4350386 | Rogers, Jr. | Sep 1982 | A |
4350387 | Rogers, Jr. | Sep 1982 | A |
4352523 | Holobaugh, Jr. | Oct 1982 | A |
4357049 | Rogers, Jr. et al. | Nov 1982 | A |
4418957 | Rogers, Jr. | Dec 1983 | A |
4570995 | Rogers, Jr. | Feb 1986 | A |
4740031 | Rogers, Jr. | Apr 1988 | A |
4805960 | Tacker | Feb 1989 | A |
4915444 | Rogers, Jr. | Apr 1990 | A |
5072988 | Plunk | Dec 1991 | A |
5121967 | Rogers | Jun 1992 | A |
5129701 | Pine | Jul 1992 | A |
5156441 | Byersmith et al. | Oct 1992 | A |
5354116 | May et al. | Oct 1994 | A |
5419611 | Cook | May 1995 | A |
5795021 | Rogers | Aug 1998 | A |
5971475 | Lawson et al. | Oct 1999 | A |
5975627 | LaPointe et al. | Nov 1999 | A |
5992930 | LaPointe et al. | Nov 1999 | A |
Number | Date | Country | |
---|---|---|---|
20040051350 A1 | Mar 2004 | US |