The increasing importance of power quality and reliability has produced an increasing need for electrical utilities to monitor their infrastructure with test equipment. In addition, end users who are interested in controlling energy consumption and improving efficiency also have a need to monitor their systems with electrical test equipment. Although the recommended practice in the past has been to disconnect all live voltage before connecting monitoring equipment, the trend today is towards maximum reliability and minimum outage time. For at least this reasons, it is desirable for the installer to connect any measurement equipment to voltage and current monitoring points with full voltage and current, to avoid interrupting power delivery.
Connecting electrical monitoring equipment to live voltage is hazardous, and adherence to multiple sets of safety regulations, including the NEC, OSHA, NFPA, and/or any other suitable safety regulations, is desirable. In particular, arc-flash equipment, including flame retardant clothing, full helmet, and insulating gloves, is useful for gaining access to many areas. Operating electronic equipment while wearing full protective clothing is very difficult due to limited visibility and manual dexterity.
In addition, connecting electrical monitoring equipment is very error-prone. Each voltage phase must be matched with the appropriate voltage input on the monitor, and each current channel to the corresponding current input. Further, the polarity of both the voltage and current inputs is also important for power and phase angle measurements. It can be difficult to determine the correct phase and polarity relationships by sight at many electrical monitoring points. Another complication is that specialized monitoring equipment is often only used infrequently, resulting in users who are unfamiliar with the correct instrument hookup.
For at least these reasons, it is desirable for the user to carefully read all hookup instructions for the instrument, pay attention to probe channel number and phasing, and correctly identify all monitoring points.
In one embodiment, a user is provided with instant voice feedback as they are connecting monitoring equipment. Such feedback can reduce or eliminate confusing hookup instructions and enable the user to use both hands to safely connect the equipment without the distraction of looking at hard-to-read probe markings or connection labels. The use of a voice output, via a headset in various embodiments, reduces or avoids problems of poor visibility and reduced hearing in typical industrial environments, using arc flash safety gear.
In one embodiment, a method of connecting a monitoring device to an electrical system includes determining a connection configuration having a plurality of connections between the monitoring device and the electrical system. The method also includes prompting a user to make one of the plurality of connections between the monitoring device and the electrical system and providing feedback to the user if the one of the plurality of connections is incorrectly made.
In one embodiment, a system for connecting a monitoring device to an electrical system includes at least one monitoring device and at least one controller. The monitoring device is operable to couple with a portion of at least one electrical system. The at least one controller stores at least one set of connection configuration instructions for properly coupling the at least one monitoring device with the portion of the at least one electrical system. In this system, the controller is in communication with the monitoring device to receive at least one connection detection signal from the monitoring device based on at least one connection between the monitoring device and the portion of the at least one electrical system.
In another embodiment, a device for providing instructions on how to properly connect a monitoring device to at least one electrical system includes a monitoring device, a controller, and a connection notification unit. The monitoring device is operable to couple with a portion of at least one electrical system. The controller is coupled to the monitoring device, wherein the controller stores at least one set of configuration instructions for properly coupling the monitoring device with the portion of the at least one electrical system. The controller also detects at least one connection between the monitoring device and the portion of the at least one electrical system. The connection notification unit is coupled to the controller, wherein the connection notification unit receives at least one connection instruction from the controller and provides the at least connection instruction to a user.
Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the figures.
In one embodiment, the controller 170 generates appropriate voice messages or feedback to the user via the voice output unit 180; however, any type of message can be presented to the user via any suitable unit (e.g., the messages can include visual messages/notifications like text displays, flashing lights, or alternative audible messages/notifications). In another embodiment, the controller 170 provides messages/feedback through tactile sensations to the user such as vibrations. In one embodiment, a setup “wizard” starts automatically when the controller 170 determines or senses that the user has begun the connection process (connecting the monitor 160 to an electrical system) or when the setup wizard is initiated manually by the user. The controller 170 prompts (e.g., with audible instructions or commands) the user to make one connection at a time, in the correct sequence. As the user makes the connections between the monitor 160 and the electrical system 190, the controller 170 in communication with the monitor 160 senses the established connections, and provides appropriate voice or audible feedback about the connections (e.g., “Connection established” or “Connection incorrect”). When the user has made all the connections, the controller 170 informs the user (e.g., audibly) that the monitor 160 is ready for use.
In one embodiment in which the three components (e.g., the monitor 160, the controller 170, and the voice output unit 180) are separate devices, a communication connection exists between them. Preferably, communications connection is a wireless connection, such as Bluetooth or FM broadcasts; however, the communications connection can be wired, if desired.
In one embodiment the monitor 160, controller 170, and voice output unit 180 are separate devices. In one embodiment, the monitor 160 is a PMI Eagle™ or any other suitable monitoring device. This power quality monitor has at least four voltage and four current inputs, and is suitable for many different electrical connections. The Eagle includes an integral Bluetooth module for wireless communications. It should be understood that other suitable monitors having other characteristics are used in other embodiments.
In one embodiment, the controller 170 can be a handheld PDA, such as a Pocket PC or PalmOS device; however, the controller 170 can be any suitable device, such as a cell phone, or a cell phone with PDA capability. The controller 170 interfaces with the monitor 160, in one embodiment, using Bluetooth. In another embodiment, controller 170 interfaces with the monitor 160 using FM broadcasts; however, it should be appreciated that any other suitable interface protocol can be used. Preferably, software loaded onto a PDA runs the controller code; however, the controller code can be implemented in special purpose hardware, if desired.
In one embodiment, the voice output unit 180 includes a Bluetooth headset. In an alternative embodiment, the voice output unit 180 includes an FM headset receiver. Such headsets can be worn under an arc-flash head covering, and doesn't require any wires to the controller 170. Use of a headset reduces or eliminates problems that may exist with hearing a voice output through the arc-flash gear and/or in a noisy industrial setting. In various embodiments, noise cancellation headphones or earphones are used in an environment in which hearing protection is desirable. In various other embodiments, other wireless or wired headphones or headsets could also be used for the voice output unit 180.
In other embodiments, any of the above components may be combined. For example, the controller may be integrated into the monitor. In this case, the monitor/controller could connect directly to the voice output device. The controller and voice device could be combined. In one embodiment, the controller is a handheld PDA, and a speaker integrated into the PDA is the voice output unit. A headset with sufficient computing power could also perform the controller tasks. In one embodiment, all three components are integrated into a single device (e.g., the voice prompted electrical hookup system 150 is a device that includes monitor 160, controller 170, and on-board audio output unit such as voice output unit 180).
In various embodiments, the components can be located in different locations. In particular, the controller 170 can be located in a remote location, such as a computer server at another location remote from monitor 160. In one embodiment in which the monitor 160 is networked (e.g. with Bluetooth or other wireless or wired connection to a LAN) and the Bluetooth headset also has a network connection, the controller 170 can be located remotely and connects to other components via the LAN. The controller 170 or headset 180 may also be connected via a cell phone or other consumer electronic device with suitable capability.
In another embodiment, at least some of the controller 170 functions are performed by an actual person rather than an electronic or computer system. For example, in the networked case above, the controller 170 in the remote location could be assisted with a technical support person on a phone line or other communications connection to a field user (e.g., via cell phone and headset), or other networked voice connection (e.g. VOIP). The support person could walk the user through the proper connection process, offering feedback and corrections as needed. In one embodiment, the support person could receive the connection measurements and data from the monitor/recorder 160 in real-time or in any other suitable manner, similar to the way in which the automated controller 170 of other embodiments receives data. In another embodiment, the remote controller 170 is at least partly automated, having a provision to escalate the process to a human tech support person upon a condition being satisfied. For example, this escalation could be automatic if the controller 170 determines that human intervention is desirable (due to at least one or repeated mistakes by the field user, for example or any other suitable condition), or it could be manual if requested by the field user. A provision for the field user to signal a desire to escalate could be some manipulation of the monitor/recorder 160 leads (e.g., repeated tapping of a voltage channel to live voltage or connection and disconnection of the current probes or any other suitable signal).
In one embodiment, the controller 170 includes a plurality of connection configuration instructions (e.g., hookup configurations) that guide a user to properly connect a monitoring device 160 to different electrical systems. It should also be appreciated that the controller 170 can download or receive new and updated connection configuration instructions. In one embodiment, the controller 170 determines the correct monitor 160 hookup configuration from user input (e.g. voice input using recognition software, or keypad/touch screen selecting one of the appropriate connection configuration instructions). In an alternative embodiment, the monitor 160 provides the controller 170 with appropriate connection configuration instructions to use. In another embodiment, controller 170 includes sensors that read bar coded or RFID tagged equipment to determine the appropriate connection configuration instructions to use. Thus, it should be appreciated that controller 170 can determine the correct monitor 160 hookup configuration in any suitable manner. In accordance with the desired connection configuration instructions and circuit type, the controller 170 determines a connection procedure, optimized for minimum number of steps and confusion for the user.
In one embodiment, the user is prompted before each step using voice messages; however, the user can be prompted at any suitable point in any suitable manner. Preferably, the controller 170 receives notice from the monitor 160 when the user actually makes a connection (either by polling, or through alerts from the monitor 160); however, the controller 170 can receive notice at any suitable time in any suitable manner. Further, the controller 170 informs the user of what connection was sensed in one embodiment. The controller 170 then determines whether the connection just performed by the user was correct. If the connection was correct, the user is informed that the connection is correct and prompted to perform the next step; however, in other embodiments, the user is merely prompted to perform the next step without confirming that the previous step was completed successfully.
If the connection is not correct, in one embodiment, the controller 170 prompts the user to correct the mistake. In an alternative embodiment, if the connection mistake can be fixed by altering the monitor 160 configuration, the controller 170 alters the monitor configuration and computes a new connection plan based on the connections already made. For example, if the user errantly connects Phase A voltage to input channel 2 instead of channel 1, this may be correctable by the monitor 160 by reassigning logical channel numbers. Instead of prompting the user to fix the connection, the controller 170 instructs the monitor to expect Phase A voltage on channel 2 and determines new channel assignments for the remaining phases. As a result, the amount of corrections the user may have to perform or correct if they make a mistake during the process is reduced.
In an alternative embodiment, the wrong connection configuration instructions may have been determined at controller 170 for connecting monitor 160 to an electrical system. For example, the user may have provided controller 170 the wrong type of electrical system or electrical device. Thus, controller 170 provides the wrong connection configuration or hookup instructions. However, in one such embodiment, the controller 170 can still determine if the monitor 160 has been properly connected to an electrical system based on an analysis of the couplings between the monitor 160 and the electrical system, regardless of the wrong instructions. If any connection problems are detected, the controller 170 can provide instructions to the user on how to correct the problem as discussed above.
In one embodiment, upon completion of the hookup configuration process the controller 170 confirms the circuit type and desired hookup configuration through the voice output unit, giving the user a positive confirmation; however, in other embodiments confirmation is provided in other suitable manners or not at all. If the user decides that the announced hookup is incorrect, the user can change the connection type using the controller 170 interface. In such an instance, the controller 170 re-computes the optimal reconnect strategy (in accordance with the connections already made), and the process begins again. In an alternate embodiment, the user can disconnect a voltage or current probe without informing the controller 170. In one such embodiment, the controller 170 detects the probe change from the monitor 160 and prompts the user to enter a new desired hookup type.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/033,576 entitled “METHOD AND APPARATUS FOR A VOICE-PROMPTED ELECTRICAL HOOKUP” and filed on Mar. 4, 2008, the entire contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2855916 | Foster | Oct 1958 | A |
3516063 | Arkin et al. | Jun 1970 | A |
4067054 | Clark | Jan 1978 | A |
4540182 | Clement | Sep 1985 | A |
4558275 | Borowy et al. | Dec 1985 | A |
4731574 | Melbert | Mar 1988 | A |
4731575 | Sloan | Mar 1988 | A |
4800492 | Johnson et al. | Jan 1989 | A |
5083638 | Schneider | Jan 1992 | A |
5107202 | Renda | Apr 1992 | A |
5241283 | Sutterlin | Aug 1993 | A |
5311422 | Loftin et al. | May 1994 | A |
5410735 | Borchardt et al. | Apr 1995 | A |
5420799 | Peterson et al. | May 1995 | A |
5488202 | Baitz et al. | Jan 1996 | A |
5491463 | Sargeant et al. | Feb 1996 | A |
5565783 | Lau et al. | Oct 1996 | A |
5583801 | Croyle et al. | Dec 1996 | A |
5602794 | Javanifard et al. | Feb 1997 | A |
5617286 | Jenkins | Apr 1997 | A |
5641898 | Chang | Jun 1997 | A |
5659453 | Russell et al. | Aug 1997 | A |
5725062 | Fronek | Mar 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5732039 | Javanifard et al. | Mar 1998 | A |
5752046 | Oprescu et al. | May 1998 | A |
5767735 | Javanifard et al. | Jun 1998 | A |
5781473 | Javanifard et al. | Jul 1998 | A |
5796631 | Iancu et al. | Aug 1998 | A |
5831538 | Schena | Nov 1998 | A |
5898158 | Shimizu et al. | Apr 1999 | A |
5905616 | Lyke | May 1999 | A |
5937386 | Frantz | Aug 1999 | A |
5939974 | Heagle et al. | Aug 1999 | A |
5943226 | Kim | Aug 1999 | A |
5993216 | Stogner | Nov 1999 | A |
6005758 | Spencer et al. | Dec 1999 | A |
6022315 | Iliff | Feb 2000 | A |
6034859 | Baumgärtl | Mar 2000 | A |
6049880 | Song | Apr 2000 | A |
6091337 | Arshad et al. | Jul 2000 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6115695 | Kern | Sep 2000 | A |
6151229 | Taub et al. | Nov 2000 | A |
6169406 | Peschel | Jan 2001 | B1 |
6212049 | Spencer et al. | Apr 2001 | B1 |
6222443 | Beeson et al. | Apr 2001 | B1 |
6307425 | Chevallier et al. | Oct 2001 | B1 |
6313394 | Shugar et al. | Nov 2001 | B1 |
6317031 | Rickard | Nov 2001 | B1 |
6356426 | Dougherty | Mar 2002 | B1 |
6360177 | Curt et al. | Mar 2002 | B1 |
6369642 | Zeng | Apr 2002 | B1 |
6384348 | Haga et al. | May 2002 | B1 |
6415244 | Dickens et al. | Jul 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6545482 | Fedirchuk et al. | Apr 2003 | B1 |
6545529 | Kim | Apr 2003 | B2 |
6603218 | Aisa | Aug 2003 | B1 |
6628496 | Montjean | Sep 2003 | B2 |
6633163 | Fling | Oct 2003 | B2 |
6633823 | Bartone et al. | Oct 2003 | B2 |
6647024 | Dombkowski et al. | Nov 2003 | B1 |
6653945 | Johnson et al. | Nov 2003 | B2 |
6687680 | Iguchi et al. | Feb 2004 | B1 |
6690594 | Amarillas et al. | Feb 2004 | B2 |
6704568 | Montjean | Mar 2004 | B2 |
6734682 | Tallman et al. | May 2004 | B2 |
6789206 | Wierzbicki et al. | Sep 2004 | B1 |
6792337 | Blackett et al. | Sep 2004 | B2 |
6836099 | Amarillas et al. | Dec 2004 | B1 |
6842719 | Fitzpatrick et al. | Jan 2005 | B1 |
6866193 | Shimizu et al. | Mar 2005 | B1 |
6912678 | Floro et al. | Jun 2005 | B1 |
6928564 | Tada et al. | Aug 2005 | B2 |
6931445 | Davis | Aug 2005 | B2 |
6934396 | Leapman | Aug 2005 | B1 |
6944058 | Wong | Sep 2005 | B2 |
6957158 | Hancock et al. | Oct 2005 | B1 |
6961641 | Forth et al. | Nov 2005 | B1 |
6993417 | Osann, Jr. | Jan 2006 | B2 |
6995603 | Chen et al. | Feb 2006 | B2 |
7004784 | Castle | Feb 2006 | B2 |
7009379 | Ramirez | Mar 2006 | B2 |
7130722 | Soni | Oct 2006 | B2 |
7135850 | Ramirez | Nov 2006 | B2 |
7177824 | Sabongi et al. | Feb 2007 | B2 |
7242109 | Beeren | Jul 2007 | B2 |
7348769 | Ramirez | Mar 2008 | B2 |
7460467 | Corcoran | Dec 2008 | B1 |
7462952 | Bailey | Dec 2008 | B2 |
7769149 | Berkman | Aug 2010 | B2 |
7795877 | Radtke et al. | Sep 2010 | B2 |
7804280 | Deaver, Sr. et al. | Sep 2010 | B2 |
7956673 | Pan | Jun 2011 | B2 |
20020008566 | Taito et al. | Jan 2002 | A1 |
20020043969 | Duncan et al. | Apr 2002 | A1 |
20020063635 | Shincovich | May 2002 | A1 |
20020082924 | Koether | Jun 2002 | A1 |
20020112250 | Koplar et al. | Aug 2002 | A1 |
20020130701 | Kleveland | Sep 2002 | A1 |
20020143482 | Karanam et al. | Oct 2002 | A1 |
20020182570 | Croteau et al. | Dec 2002 | A1 |
20030046377 | Daum et al. | Mar 2003 | A1 |
20030069796 | Elwood et al. | Apr 2003 | A1 |
20030126735 | Taniguchi et al. | Jul 2003 | A1 |
20030167178 | Jarman et al. | Sep 2003 | A1 |
20030197989 | Nojima | Oct 2003 | A1 |
20030224784 | Hunt et al. | Dec 2003 | A1 |
20030225713 | Atkinson et al. | Dec 2003 | A1 |
20040008023 | Jang et al. | Jan 2004 | A1 |
20040024913 | Ikeda et al. | Feb 2004 | A1 |
20040124247 | Watters | Jul 2004 | A1 |
20040128085 | Ramirez | Jul 2004 | A1 |
20040138786 | Blackett et al. | Jul 2004 | A1 |
20040138835 | Ransom et al. | Jul 2004 | A1 |
20040210621 | Antonellis | Oct 2004 | A1 |
20040242087 | Hoshina | Dec 2004 | A1 |
20050049921 | Tengler et al. | Mar 2005 | A1 |
20050052186 | Grube | Mar 2005 | A1 |
20050138432 | Ransom et al. | Jun 2005 | A1 |
20050144099 | Deb et al. | Jun 2005 | A1 |
20050154490 | Blaine et al. | Jul 2005 | A1 |
20050154499 | Aldridge et al. | Jul 2005 | A1 |
20050212526 | Blades | Sep 2005 | A1 |
20050216349 | Vaseloff et al. | Sep 2005 | A1 |
20050256774 | Clothier et al. | Nov 2005 | A1 |
20050273183 | Curt et al. | Dec 2005 | A1 |
20060047543 | Moses | Mar 2006 | A1 |
20060061480 | Bowman | Mar 2006 | A1 |
20060062400 | Chia-Chun | Mar 2006 | A1 |
20060071776 | White, II et al. | Apr 2006 | A1 |
20060087322 | McCollough, Jr. | Apr 2006 | A1 |
20060087783 | Holley | Apr 2006 | A1 |
20060098371 | Wambsganss et al. | May 2006 | A1 |
20060111040 | Jenkins et al. | May 2006 | A1 |
20060114121 | Cumeralto et al. | Jun 2006 | A1 |
20060145685 | Ramirez | Jul 2006 | A1 |
20060158177 | Ramirez | Jul 2006 | A1 |
20060176630 | Carlino et al. | Aug 2006 | A1 |
20060181838 | Ely | Aug 2006 | A1 |
20060190140 | Soni | Aug 2006 | A1 |
20060190209 | Odom | Aug 2006 | A1 |
20060218057 | Fitzpatrick et al. | Sep 2006 | A1 |
20060244518 | Byeon et al. | Nov 2006 | A1 |
20060271244 | Cumming et al. | Nov 2006 | A1 |
20060271314 | Hayes | Nov 2006 | A1 |
20070010916 | Rodgers et al. | Jan 2007 | A1 |
20070053216 | Alenin | Mar 2007 | A1 |
20070064622 | Bi et al. | Mar 2007 | A1 |
20070078628 | Virji et al. | Apr 2007 | A1 |
20070080819 | Marks et al. | Apr 2007 | A1 |
20070126569 | Dagci | Jun 2007 | A1 |
20070129087 | Bell | Jun 2007 | A1 |
20070195711 | Morris et al. | Aug 2007 | A1 |
20070286089 | Nasle et al. | Dec 2007 | A1 |
20070290845 | Benjelloun et al. | Dec 2007 | A1 |
20080024096 | Pan | Jan 2008 | A1 |
20080030317 | Bryant | Feb 2008 | A1 |
20080042731 | Daga et al. | Feb 2008 | A1 |
20080106425 | Deaver et al. | May 2008 | A1 |
20080109584 | Kalwitz | May 2008 | A1 |
20080159244 | Hunziker | Jul 2008 | A1 |
20080224617 | Keller et al. | Sep 2008 | A1 |
20080249723 | McAllister et al. | Oct 2008 | A1 |
20090102680 | Roos | Apr 2009 | A1 |
20090115426 | Muench, Jr. et al. | May 2009 | A1 |
20090146839 | Reddy et al. | Jun 2009 | A1 |
20090167308 | Lomes | Jul 2009 | A1 |
20090167418 | Raghavan | Jul 2009 | A1 |
20090296488 | Nguyen et al. | Dec 2009 | A1 |
20100074034 | Cazzaniga | Mar 2010 | A1 |
20100244935 | Kim et al. | Sep 2010 | A1 |
20120139335 | Holland | Jun 2012 | A1 |
20120154023 | Pan et al. | Jun 2012 | A1 |
20120181095 | Lopez | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
2765183 | Mar 2006 | CN |
102007026290 | Jul 2008 | DE |
0382929 | Dec 1989 | EP |
0780515 | Jun 1997 | EP |
2797356 | Feb 2001 | FR |
S64-041540 | Feb 1989 | JP |
2501513 | May 1990 | JP |
2154157 | Jun 1990 | JP |
6074783 | Mar 1994 | JP |
H07-032000 | Feb 1995 | JP |
08101246 | Apr 1996 | JP |
09107318 | Apr 1997 | JP |
10271651 | Oct 1998 | JP |
2000171492 | Jun 2000 | JP |
2002199625 | Jul 2002 | JP |
2003069731 | Jul 2003 | JP |
2004088771 | Mar 2004 | JP |
2004320228 | Nov 2004 | JP |
2005190481 | Jul 2005 | JP |
2006344144 | Dec 2006 | JP |
2007020268 | Jan 2007 | JP |
2007214784 | Aug 2007 | JP |
WO0106336 | Jan 2001 | WO |
WO2006132757 | Dec 2006 | WO |
WO2007116835 | Oct 2007 | WO |
Entry |
---|
International Search Report dated May 8, 2009. |
Chinese Office Action issued on Jul. 6, 2010 Chinese Patent Appl. No. 200780015356.0 (10 pages). |
Communication Cable Inflator/Gas Pressure Centralized Monitoring and Management System, on pp. 44-46, 49 in No. 2 vol. 18 of Automation Techniques and Application in Hellongjiang—Summary attached to Chinese Office Action for Appl. No. 200780015356.0 dated Jul. 6, 2010 as Reference No. 1—See p. 7 (1 page). |
European Examination Report issued on Feb. 5, 2011 for European Patent Appl. No. 07 758 717.8 —2006 (4 pages). |
Chinese Office Action issued on Sep. 28, 2011 for Chinese Patent Appl. No. 200880005285.0 (16 pages). |
Chinese Office Action issued on Nov. 14, 2012 for Chinese Patent Appl. No. 200880005285.0 (8 pages). |
International Search Report and Written Opinion issued on Jul. 8, 2008 for International Patent Appl. No. PCT/US08/50583 (11 pages). |
International Search Report and Written Opinion issued on Jul. 7, 2008 for International Patent Appl. No. PCT/US04/32880 (9 pages). |
International Search Report and Written Opinion issued on Feb. 11, 2008 for International Patent Appl. No. PCT/US07/64196 (9 pages). |
International Search Report and Written Opinion issued on Mar. 3, 2008 for International Patent Appl. No. PCT/US07/77418 (9 pages). |
International Search Report and Written Opinion issued on Jul. 23, 2008 for International Patent Appl. No. PCT/US08/55613 (7 pages). |
International Search Report and Written Opinion issued on Jul. 31, 2008 for International Patent Appl. No. PCT/US08/56008 (10 pages). |
International Search Report and Written Opinion issued on Sep. 26, 2008 for International Patent Appl. No. PCT/US08/70879 (8 pages). |
International Search Report and Written Opinion issued on Oct. 3, 2008 for International Patent Appl. No. PCT/US08/70881 (8 pages). |
International Search Report and Written Opinion issued on May 8, 2009 for International Patent Appl. No. PCT/US09/35693 (5 pages). |
Japanese Office Action issued on Sep. 4, 2012 for Japanese Patent Appl. No. P2009-545014 (8 pages). |
Japanese Office Action issued on Feb. 14, 2012 for Japanese Patent Appl. No. P2009-500631 (6 pages). |
International Search Report and Written Opinion issued on Jun. 3, 2008 for International Patent Appl. No. PCT/US04/26874 (5 pages). |
International Search Report and Written Opinion issued on Nov. 2, 2005 for International Patent Appl. No. PCT/US04/32878 (5 pages). |
Number | Date | Country | |
---|---|---|---|
20090226869 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
61033576 | Mar 2008 | US |