1. Field of the Invention
This invention relates to the fields of audio and/or video receipt and reproduction, and of digital transmission. More particularly, it relates to a method and apparatus for permitting a selected interval of a received signal to be digitally stored and to be replayed on demand in selected ways and to techniques for enhanced reception of digital transmissions.
2. Discussion of Related Art
There are numerous situations when one is listening to a radio broadcast, to a recorded message received on a telephone or in other situations where an audio signal is being received at an audio receive and reproduction device, where a user may either miss a piece of information they wanted to hear, and wish to hear that piece of information again, or where the user particularly enjoyed a recently received input, for example a piece of music or the sound of a loved one's voice, and would like to hear it again. Further, there are times when information is received on a radio, telephone or the like, which a listener would like to write down for future reference, for example an address or telephone number, the name and/or composer of a piece of music being played or the like, but where, either because the listener is driving or is otherwise not in a position to write information down at the time it is reproduced, or because the listener does not have a writing implement and paper handy at the time the information is broadcast, the information is lost.
In such and similar situations, it would be desirable if an audio repeat feature were available which would permit either instant replay of the desired audio input and/or permit storage of the desired interval of material for replay at a subsequent time when the user is in a position to write required information down or otherwise utilize the reproduced information. However, if a portion of received information were replayed, this would normally result in a corresponding portion of the received information being lost. A simple, reliable, integrated, user friendly method and apparatus does not currently exist which permits the replay of a desired interval of a received audio without loss of desired incoming material and/or which permits storage of a selected interval of received audio for listening at a later time, which time is solely at the discretion of the user. A need therefore exists for a method and/or apparatus for facilitating such capability.
There are a number of related problems in audio receive and reproduction devices, for which adequate solutions do not currently exist. First, commercials on most radio stations are becoming longer and louder, and there are frequently other parts of a radio broadcast or other received audio which one does not want to listen to, but is forced to listen to in order to receive desired audio. A need exists for a simple way to permit a listener to get rid of such undesired audio without missing the audio that the listener wishes to hear.
There are also times when a listener, while not wanting to avoid a received audio, would like to scan through some such material more quickly. Similarly, there are times when a listener may have trouble understanding what is being said on an audio and would like to slow down the received audio so as to be able to understand it better. Such a capability of either speeding up or slowing down a received audio, particularly by user controlled amounts, does not exist in standard, relatively inexpensive products and a need therefore exists for providing this capability in a reliable, yet simple and inexpensive way.
Finally, there are times when a received audio, particularly from a rural station, is distorted by static or other noise or where audio signal may even be temporally lost. This may be particularly true where the audio receiver is a car radio, a portable radio or the like, where the orientation of the radio antenna may vary with time and/or where the radio may temporarily be in a tunnel, building or the like, where quality of received audio is downgraded. Again, a simple technique for dealing with such problems does not currently exist, which technique is completely transparent to the user. Similar problems can also arise in other transmissions, particularly digital transmission of audio, video, data and/or the like.
In accordance with the above, aspects and embodiments of this invention provide a repeat method and apparatus for use with an audio and/or video receive and reproduce device, such as a television, radio or telephone. In one example of an audio and/or video receive and reproduce device, the apparatus includes a random access memory (RAM) connected to normally receive and store audio/video inputs applied to the device, a manually operable input component, and a control operable in response to a selected input from the component for inhibiting application of incoming audio/video inputs to the device and for instead applying audio/video inputs stored in the RAM as audio/video inputs to the device. When the device is receiving inputs from the RAM, the circuit is in a replay mode, the audio/video reproduced by the device when in replay mode being selectively delayed from incoming audio/video inputs by a time interval that is dependent on where in the RAM the control begins applying the audio/video inputs to the device. The location in RAM, and thus the delay between incoming audio/video inputs and reproduction is preferably controllable in response to selective operation of the manually operable component. Such delay may, for example, be a function of the number of times the component is operated, or the time duration for which the component is operated. Depending upon the nature of the component, it may also be a function of the number of degrees the component is turned.
The circuit may also include an output element providing a selected indication that the circuit is in replay mode, and may also provide an indication as to the extent of delay. The output element is preferably a selected display such as a light emitting diode (LED). The control may cause such display to blink at a rate which is a function of the delay. The display may also be in a different state, for example a different color, when the circuit is in replay and normal mode. For a preferred embodiment, the display is a multicolor LED, the circuit displaying one color for replay mode and selected different color for normal mode.
The RAM is preferably a wrap-around memory, the oldest audio input therein being written over when a new audio/video input is received and the RAM is full. The control may inhibit writing over of audio/video inputs into the RAM in response to a selected input from the input component, the circuit being in storage mode when this occurs. Audio/video inputs are applied to the device when the circuit is in storage mode. The LED may also display a third color when the circuit is in storage mode, or some other output may be provided for this indication. When the circuit is in storage mode, the control may be operative in response to a selected input from the input component to cause at least selected portions of audio/video inputs stored in the RAM to be reproduced on the device, the selected input for example being manual operation of the input component for a selected time interval.
Where the device is a radio, the circuit may be returned from replay mode to normal mode when select changes are made on the radio, such as changing the station or turning the radio off. The device may also include an analog-to-digital (A/D) converter between incoming audio inputs and the RAM and a digital to analog (D/A) converter between the RAM and the device. The control may also perform selected control functions on audio input to the RAM including, but not limited to compression.
The input component may also be operable to indicate a desired rate at which audio/video inputs are to be reproduced at the device and the control may be operable in response to a rate indication from the input component for controlling the rate at which the RAM is read out to apply audio/video inputs to the device. The component may be operable in at least two different ways, for example being pressable, turnable, and/or movable from side to side, the input component being operated in a select way to indicate a desired rate for RAM readout, and thus for audio reproduction at the device.
The control may also be operative in response to a selected input to set the circuit into an elimination mode. When in elimination mode, the control may be operative to store in the RAM a selected duration of audio/video inputs ahead of inputs received by the RAM, and may be responsive, when in elimination mode, to a selected input from the input component for skipping an audio/video duration in the RAM which is less than the selected duration, whereby audio/video during such skipped audio/video duration is not reproduced at the device. The skipped audio/video duration may be variable in response to variations in a selected input from the input component. The control may also be operative when in elimination mode to store a selected duration in the RAM before applying audio/video inputs from the RAM to the device. Alternatively, the control may be operative when in elimination mode to apply audio/video inputs to the device from the RAM. The RAM in this case may be read out to apply inputs to the device, at any time the RAM is not storing at least the selected duration of audio/video inputs, at a slower rate than audio/video inputs are received to be stored in the RAM.
The audio and/or video inputs may also be digital inputs, with each segment of digital input being transmitted during at least two time-spaced intervals. The time space transmissions are stored in the RAM. The controller then reads out all stored transmissions for a given audio input and, processes, modifies and/or corrects the multiple transmissions to obtain an enhanced audio input for the device. For example, the controller can compare the multiple transmissions and select the best transmission for each audio input section as the enhanced audio input to be applied to the device for the segment. A similar technique may be employed to enhance digital video, data or other transmissions. These techniques may be useful, for example, when a received audio/video transmission or time-spaced transmissions, is distorted by static or other noise, for example, where the receiver is a satellite radio or digital television receiver and the location of the vehicle and the orientation of the receiver antenna may vary with time and/or where the vehicle signal may temporarily be in a tunnel, building or the like, and where quality of received audio and/or video is downgraded or even lost. By using multiple transmissions of the signal, the controller may be able to compensate for such a downgraded or lost signal and provide an enhanced or composite signal that comprises the best quality or entire signal to the device.
Embodiments of the invention also include a method for providing enhanced audio, video, data or other outputs which includes digitally transmitting each segment of a broadcast thereof at least two times, the broadcast transmissions being at time-spaced intervals, storing the time-spaced transmissions in at least one RAM, reading out all stored transmissions for each broadcast segment, processing the multiple transmissions to obtain an enhanced output for the segment, and applying the enhanced output for utilization, for example to be reproduced by a radio or television receiver. The processing step may for example, include, comparing the multiple transmissions for each segment, and selecting the best transmission for the segment as the enhanced output for the segment. As discussed above, this can be used to compensate for a downgraded signal quality or even a lost signal.
Still other aspects, embodiments, and advantages of these exemplary aspects and embodiments, are discussed in detail below. Any embodiment disclosed herein may be combined with any other embodiment in any manner consistent with at least one of the objects, aims, and needs disclosed herein, and references to “an embodiment,” “some embodiments,” “an alternate embodiment,” “various embodiments,” “one embodiment” or the like are not necessarily mutually exclusive and are intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment. The appearances of such terms herein are not necessarily all referring to the same embodiment. The accompanying drawings are included to provide illustration and a further understanding of the various aspects and embodiments, and are incorporated in and constitute a part of this specification. The drawings, together with the remainder of the specification, serve to explain principles and operations of the described and claimed aspects and embodiments.
Referring to
It is to be appreciated that although the illustrated receiver is an analog radio 12, the invention is not limited to analog radios receiving analog audio signals; for example, the receiver may be a digital satellite radio that receives at least one or time-spaced digital broadcast signals and that stores and processes the received digital signal(s) according to this disclosure. The device 12 may also be a digital television and/or video recorder that receives at least one or time-spaced digital broadcast signals and that stores and processes the received digital signal(s) according to this disclosure. The device 12 may also be another device such as a personal computer, firewall or router, that receives digital data over the Internet, or another receiving device. Accordingly, although the following discussion may refer primarily to audio signals it is to be appreciated that the apparatuses may also receive and process video and/or data signals.
Referring to
As circuit 10 is operating in normal mode, control circuit 24 is monitoring button 30 to determine if it is operated (step 42). So long as button 30 is not operated, circuit 10 remains in the normal mode. However, when control circuit 24 determines that button 30 has been operated, it proceeds to step 44 to determine the duration of operation for button 30, and in particular to determine if the button is operated for a period of less than 2 seconds for an illustrative embodiment. If during step 44 it is determined that the button or switch 30 has been operated for less than 2 seconds, then the operation proceeds to step 46, causing circuit 10 to enter replay mode.
While the duration of the interval being replayed can be fixed, it can also be variable and automatically determined by the control circuit 24, and can also be, controllable based on the operation of button/switch 30. Further, while the duration may be controlled in response to the time interval during which button 30 is operated, it is also considered for such interval to be determined by the number of times button 30 is operated. Thus, a single rapid operation of the button may result in a 10 second delay, two rapid operations in a 20 second delay, three rapid operations in a 40 second delay and four rapid operations in a delay equal to the maximum interval storable in RAM 20. Control circuit 24 may control LED 32 so as to change color, for example to the color yellow, when circuit 10 goes into replay mode, and to cause this display to blink or flash at a rate which depends on the replay interval (step 48/line 2 of
While the delayed audio is being reproduced, control circuit 24 continues to monitor button 30 (step 50) to determine if it is being operated. If button 30 is not operated, circuit 10 remains in replay mode. If button 30 is operated for a short interval (step 52), control circuit 24 recognizes this as an indication that the user wishes to exit replay mode and return to normal mode. The user may for example operate button 30 during a commercial or other place in the audio input where they do not mind missing part of the received input. Thus, when a depression of button 30 for a short interval is detected during step 52, control circuit 24 causes the circuit to return to normal mode, gate 16 being enabled to pass audio inputs from antenna 14 directly to radio 12 and LED 32 being illuminated in its normal mode or green display.
However, if instead of button 30 being operated for a short interval when circuit 10 is in replay mode, the button is detected as being operated for two or more seconds (step 52), this means that the user wants to store something in the prior received interval for future replay at a more convenient time when, for example, some portion of the stored information may be written down. Thus, when a “yes” output is received from step 54, or a “no” output is obtained during step 44, control circuit 24 goes to step 56 to transfer circuit 10 into storage mode. When in storage mode, control circuit 24 generates outputs on lines 28 to enable gate 16 to pass audio inputs directly from antenna 14 to radio 12 and to disable A/D converter 18 so that inputs are no longer applied to RAM 20 and the LED is illuminate with a different color (for example, red) (line 3 of
Circuit 10 remains in storage mode, with the control circuit monitoring button 30 (step 58) until an operation of the button is detected. When such operation is detected, control circuit 24 determines if such operation is for a short interval (step 60) or for an interval equal to or greater than for example 4 seconds (step 62). If the button is operated for a short interval, the operation proceeds to step 64 to cause the stored interval in RAM 20 to be read out through D/A converter 26 and through gate 16, which is enabled to pass outputs from converter 26 to radio 12, to cause the desired interval to be reproduced on the radio. Since circuit 10 is still in store mode, such reproduction or replay of the stored interval may be repeated if necessary until the user is satisfied.
Once the user is finished with the stored interval, the user may operate button 30 for a longer time interval, for example an interval equal to or greater than four seconds. When such a long operation of button 30 is detected during step 62, this causes circuit 10 to return to normal mode, with inputs from antenna 14 being applied both through gate 16 to radio 12 and through the A/D converter to be stored in RAM 20, and with LED 32 in its normal or green display.
While in the discussion above, conversion from replay mode to normal mode is in response to a suitable operation of button 30, exiting replay mode may also occur in response to other inputs. For example, where device 12 is a radio as shown in
Further, while in the Figures, the output from A/D converter 18 is shown as being applied directly to RAM 20, the output from the A/D converter could be applied either through control circuit 24 or through a suitable processing circuit under control of circuit 24, to compress or otherwise process the received audio signal in digital form before applying it to RAM 20. Such processing could for example enhance the audio/video quality of the output and/or significantly reduce the amount of storage 20 required to store a selected interval of audio to be replayed.
While in the discussion above, it has been assumed that once the circuit enters replay mode, it remains in replay mode until the user operates a switch or button 30 in suitable manner to return the circuit to normal mode, or device/radio 12 is operated in a way to cause the circuit to return to normal mode, these are not limitations on the invention. For example, when in replay mode, RAM 20 could be read out by controls 24 at a rate slightly higher than the rate at which audio inputs are being received from antenna 14, this rate being sufficiently slow, so that the slight increase in rate of audio output would not be detectable or objectionable to the user. This would result in the delay interval slowly disappearing, the circuit returning to normal mode when currently received audio is being read out of the RAM.
The user may also be provided with the ability to control the rate at which RAM 20 is being read out when in replay mode. For example, two rapid pushes on button 30 may cause a slight speedup in replay so as to permit the user to more rapidly receive desired information and three rapid pushes may cause the replay to slow down, making it easier for the user to understand something being said that the user could not previously understand. This function could also be facilitated by providing a control which could be operated in multiple ways, for example, being both pushable in the manner indicated above, and also turnable and/or movable from side to side to adjust a rheostat or other control, which in turn controls readout rate from the RAM.
Circuit 10 might also be used to provide the user with the ability to eliminate commercials or other undesired received audio with minimal if any affect on desired audio. This could be accomplished by operating the button, for a long interval, for example two seconds or greater, when the radio is first turned on or at any other time when the radio is in normal mode. This will cause the circuit to go into and elimination mode (line 4 of
Digital broadcast transmissions, such as satellite radio or broadcast television transmissions, are subject to federal regulations and stringent bandwidth restrictions. Prior to Applicant's invention, conventional wisdom suggested that service providers should supply as large a number of programming choices to customers, as possible. Therefore, efficient use of bandwidth was key to, for example, existing satellite television, and satellite radio broadcast systems. In particular, under conventional wisdom it was considered preferable to efficiently manage the limited available bandwidth to allow service providers to offer the greatest variety of service such as, for example, a large number of different satellite radio/television channels.
By contrast, according to one embodiment of the invention as discussed above, each segment of a single digital transmission, such as a satellite radio signal or digital television signal, is transmitted at least twice or more times, with the transmissions being spaced by a selected time interval. Prior to Applicant's invention, transmitting each segment of a single digital signal at two time-spaced intervals would have effectively reduced the bandwidth available for transmitting other signals, and therefore would have been seen as undesirable under conventional thinking. In addition, in conventional approaches, providing a wide range of programming was the primary goal, and was more important than preventing short-term signal loss. Thus, prior to Applicant's invention, there would have been no motivation to sacrifice channels offered by service providers by reducing available signal bandwidth so as to be able to transmit each signal segment in at least two time-spaced intervals. However, contrary to conventional thinking, the Applicant has recognized that transmitting each signal segment in at two time-spaced intervals and processing the multiple signals provides significant benefits, including, for example, providing for processing the multiple signals to provide enhanced signal quality, providing for processing the multiple signals to reduce or prevent short term signal loss, and providing for additional capacity for transmitting, receiving, and providing the same signal. For example, the additional capacity may include transmitting and receiving variants of the same signal such as in different languages.
According to one embodiment, while successive segments received through antenna 14 may be stored in successive locations in the same RAM, for purposes of accessing, it may be easier if the time spaced segments are stored either in separate RAMs 120a, 120b or in separate areas of the same RAM. A splitter 122 may be provided which receives the inputs, performs any required preprocessing on such inputs, and directs the inputs to the appropriate RAM 120 or to the appropriate portion of a RAM.
When a given segment is to be reproduced, the corresponding segments from both transmissions are read out to processor 124. Processor 124 then processes the two received segments in a suitable way to provide an enhanced audio/video output to an output device 112, which for an illustrative embodiment would be a radio, such as a digital satellite radio, or a television or video receiver/recorder that receives audio and/or video signals from one or more satellite and/or terrestrial, and/or other sources. In the simplest case, the two transmissions are compared and the better segment, the one containing, for example the least noise or static or the one containing the signal as compared to the one in which the signal is lost, and/or the one having the highest amplitude or signal-to-noise ratio, would be sent to output device 112. It is to be appreciated that more sophisticated processing algorithms are also possible. As has already been discussed herein, the embodiment of
Thus, while the invention has been particularly shown and described above with reference to preferred or illustrative embodiments, the foregoing and other changes in form and detail may be made therein by one skilled in the art without departing from the spirit and scope of the invention which is to be defined only by the appended claims.
The present application is a continuation-in-part of and claims priority under 35 U.S.C. § 120 to co-pending U.S. patent application Ser. No. 10/831,879 entitled “METHOD AND APPARATUS FOR ACHIEVING SELECTED AUDIO AND OTHER FUNCTIONS” and filed on Apr. 26, 2004, which is a divisional of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 09/657,357, entitled “METHOD AND APPARATUS FOR ACHIEVING SELECTED AUDIO AND OTHER FUNCTIONS,” filed Sep. 7, 2000, now abandoned, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/152,837, filed Sep. 8, 1999. The present application also claims priority under 35 U.S.C. § 119(e) to co-pending U.S. Provisional Application No. 61/152,481 entitled “METHOD AND APPARATUS FOR ACHIEVING SELECTED AUDIO/VIDEO AND OTHER FUNCTIONS” and filed on Feb. 13, 2009. Each of the above-identified applications is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60152837 | Sep 1999 | US | |
61152481 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09657357 | Sep 2000 | US |
Child | 10831879 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10831879 | Apr 2004 | US |
Child | 12484777 | US |