This application claims the benefit, under 35 U.S.C. §119 of European Patent Application No. 13306781.9, filed Dec. 19, 2013.
The present invention relates to a method and an apparatus for obtaining a sequence of images illuminated by a flash. Particularly, but not exclusively, the invention relates to a method and device for controlling a flash in a camera equipped with a rolling shutter.
Imaging devices based on digital image sensors operate by capturing an optical image and converting it into electronic signals. Such devices are capable of capturing still images and/or a video composed of a sequence of images, often referred to as frames. A digital image sensor typically includes photosensitive cells (often referred to as photosites) arranged in an array of rows and columns. Photosensitive cells used in imaging devices are often based on semiconductor technology, capable of converting photons into electrons, such as, for example, charge coupled devices (CCD) or complementary metal oxide technology (CMOS). Such imaging sensor devices have wide ranging applications ranging from professional film studio cameras to consumer devices including dedicated imaging devices such as camcorder cameras as well as personal electronic devices with built in imaging functions, such as mobile telephones, smart telephones, personal digital assistants (PDA), and portable computers including tablet computers, laptop computers, notebook computers, and the like.
Imaging devices based on CCD technology typically employ a global shutter technique in which an entire array of photosensitive cells is exposed at the same time to capture a frame of image data. Imagers based on CMOS technology, on the other hand, typically employ a “rolling shutter” technique to capture a frame. In this so called “rolling shutter” technique the scan lines (for example, rows or columns) of the sensor array are each exposed at different times, and read out from the photosensitive cells is performed sequentially line by line (for example, from the top row of the sensor array to the bottom row of the sensor array). The read outs from the lines of photosensitive cells are then merged together to form a single image.
When an object to be imaged is fixed with respect to the imaging device, or is slow moving with respect to the processing time of all the lines, the rolling shutter has no significant effect on image quality. If the lighting conditions are constant with respect to the processing time, again the rolling shutter has no significant effect on image quality. However, in scenarios where an object is fast moving and/or the lighting conditions change during acquisition of the entire image, the effects can be detrimental to the quality of the images obtained.
In image capture, a flash is often used to improve image quality by illuminating the scene with a burst or pulse of visible light while a frame of the scene is being captured. In an imaging device equipped with a rolling shutter, however, the flash can have adverse effects on the image quality due to the line by line processing technique. Indeed, since the duration of a flash may be short (typically of the order of tens to hundreds of μs) compared to the processing time of a frame (typically of the order of tens of ms) the different lines of sensors will be exposed in significantly different ways. This difference in exposures leads to effects such as partial lighting which impair the quality of the images obtained and to image distortions such as skew type effects. The impairment of image quality may be further aggravated in the case of the frame capture of fast moving objects leading to image artifacts such as skew effects.
The present invention has been devised with the foregoing in mind.
According to a first aspect of the invention there is provided a method of obtaining a sequence of images of a scene using an electronic imaging device and a flash unit to illuminate the scene wherein the imaging device has a plurality of photosensitive cells arranged in an array to form a frame region, the frame region being composed of a plurality of frame sub-regions, each frame sub-region corresponding to a sub-set of the photosensitive cells each subset of photosensitive cells having an exposure time duration, wherein the exposure time duration of at least some of said image sub-regions occurs at different times during a total time of exposure of the frame region, the method comprising:
activating the flash unit to illuminate the scene to be imaged at a flash event delay set according to said exposure time duration of a subset of photosensitive cells and the time duration of the flash event;
acquiring a set of frames of the scene wherein the time of occurrence of a flash event within a frame shifts temporally from frame to frame; and
constructing a sequence of images, each image being constructed from frame sub-regions of the acquired frames.
The control of flash illumination in this way helps to eliminate problems of intra-line distortion and the image quality is thus improved. The photosensitive cells may be photosites.
In an embodiment, the flash event delay is greater than or equal to the sum of the exposure time duration of a subset of photosensitive cells and the time duration of the flash event.
In one particular embodiment the flash event delay is equal to the sum of the exposure time duration of subset of photosensitive cells and the time duration of the flash event.
Preferably each frame sub-region corresponds to a line of photosensitive cells of the array and exposure of the array is performed successively line by line. A line may correspond to a row of photosensitive cells or a line of photosensitive cells.
In an embodiment the flash events are timed in such a way that each sub-set of photosensitive cells is illuminated by one flash event during capture of a frame.
In an embodiment the flash events are timed in such a way that each frame is illuminated by at least one flash event.
In an embodiment each image of the sequence of images is formed by reassembling the frame sub-regions of consecutive frames illuminated by the same flash event to form a reconstructed image. The reconstructed image may thus include frame sub-regions of different captured frames.
In an embodiment the method includes identifying frame sub regions for which the same flash event is shared between two consecutive frames and applying a weighted illumination intensity to said sub-regions to form the reconstructed image.
In an embodiment the time duration of the flash event is determined to be a fraction of the exposure time duration of a frame sub-region such that
Exposuretime=n×flashduration;
where n is an integer greater than 0.
In an embodiment the flash event duration changes from one frame to another frame and the flash delay is adjusted from frame to frame accordingly.
According to a second aspect of the invention there is provided an electronic imaging device having a plurality of photosensitive cells arranged in an array to form a frame region, the frame region being composed of a plurality of frame sub-regions each frame sub-region corresponding to a sub-set of photosensitive cells, the device comprising
an array controller configured to expose each of said frame sub-regions during an exposure time duration wherein the exposure of at least some of said frame sub-regions occurs at different times during a total time of exposure of the frame region,
a flash unit for illuminating a scene to be imaged during a flash time duration
an activator for activating the flash unit to illuminate the scene to be imaged at a flash event delay determined in dependence upon said exposure time duration of a frame sub region and the flash time duration;
an image data acquisition unit for acquiring a set of frames of the scene wherein the time of occurrence of a flash event within a frame shifts temporally from frame to frame; and
an image reconstruction unit for constructing a sequence of images from the frame sub-regions of the acquired frames.
In an embodiment, the flash event delay is greater than or equal to the sum of the exposure duration of a frame sub region and the duration of the flash event. Preferably the flash event delay is equal to the sum of the exposure duration of a frame sub region and the duration of the flash event.
In an embodiment, the flash events are timed such that each subset of photosensitive cells corresponding to a frame sub-region is flashed only once during capture of a frame.
In an embodiment, each image of the sequence of images is formed by reassembling the frame sub-regions of consecutive frames illuminated by the same flash event to form a reconstructed image
In an embodiment, the image reconstruction unit is configured to identify sub regions for which the same flash event is shared between two consecutive frames and to apply a weighted illumination intensity to said frame sub-regions to form the reconstructed image.
In an embodiment the device includes a clock to synchronise operation of the array controller and the activator.
A further aspect of the invention relates to a method or device for controlling a flash unit such that during the acquisition of a frame each scan line of a frame is illuminated by only one flash event. Preferably, the flash event delay is greater than or equal to the sum of the exposure duration of subset of photosensitive cells and the duration of the flash event. The flash events may be timed such that at least one flash event occurs in each frame.
A further aspect of the invention provides a flash control device for an electronic imaging device, the electronic image device having a plurality of photosensitive cells arranged in an array to form a frame region, the frame region being composed of a plurality of frame sub-regions each frame sub-region corresponding to a sub-set of photosensitive cells, and being exposed during an exposure time duration wherein the exposure of at least some of said frame sub-regions occurs at different times during a total time of exposure of the frame region, the flash control device comprising an activator for activating a flash unit to illuminate the scene being imaged at a plurality of flash events, the time interval between consecutive flash events being set to shift temporally from frame to frame the time of occurrence of a flash event with respect to the start of a frame, the time interval being greater than or equal to the sum of the exposure time duration of a subset of photosensitive cells and the time duration of the flash event and the time duration of the flash event.
A further aspect of the invention provides a method of controlling a flash unit for an electronic imaging device, the electronic image device having a plurality of photosensitive cells arranged in an array to form a frame region, the frame region being composed of a plurality of frame sub-regions each frame sub-region corresponding to a sub-set of photosensitive cells, and being exposed during an exposure time duration wherein the exposure of at least some of said frame sub-regions occurs at different times during a total time of exposure of the frame region the method comprising
activating the flash unit to illuminate the scene being imaged at a plurality of flash events, the time interval between consecutive flash events being set to shift temporally from frame to frame the time of occurrence of a flash event with respect to the start of a frame, the time interval between consecutive flash events being greater than or equal to the sum of the exposure time duration of a subset of photosensitive cells and the time duration of the flash event and the time duration of the flash event.
At least parts of the methods according to the invention may be computer implemented. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit”, “module” or “system’. Furthermore, the present invention may take the form of a computer program product embodied in any tangible medium of expression having computer usable program code embodied in the medium.
Since the present invention can be implemented in software, the present invention can be embodied as computer readable code for provision to a programmable apparatus on any suitable carrier medium. A tangible carrier medium may comprise a storage medium such as a floppy disk, a CD-ROM, a hard disk drive, a magnetic tape device or a solid state memory device and the like. A transient carrier medium may include a signal such as an electrical signal, an electronic signal, an optical signal, an acoustic signal, a magnetic signal or an electromagnetic signal, e.g. a microwave or RE signal.
Embodiments of the invention will now be described, by way of example only, and with reference to the following drawings in which:
The electronic imaging device 100 comprises an image sensor array 110 for capturing light from a scene, a lens 112 for guiding light to the sensor array 110, a signal processing unit 115 for processing signals from the sensor array 110, an image processing unit 125 for reconstructing images from the processed signals, a flash unit 120 for illuminating the scene to be captured, a flash controller 130 for controlling parameters of the flash unit 120, an array controller 140 for controlling the times of exposure of the photosites of the sensor array 110 to light from the scene and a clock 150 which may be used to provide timing synchronization of the various modules. It will be appreciated that in certain embodiments of the invention the flash controller 130 and the array controller 140 are not synchronized. In other embodiments the flash controller 130 and the array controller 140 are synchronized for increased timing accuracy between the time of occurrence of flash events and the exposure times of the lines.
It will be appreciated that the imaging device may be provided with further optical elements such as a variable aperture, a zoom mechanism or an autofocus mechanism to provide enhancement of the captured image.
The sensor array 110 is composed of a set of photosensitive cells (photosites) 111 arranged in a bi-dimensional array of N rows and M columns as illustrated in
As illustrated in
In embodiments of the invention the timing of the flash events is controlled to address such issues. In particular the flash time delay (FDly) between flash events (referred to herein as flash event delay (FDly) is set so as not to be equal to a line exposure time (ExpL) such that there is a time shift S in the time of occurrence of a flash event within a frame, from frame to frame. In some particular embodiments of the invention the flash event delay (also referred to as a stroboscopic event delay in the case where a stroboscope is used) is determined taking into account the camera exposure time (i.e. the time duration of exposure of a line (ExpL)) and the time duration of the flash event such that the time of occurrence of a flash event within a frame is temporally shifted from frame to frame. The flash controller 130 is configured to activate the flash at a flash event delay in accordance with this temporal shift. In one particular embodiment the flash event delay is based on the sum of the time duration of the exposure of a line and the time duration of the flash event such that:
Delayflash≧Camera Exposureduration+Flashduration (1)
In one particular embodiment the flash event delay is based on the sum of the time duration of the exposure of a line and the time duration of the flash event such that:
Delayflash=Camera Exposureduration+Flashduration (2)
For example if the exposure time duration of a scan line is 20 ms corresponding to a camera frequency of 50 Hz and the flash event duration is 2 ms, the flash event delay (FDly) between camera flash events will be 22 ms i.e. the flash frequency will be 45.45 Hz.
An example of a flash control procedure in accordance with an embodiment of the invention is graphically illustrated in
Post processing on captured frames of a video sequence is then performed by imaging processing unit 125 to reconstruct a set of images from the data read out from the scan lines of the captured sequence of frames. Image regions of consecutive captured frames which share the same flash event are identified so that an image can be reconstructed from image regions sharing the same flash event. During reconstruction of an image, lines of the video sequence of frames that are temporally concordant to share a flash event are reassembled to form an image. In
For a video sequence of captured frames as illustrated in
In one particular embodiment of the invention an Avisynth filter is used to recompose an image from lines of consecutive frames sharing the same flash event. Consecutive frames of a video sequence captured using a flash activated at a frequency determined in accordance with an embodiment of the invention are input into the filter. The filter reads through two consecutive frames sharing the same flash event to identify lines having the lowest light intensity i.e. lines of a captured frame where the same flash event is shared with that captured frame and at least one adjacent subsequent frame. Once such lines have been identified a reconstruction of an output image is performed. The lines identified as having the lowest light intensity are processed in a different way to the remaining lines of the consecutive frames sharing the same flash event. For example, with reference to the acquired frames of
It may be noted that the weighting function is linear when the image is in the raw space. This means that if a gamma correction has been applied, the image should be converted back to the linear space before performing the recomposition and then gamma correction is reapplied to the recomposed image. In such conditions and for the central overlapping region between the two frames a simple addition of color values of pixels of frame i−1 and frame i is sufficient.
In the source frames a gradient is logically present in one direction for the first frame and in another direction for the second frame. A gradient is highly dependent on the gamma LUT (look up table) taken to output the image.
Exemplary image recomposition steps are shown in
While
In some embodiments of the invention, in order to avoid a flash event being associated with lines of more than two captured frames, the duration of the flash pulse or burst is determined to be a fraction of the line exposure time such that
Exposuretime=n×flashduration;
where n is an integer greater than 0.
If the flash event duration is set in this way, in each frame the end of the flash event occurs at the end of the exposure of the last line of a captured frame.
While
Delayflash≧Camera Exposureduration+Flashduration
In step S1402 a set of frames of a scene is acquired with the flash being activated according to the determined flash timing to illuminate the scene. In step S1403 acquired consecutive frames are processed in order to determine regions of the frames associated with the same flash event. Lines within the consecutive frames having low light intensity are identified in step S1404 in order to identify regions to which a weighting function will be applied in step S1405 for reconstruction of the image from the identified frame regions. In step S1406 the identified frame regions including the weighted frame regions are combined to form a reconstructed image related to a single flash event. A sequence of images is formed in this way and rendered in step S1407 at a frequency dependent on the determined flash event delay.
Embodiments of the invention described herein may be implemented in, for example, a method or a process, an apparatus, a software program, a data stream, or a signal. Even if only discussed in the context of a single form of implementation (for example, discussed only as a method), the implementation of features discussed may also be implemented in other forms (for example, an apparatus or program). An apparatus may be implemented in, for example, appropriate hardware, software, and firmware. The methods may be implemented in, for example, an apparatus such as, for example, a processor, which refers to processing devices in general, including, for example, a computer, a microprocessor, an integrated circuit, or a programmable logic device. Processors also include communication devices, such as, for example, computers, tablets, cell phones, portable/personal digital assistants (“PDAs”), and other devices that facilitate communication of information between end-users.
The modules of
Reference to “one embodiment” or “an embodiment” or “one implementation” or “an implementation” of the present principles, as well as other variations thereof, mean that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment of the present principles. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment” or “in one implementation” or “in an implementation”, as well any other variations, appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
Additionally, this application or its claims may refer to “determining” various pieces of information. Determining the information may include one or more of, for example, estimating the information, calculating the information, predicting the information, or retrieving the information from memory.
Additionally, this application or its claims may refer to “receiving” various pieces of information. Receiving is, as with “accessing”, intended to be a broad term. Receiving the information may include one or more of, for example, accessing the information, or retrieving the information (for example, from memory). Further, “receiving” is typically involved, in one way or another, during operations such as, for example, storing the information, processing the information, transmitting the information, moving the information, copying the information, erasing the information, calculating the information, determining the information, predicting the information, or estimating the information.
As will be evident to one of skill in the art, implementations may produce a variety of signals formatted to carry information that may be, for example, stored or transmitted. The information may include, for example, instructions for performing a method, or data produced by one of the described implementations.
Although the present invention has been described hereinabove with reference to specific embodiments, the present invention is not limited to the specific embodiments, and modifications will be apparent to a skilled person in the art which lie within the scope of the present invention.
For instance, while the foregoing examples have been described with respect to a digital imaging device based on CMOS technology it will be appreciated that the invention may be applied to any light capturing technology.
Many further modifications and variations will suggest themselves to those versed in the art upon making reference to the foregoing illustrative embodiments, which are given by way of example only and which are not intended to limit the scope of the invention, that being determined solely by the appended claims. In particular the different features from different embodiments may be interchanged, where appropriate.
Number | Date | Country | Kind |
---|---|---|---|
13306781 | Dec 2013 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
7129983 | Rantanen et al. | Oct 2006 | B2 |
8401378 | Tsai | Mar 2013 | B2 |
20060238643 | Liao et al. | Oct 2006 | A1 |
20100026853 | Mokhnatyuk | Feb 2010 | A1 |
20100165180 | Park | Jul 2010 | A1 |
20100171875 | Yamamoto | Jul 2010 | A1 |
20110273591 | Fukushima | Nov 2011 | A1 |
20130044230 | Zhou | Feb 2013 | A1 |
20130208149 | Kamiya | Aug 2013 | A1 |
20140347553 | Ovsiannikov | Nov 2014 | A1 |
20150002734 | Lee | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
2007135073 | May 2007 | JP |
2013197841 | Sep 2013 | JP |
Entry |
---|
Bradley etal: “Synchronization and rolling shutter compensation for consumer video camera arrays”, computer vision and pattern recongnition workshops, 2009, CVPR workshops 2009. IEEE computer society conference on, IEEE, Jun. 20, 2009, pp. 1-8. |
Lumenera Corporation: “Exposure and strobe delay vs shutter type timing app. note”, Mar. 1, 2005, retrieved from the internet: URL: http://www.lumenera.com/support/pdf/LA-2104-ExposureVsShutterTypeTimingAppNote.pdf, *p. 1*; pp. 1-4. |
http://www.outsight.com.au/products/creamsource/accessories.php; Nov. 27, 2014; p. 1. |
http://en.wikipedia.org/wiki/Rolling—shutter; “Rolling Shutter”; Nov. 27, 2014;pp. 1-3. |
Search Report Dated Apr. 16, 2014. |
Number | Date | Country | |
---|---|---|---|
20150181139 A1 | Jun 2015 | US |