Known electric machines comprises a stator, and a rotor which rotates about an axis with respect to the stator.
In these known electric machines, the stator comprises an outer cylinder, and stator segments arranged about the axis. The rotor comprises an inner cylinder, and rotor segments arranged about the axis; and each rotor segment comprises modules made of magnetizable material and arranged, parallel to the axis, inside the rotor segment.
To activate such known electric machines, the modules of magnetizable material must be magnetized (i.e., a material or object that produces a magnetic field). More specifically, each module of magnetizable material is made of material that can be magnetized to produce a magnetic field. This is done by adopting an electric machine activating method, which comprises a module magnetizing step, after and by virtue of which each module produces a magnetic field and is known as a magnetized module.
The magnetizing step is performed by a magnetizing device, which magnetizes the modules of magnetizable material with magnetizing flux of a given strength.
The strength of the magnetic field produced by each module changes, in particular gets weaker, over the working life of the module, so that, after a certain time period, normally ranging between ten and twenty years, each module is no longer capable of producing a magnetic field capable of effectively interacting with the magnetic field produced by the stator, with the result that the machine is no longer active, and must therefore be reactivated by remagnetizing the modules. This involves further magnetization of the previously magnetized modules, which, once remagnetized, define magnetized modules in all respects.
Such known electric machines are typically activated by: magnetizing each module; fitting each magnetized module to the inner cylinder of the rotor; fitting the stator segments to the stator; and connecting the rotor, with the magnetized modules, to the stator with one or more bearings.
However, this known method poses the technical problem of having to handle each magnetized module, which is a dangerous job on account of the module generating strong forces which interact with other modules or ferromagnetic parts. That is, when fitting each magnetized module to the rotor, the magnetized modules already fitted to the rotor interact with the one being assembled. For this reason, the magnetized modules must be assembled using special tools and in premises designed for the job. More specifically, in the case of an electric machine that has never been operated, the magnetizing step is performed at the factory; whereas, if the electric machine forms part of a system and needs reactivating, it must be dismantled from the system and sent to the factory, and each module or group of modules must be removed, and each group of modules remagnetized. This is obviously a long, painstaking procedure involving numerous man-hours and considerable cost, and which also calls for transporting an electric machine with the rotor magnetized.
The present disclosure relates to a method and apparatus for activating an electric machine, and to an electric machine.
It is an object of the present disclosure to provide a method of activating an electric machine, configured to eliminate certain of the above-described drawbacks of known electric machines.
According to one embodiment of the present disclosure, there is provided a method of activating an electric machine; the electric machine comprising a stator, and a rotor which rotates about a first axis with respect to the stator; the stator comprising a plurality of stator segments arranged about the first axis; the rotor comprising modules made of magnetizable material and arranged about the first axis; and the method comprising the steps of connecting the rotor to the stator by a bearing; and magnetizing said modules of magnetizable material when the rotor is connected to the stator.
In the method according to the present disclosure, the electric machine is activated by magnetizing the modules after the rotor is fitted to the stator, thus eliminating problems posed by handling magnetized modules. Moreover, according to the present disclosure, the magnetizing step is performed after almost all the stator segments have been fitted to the outer cylinder (i.e., it need not necessarily be carried out at the factory, and may be performed after the electric machine is installed, for example, in the nacelle of a wind power turbine, or in a cable transportation system). The present disclosure also avoids transporting the electric machine with the rotor magnetized. In fact, the electric machine can be fitted with the non-magnetized rotor and part of the stator comprising almost all the stator segments, and be activated, by magnetizing the rotor, after it is installed, thus eliminating any interacting Forces when assembling or transporting the electric machine.
The present disclosure also allows the electric machine to be reactivated by remagnetizing the rotor directly on the system in which the electric machine is installed, thus saving time with respect to known electric machines.
Another object of the present disclosure is to provide an apparatus for activating an electric machine, configured to eliminate certain of the above-described drawbacks of known electric machines.
According to one embodiment of the present disclosure, there is provided an apparatus for activating an electric machine; the apparatus comprising a magnetizing device, and a frame for fitting the magnetizing device to a stator of the electric machine; and the frame being configured for insertion inside a seat of the stator, in place of at least one stator segment.
The present disclosure provides the activating apparatus capable of activating the electric machine after the rotor is fitted to the stator, and also allows the electric machine to be reactivated directly on the system in which it is installed, without having to dismantle and transport it to a factory specially equipped for the job.
Another object of the present disclosure is to provide an electric machine configured to eliminate certain of the above-described drawbacks of known electric machines.
According to one embodiment of the present disclosure, there is provided an electric machine comprising a stator, and a rotor which rotates about a first axis with respect to the stator; the stator comprising a plurality of stator segments arranged about the first axis; the rotor comprising modules made of magnetizable material and arranged about the first axis; the stator being configured to temporarily house a magnetizing device, for magnetizing the modules of magnetizable material of the rotor, inside a seat configured for at least one of the stator segments; the rotor being connected to the stator by a single bearing; and the magnetizing device being insertable externally from the opposite side to the bearing.
The present disclosure provides an electric machine that can be activated after it is installed in a system.
Additional features and advantages are described in, and will be apparent from, the following Detailed Description and the figures.
A number of non-limiting embodiments of the present disclosure will be described by way of example with reference to the accompanying drawings, in which:
Referring now to the example embodiments of the present disclosure illustrated in
In the example shown, electric machine 1 may be an electric generator, such as used on a wind power system for producing electric power, or an electric motor, such as used on a cable transportation system.
Electric machine 1 comprises a stator 2; and a hollow rotor 3 which rotates about an axis A1 with respect to stator 2.
With reference to
Cooling fins 6 cool outer cylinder 5 and therefore stator 2. More specifically, cooling fins 6 and outer cylinder 5 are made of heat-conducting material, so that the Joule-effect or other types of heat produced inside stator 2 is transferred to outer cylinder 5, and from this to cooling fins 6, by which it is dissipated.
Outer cylinder 5 therefore covers, protects, and supports stator segments 7.
Each stator segment 7 comprises windings wound about packs of stator laminations 8, so that each stator segment 7 can be extracted from stator 2 without interacting with the other stator segments 7.
With reference to
With reference to
With reference to
With reference to
In each rotor segment 12, modules 15 of magnetizable material are arranged in groups. More specifically, each group of modules 15 comprises two modules 15 arranged radially with respect to axis A1 (
In the non-limiting example shown, though not necessarily, each rotor segment 12 comprises eleven groups of modules 15.
With reference to
Each group of modules 15 is located between a respective pair of magnetic guides 14 defined by two packs of rotor laminations (i.e., each group of modules 15 is located between two packs of rotor laminations), so each rotor segment 12 comprises eleven pairs of magnetic guides 14. Each pair of magnetic guides 14 is located inside gripper 13, is bolted to inner cylinder 10, has two faces 17 and, in use, is traversed by, and orients magnetic flux coupled to modules 15 of magnetizable material.
Modules 15 are made of material that can be magnetized by a magnetizing process, and which normally comprises rare-earth chemical elements, such as samarium-cobalt or neodymium-ferroboron, and metals. It is understood, however, that the protective scope of the present disclosure also covers any module 15 made of material that can be magnetized by a magnetizing process.
Electric machine 1, be it a generator or motor, must be activated (Le., must have a magnetized rotor 3 to produce a magnetic field) and thus modules 15 of rotor 3 must be magnetized.
According to one embodiment of the present disclosure, there is provided an apparatus 19 for activating electric machine 1, and which comprises a magnetizing device 20; a frame 21; and a precision positioning system 22 fitted to frame 21, magnetizing device 20, and rotor 3.
More specifically, precision positioning system 22 comprises a precision axial feed device 23 fitted to frame 21; a precision rotation device 24 (
With reference to
In other words, in the illustrated embodiment, when activating electric machine 1, all the stator segments 7 of stator 2 except one are assembled, so that the seat of the unassembled stator segment 7 defines seat 9, in which to insert magnetizing device 20, frame 21, and part of precision positioning system 22.
It is understood, however, that the protective scope of the present disclosure also extends to leaving two or more stator segments 7 unassembled.
In an alternative embodiment (not shown) of the present disclosure, seat 9 is configured to house any number of stator segments 7 more than one; in which case, when activating the electric machine, all aH the stator segments 7 except a designated number are assembled.
With reference to
Frame 21 supports and surrounds magnetizing device 20 which, in use, faces one of rotor segments 12.
Each rotor segment 12, as stated, comprises modules 15 arranged parallel to axis A1 (
Faces 26 of magnetizing device 20 are symmetric with respect to a plane of symmetry P2 of magnetizing device 20.
With reference to
After magnetizing all the modules 15 of one rotor segment 12, magnetizing device 20 must be positioned facing another rotor segment 12 with modules 15 to be magnetized. To do this, as shown in
With reference to
Activating apparatus 19 comprises a temperature sensor 29, which may be of any type, such as a contact temperature sensor or a non-contact (e.g., an infrared) temperature sensor, which determines the temperature of the group of modules 15 to be magnetized.
According to one embodiment of the present disclosure, electric machine 1 described above is activated as follows.
The activating method according to one embodiment of the present disclosure comprises:
Electric machine 1 is thus activated by the above method.
The method also provides for reactivating the activated electric machine 1 by:
The above method thus provides for reactivating electric machine 1 and remagnetizing rotor 3 directly on the system in which the machine is installed (i.e., with no need to dismantle the machine and transfer it to the factory for remagnetization).
In one variation, the method according to the present disclosure comprises, between steps (g) and (h), the additional step of: temperature-conditioning the group of modules 15 with a temperature conditioning system connected to modules 15, to achieve a suitable magnetization temperature of modules 15.
In one variation of the method according to the present disclosure, step (f) of rotating rotor 3 in controlled manner with precision rotation device 24 and/or fine-adjusting the position of magnetizing device 20 with fine-adjustment device 25 is performed in such a manner as to align plane P2 with plane P1 of at least one of modules 15.
Electric machine 1 described is a radial-flux, buried-permanent-magnet type. It is understood, however, that the scope of the present disclosure also extends to any other type of permanent-magnet electric machine, such as a radial-flux, surface-magnet or axial-flux or cross-flux electric machine.
In an alternative embodiment (not shown in the drawings), the magnetizing device is larger than the one shown in
In an alternative embodiment (not shown in the drawings), the magnetizing device is housed in a stator seat corresponding to any number of stator segments other than one, e.g. to two, three or more stator segments.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
MI2009A1443 | Aug 2009 | IT | national |
This application is a continuation of, claims the benefit of and priority to U.S. patent application Ser. No. 12/851,782, filed on Aug. 6, 2010, which claims the benefit of and priority to Italian Patent Application No. MI2009A 001443, filed on Aug. 7, 2009, the entire contents of which are each incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1894357 | Manikowske et al. | Jan 1933 | A |
1948854 | Heath | Feb 1934 | A |
1979813 | Reis | Nov 1934 | A |
2006172 | Klappauf | Jun 1935 | A |
2040218 | Soderberg | May 1936 | A |
2177801 | Erren | Oct 1939 | A |
2469734 | Ledwith | May 1949 | A |
2496897 | Strickland | Feb 1950 | A |
2655611 | Sherman | Oct 1953 | A |
2739253 | Plumb | Mar 1956 | A |
2754440 | Brainard | Jul 1956 | A |
2806160 | Brainard | Sep 1957 | A |
2842214 | Prewitt | Jul 1958 | A |
2903610 | Bessiere | Sep 1959 | A |
3004782 | Meermans | Oct 1961 | A |
3072813 | Reijnst et al. | Jan 1963 | A |
3083311 | Krasnow | Mar 1963 | A |
3131942 | Ertaud | May 1964 | A |
3168686 | King et al. | Feb 1965 | A |
3221195 | Hoffmann | Nov 1965 | A |
3363910 | Toronchuk | Jan 1968 | A |
3364523 | Schippers | Jan 1968 | A |
3392910 | Tanzberger | Jul 1968 | A |
3468548 | Webb | Sep 1969 | A |
3678436 | Herdrich et al. | Jul 1972 | A |
3700247 | Butler et al. | Oct 1972 | A |
3724861 | Lesiecki | Apr 1973 | A |
3746349 | Smale et al. | Jul 1973 | A |
3748089 | Boyer et al. | Jul 1973 | A |
3789252 | Abegg | Jan 1974 | A |
3841643 | McLean | Oct 1974 | A |
3860843 | Kawasaki et al. | Jan 1975 | A |
3942026 | Carter | Mar 1976 | A |
3963247 | Nommensen | Jun 1976 | A |
3968969 | Mayer et al. | Jul 1976 | A |
4022479 | Orlowski | May 1977 | A |
4061926 | Peed | Dec 1977 | A |
4087698 | Myers | May 1978 | A |
4273343 | Visser | Jun 1981 | A |
4289970 | Deibert | Sep 1981 | A |
4291235 | Bergey, Jr. et al. | Sep 1981 | A |
4292532 | Leroux | Sep 1981 | A |
4336649 | Glaser | Jun 1982 | A |
4339874 | Mc'Carty et al. | Jul 1982 | A |
4348604 | Thode | Sep 1982 | A |
4350897 | Benoit | Sep 1982 | A |
4354126 | Yates | Oct 1982 | A |
4368895 | Okamoto et al. | Jan 1983 | A |
4398773 | Boden et al. | Aug 1983 | A |
4452046 | Valentin | Jun 1984 | A |
4482831 | Notaras et al. | Nov 1984 | A |
4490093 | Chertok et al. | Dec 1984 | A |
4517483 | Hucker et al. | May 1985 | A |
4517484 | Dacier | May 1985 | A |
4521026 | Eide | Jun 1985 | A |
4585950 | Lund | Apr 1986 | A |
4613779 | Meyer | Sep 1986 | A |
4638200 | Le Corre et al. | Jan 1987 | A |
4648801 | Wilson | Mar 1987 | A |
4694654 | Kawamura | Sep 1987 | A |
4700096 | Epars | Oct 1987 | A |
4714852 | Kawada et al. | Dec 1987 | A |
4720640 | Anderson et al. | Jan 1988 | A |
4722661 | Mizuno | Feb 1988 | A |
4724348 | Stokes | Feb 1988 | A |
4761590 | Kaszman | Aug 1988 | A |
4792712 | Stokes | Dec 1988 | A |
4801244 | Stahl | Jan 1989 | A |
4866321 | Blanchard et al. | Sep 1989 | A |
4900965 | Fisher | Feb 1990 | A |
4906060 | Claude | Mar 1990 | A |
4973868 | Wust | Nov 1990 | A |
4976587 | Johnston et al. | Dec 1990 | A |
5004944 | Fisher | Apr 1991 | A |
5063318 | Anderson | Nov 1991 | A |
5090711 | Becker | Feb 1992 | A |
5091668 | Cuenot et al. | Feb 1992 | A |
5177388 | Hotta et al. | Jan 1993 | A |
5191255 | Kloosterhouse et al. | Mar 1993 | A |
5275139 | Rosenquist | Jan 1994 | A |
5280209 | Leupold et al. | Jan 1994 | A |
5281094 | McCarty et al. | Jan 1994 | A |
5298827 | Sugiyama | Mar 1994 | A |
5302876 | Iwamatsu et al. | Apr 1994 | A |
5311092 | Fisher | May 1994 | A |
5315159 | Gribnau | May 1994 | A |
5331238 | Johnsen | Jul 1994 | A |
5410997 | Rosenquist | May 1995 | A |
5419683 | Peace | May 1995 | A |
5456579 | Olson | Oct 1995 | A |
5483116 | Kusase et al. | Jan 1996 | A |
5506453 | McCombs | Apr 1996 | A |
5579800 | Walker | Dec 1996 | A |
5609184 | Apel et al. | Mar 1997 | A |
5663600 | Baek et al. | Sep 1997 | A |
5670838 | Everton | Sep 1997 | A |
5696419 | Rakestraw et al. | Dec 1997 | A |
5704567 | Maglieri | Jan 1998 | A |
5746576 | Bayly | May 1998 | A |
5777952 | Nishimura et al. | Jul 1998 | A |
5783894 | Wither | Jul 1998 | A |
5793144 | Kusase et al. | Aug 1998 | A |
5798632 | Muljadi | Aug 1998 | A |
5801470 | Johnson et al. | Sep 1998 | A |
5811908 | Iwata et al. | Sep 1998 | A |
5814914 | Caamaño | Sep 1998 | A |
5844333 | Sheerin | Dec 1998 | A |
5844341 | Spooner et al. | Dec 1998 | A |
5857762 | Schwaller | Jan 1999 | A |
5886441 | Uchida et al. | Mar 1999 | A |
5889346 | Uchida et al. | Mar 1999 | A |
5894183 | Borchert | Apr 1999 | A |
5925964 | Kusase et al. | Jul 1999 | A |
5952755 | Lubas | Sep 1999 | A |
5961124 | Muller | Oct 1999 | A |
5973435 | Irie et al. | Oct 1999 | A |
5986374 | Kawakami | Nov 1999 | A |
5986378 | Caamaño | Nov 1999 | A |
6013968 | Lechner et al. | Jan 2000 | A |
6037692 | Miekka et al. | Mar 2000 | A |
6064123 | Gislason | May 2000 | A |
6067227 | Katsui et al. | May 2000 | A |
6089536 | Watanabe et al. | Jul 2000 | A |
6093984 | Shiga et al. | Jul 2000 | A |
6127739 | Appa | Oct 2000 | A |
6172429 | Russell | Jan 2001 | B1 |
6177746 | Tupper et al. | Jan 2001 | B1 |
6193211 | Watanabe et al. | Feb 2001 | B1 |
6194799 | Miekka et al. | Feb 2001 | B1 |
6215199 | Lysenko et al. | Apr 2001 | B1 |
6232673 | Schoo et al. | May 2001 | B1 |
6278197 | Appa | Aug 2001 | B1 |
6285090 | Brutsaert et al. | Sep 2001 | B1 |
6326711 | Yamaguchi et al. | Dec 2001 | B1 |
6365994 | Watanabe et al. | Apr 2002 | B1 |
6373160 | Schrödl | Apr 2002 | B1 |
6376956 | Hosoya | Apr 2002 | B1 |
6378839 | Watanabe et al. | Apr 2002 | B2 |
6384504 | Elrhart et al. | May 2002 | B1 |
6417578 | Chapman et al. | Jul 2002 | B1 |
6428011 | Oskouei | Aug 2002 | B1 |
6452287 | Looker | Sep 2002 | B1 |
6452301 | Van Dine et al. | Sep 2002 | B1 |
6455976 | Nakano | Sep 2002 | B1 |
6472784 | Miekka et al. | Oct 2002 | B2 |
6474653 | Hintenlang et al. | Nov 2002 | B1 |
6476513 | Gueorguiev | Nov 2002 | B1 |
6483199 | Umemoto et al. | Nov 2002 | B2 |
6492743 | Appa | Dec 2002 | B1 |
6492754 | Weiglhofer et al. | Dec 2002 | B1 |
6499532 | Williams | Dec 2002 | B1 |
6504260 | Debleser | Jan 2003 | B1 |
6515390 | Lopatinsky et al. | Feb 2003 | B1 |
6520737 | Fischer et al. | Feb 2003 | B1 |
6548932 | Weiglhofer et al. | Apr 2003 | B1 |
6590312 | Seguchi et al. | Jul 2003 | B1 |
6603232 | Van Dine et al. | Aug 2003 | B2 |
6617747 | Petersen | Sep 2003 | B1 |
6629358 | Setiabudi et al. | Oct 2003 | B2 |
6664692 | Kristoffersen | Dec 2003 | B1 |
6676122 | Wobben | Jan 2004 | B1 |
6683397 | Gauthier et al. | Jan 2004 | B2 |
6700260 | Hsu et al. | Mar 2004 | B2 |
6700288 | Smith | Mar 2004 | B2 |
6707224 | Petersen | Mar 2004 | B1 |
6720688 | Schiller | Apr 2004 | B1 |
6727624 | Morita et al. | Apr 2004 | B2 |
6744341 | Iwami et al. | Jun 2004 | B2 |
6746217 | Kim et al. | Jun 2004 | B2 |
6759758 | Martinez | Jul 2004 | B2 |
6762525 | Maslov et al. | Jul 2004 | B1 |
6781276 | Stiesdal et al. | Aug 2004 | B1 |
6784564 | Wobben | Aug 2004 | B1 |
6794781 | Razzell et al. | Sep 2004 | B2 |
6828710 | Gabrys | Dec 2004 | B1 |
6856042 | Kubota | Feb 2005 | B1 |
6879075 | Calfo et al. | Apr 2005 | B2 |
6888262 | Blakemore | May 2005 | B2 |
6891299 | Coupart et al. | May 2005 | B2 |
6903466 | Mercier et al. | Jun 2005 | B1 |
6903475 | Ortt et al. | Jun 2005 | B2 |
6903640 | Carrier et al. | Jun 2005 | B2 |
6906444 | Hattori et al. | Jun 2005 | B2 |
6911741 | Petteersen et al. | Jun 2005 | B2 |
6921243 | Canini et al. | Jul 2005 | B2 |
6931834 | Jones | Aug 2005 | B2 |
6933645 | Watson | Aug 2005 | B1 |
6933646 | Kinoshita | Aug 2005 | B2 |
6942454 | Ohlmann | Sep 2005 | B2 |
6945747 | Miller | Sep 2005 | B1 |
6949860 | Hama et al. | Sep 2005 | B2 |
6951443 | Blakemore | Oct 2005 | B1 |
6972498 | Jamieson et al. | Dec 2005 | B2 |
6983529 | Ortt et al. | Jan 2006 | B2 |
6984908 | Rinholm et al. | Jan 2006 | B2 |
6987342 | Hans | Jan 2006 | B2 |
6998729 | Wobben | Feb 2006 | B1 |
7004724 | Pierce et al. | Feb 2006 | B2 |
7008172 | Selsam | Mar 2006 | B2 |
7008348 | LaBath | Mar 2006 | B2 |
7016006 | Song | Mar 2006 | B2 |
7021905 | Torrey et al. | Apr 2006 | B2 |
7028386 | Kato et al. | Apr 2006 | B2 |
7033139 | Wobben | Apr 2006 | B2 |
7038343 | Agnes et al. | May 2006 | B2 |
7042109 | Gabrys | May 2006 | B2 |
7057305 | Krüger-Gotzmann et al. | Jun 2006 | B2 |
7075192 | Bywaters et al. | Jul 2006 | B2 |
7081696 | Ritchey | Jul 2006 | B2 |
7084522 | Wobben | Aug 2006 | B2 |
7088024 | Agnes et al. | Aug 2006 | B2 |
7091642 | Agnes et al. | Aug 2006 | B2 |
7095128 | Canini et al. | Aug 2006 | B2 |
7098552 | McCoin | Aug 2006 | B2 |
7109600 | Bywaters et al. | Sep 2006 | B1 |
7111668 | Rürup | Sep 2006 | B2 |
7116006 | McCoin | Oct 2006 | B2 |
7119469 | Ortt et al. | Oct 2006 | B2 |
7154191 | Jansen et al. | Dec 2006 | B2 |
7161260 | Krüger-Gotzmann et al. | Jan 2007 | B2 |
7166942 | Yokota | Jan 2007 | B2 |
7168248 | Sakamoto et al. | Jan 2007 | B2 |
7168251 | Janssen | Jan 2007 | B1 |
7179056 | Sieffriedsen | Feb 2007 | B2 |
7180204 | Grant et al. | Feb 2007 | B2 |
7183665 | Bywaters et al. | Feb 2007 | B2 |
7196446 | Hans | Mar 2007 | B2 |
7205678 | Casazza et al. | Apr 2007 | B2 |
7217091 | LeMieux | May 2007 | B2 |
7259472 | Miyake et al. | Aug 2007 | B2 |
7281501 | Leufen et al. | Oct 2007 | B2 |
7285890 | Jones et al. | Oct 2007 | B2 |
7323792 | Sohn | Jan 2008 | B2 |
7345376 | Costin | Mar 2008 | B2 |
7358637 | Tapper | Apr 2008 | B2 |
7377163 | Miyagawa | May 2008 | B2 |
7385305 | Casazza et al. | Jun 2008 | B2 |
7385306 | Casazza et al. | Jun 2008 | B2 |
7392988 | Moldt et al. | Jul 2008 | B2 |
7427814 | Bagepalli et al. | Sep 2008 | B2 |
7431567 | Bevington et al. | Oct 2008 | B1 |
7443066 | Salamah et al. | Oct 2008 | B2 |
7458261 | Miyagawa | Dec 2008 | B2 |
7482720 | Gordon et al. | Jan 2009 | B2 |
7548008 | Jansen et al. | Jun 2009 | B2 |
7550863 | Versteegh | Jun 2009 | B2 |
7687932 | Casazza et al. | Mar 2010 | B2 |
20020047418 | Seguchi et al. | Apr 2002 | A1 |
20020047425 | Coupart et al. | Apr 2002 | A1 |
20020056822 | Watanabe et al. | May 2002 | A1 |
20020063485 | Lee et al. | May 2002 | A1 |
20020089251 | Tajima et al. | Jul 2002 | A1 |
20020148453 | Watanabe et al. | Oct 2002 | A1 |
20030011266 | Morita et al. | Jan 2003 | A1 |
20030102677 | Becker et al. | Jun 2003 | A1 |
20030137149 | Northrup et al. | Jul 2003 | A1 |
20030230899 | Martinez | Dec 2003 | A1 |
20040086373 | Page, Jr. | May 2004 | A1 |
20040094965 | Kirkegaard et al. | May 2004 | A1 |
20040119292 | Datta et al. | Jun 2004 | A1 |
20040150283 | Calfo et al. | Aug 2004 | A1 |
20040151575 | Pierce et al. | Aug 2004 | A1 |
20040151577 | Pierce et al. | Aug 2004 | A1 |
20040189136 | Kolomeitsev et al. | Sep 2004 | A1 |
20050002783 | Hiel et al. | Jan 2005 | A1 |
20050002787 | Wobben | Jan 2005 | A1 |
20050082839 | McCoin | Apr 2005 | A1 |
20050230979 | Bywaters et al. | Oct 2005 | A1 |
20050231314 | Haisch | Oct 2005 | A1 |
20050280264 | Nagy | Dec 2005 | A1 |
20060000269 | LeMieux et al. | Jan 2006 | A1 |
20060001269 | Jansen et al. | Jan 2006 | A1 |
20060006658 | McCoin | Jan 2006 | A1 |
20060012182 | McCoin | Jan 2006 | A1 |
20060028025 | Kikuchi et al. | Feb 2006 | A1 |
20060066110 | Jansen et al. | Mar 2006 | A1 |
20060071575 | Jansen et al. | Apr 2006 | A1 |
20060091735 | Song et al. | May 2006 | A1 |
20060097582 | Engstrom | May 2006 | A1 |
20060125243 | Miller | Jun 2006 | A1 |
20060131985 | Qu et al. | Jun 2006 | A1 |
20060152012 | Wiegel et al. | Jul 2006 | A1 |
20060152015 | Bywaters et al. | Jul 2006 | A1 |
20060152016 | Bywaters et al. | Jul 2006 | A1 |
20070020109 | Takahashi et al. | Jan 2007 | A1 |
20070116567 | Luetze | May 2007 | A1 |
20070159281 | Li et al. | Jul 2007 | A1 |
20070187954 | Struve et al. | Aug 2007 | A1 |
20070187956 | Wobben | Aug 2007 | A1 |
20070222223 | Bagepalli et al. | Sep 2007 | A1 |
20070222226 | Casazza et al. | Sep 2007 | A1 |
20070222227 | Casazza et al. | Sep 2007 | A1 |
20080003105 | Nies | Jan 2008 | A1 |
20080025847 | Teipen | Jan 2008 | A1 |
20080050234 | Ingersoll et al. | Feb 2008 | A1 |
20080107526 | Wobben | May 2008 | A1 |
20080118342 | Seidel et al. | May 2008 | A1 |
20080129129 | Kori et al. | Jun 2008 | A1 |
20080197636 | Tilscher et al. | Aug 2008 | A1 |
20080197638 | Wobben | Aug 2008 | A1 |
20080246224 | Pabst et al. | Oct 2008 | A1 |
20080290664 | Kruger | Nov 2008 | A1 |
20080303281 | Krueger | Dec 2008 | A1 |
20080309189 | Pabst et al. | Dec 2008 | A1 |
20080315594 | Casazza et al. | Dec 2008 | A1 |
20090045628 | Erdman et al. | Feb 2009 | A1 |
20090060748 | Landa et al. | Mar 2009 | A1 |
20090094981 | Eggleston | Apr 2009 | A1 |
20090096309 | Pabst et al. | Apr 2009 | A1 |
20090243774 | Aoki et al. | Oct 2009 | A1 |
20090302702 | Pabst et al. | Dec 2009 | A1 |
20100019502 | Pabst et al. | Jan 2010 | A1 |
20100026010 | Pabst | Feb 2010 | A1 |
20100117362 | Vihriala et al. | May 2010 | A1 |
20100123318 | Casazza et al. | May 2010 | A1 |
20110006865 | Hemmelmann et al. | Jan 2011 | A1 |
20110037545 | Sivasubramaniam et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
2404939 | Apr 2004 | CA |
2518742 | Sep 2004 | CA |
1554867 | Dec 2004 | CN |
1130913 | Jun 1962 | DE |
2164135 | Jul 1973 | DE |
2322458 | Nov 1974 | DE |
2506160 | Aug 1976 | DE |
2922885 | Dec 1980 | DE |
3638129 | May 1988 | DE |
3718954 | Dec 1988 | DE |
3844505 | Jul 1990 | DE |
3903399 | Aug 1990 | DE |
4304577 | Aug 1994 | DE |
4402184 | Aug 1995 | DE |
4415570 | Nov 1995 | DE |
4444757 | Jun 1996 | DE |
29706980 | Jul 1997 | DE |
19636591 | Mar 1998 | DE |
19644355 | Apr 1998 | DE |
19652673 | Jun 1998 | DE |
19711869 | Sep 1998 | DE |
19748716 | Nov 1998 | DE |
29819391 | Feb 1999 | DE |
19801803 | Apr 1999 | DE |
19932394 | Jan 2001 | DE |
19947915 | Apr 2001 | DE |
19951594 | May 2001 | DE |
10000370 | Jul 2001 | DE |
20102029 | Aug 2001 | DE |
10219190 | Nov 2003 | DE |
10246690 | Apr 2004 | DE |
102004018524 | Nov 2005 | DE |
102004028746 | Dec 2005 | DE |
0013157 | Jul 1980 | EP |
0232963 | Aug 1987 | EP |
0313392 | Apr 1989 | EP |
0627805 | Dec 1994 | EP |
1108888 | Jun 2001 | EP |
1167754 | Jan 2002 | EP |
1289097 | Mar 2003 | EP |
1291521 | Mar 2003 | EP |
1309067 | May 2003 | EP |
1363019 | Nov 2003 | EP |
1375913 | Jan 2004 | EP |
1394406 | Mar 2004 | EP |
1394451 | Mar 2004 | EP |
1589222 | Oct 2005 | EP |
1612415 | Jan 2006 | EP |
1641102 | Mar 2006 | EP |
1677002 | Jul 2006 | EP |
1772624 | Apr 2007 | EP |
1780409 | May 2007 | EP |
1829762 | Sep 2007 | EP |
1921311 | May 2008 | EP |
2060786 | May 2009 | EP |
2140301 | Feb 2000 | ES |
806292 | Dec 1936 | FR |
859844 | Dec 1940 | FR |
1348765 | Jan 1964 | FR |
2401091 | Mar 1979 | FR |
2445053 | Jul 1980 | FR |
2519483 | Jul 1983 | FR |
2594272 | Aug 1987 | FR |
2760492 | Sep 1998 | FR |
2796671 | Jan 2001 | FR |
2798168 | Mar 2001 | FR |
2810374 | Dec 2001 | FR |
2882404 | Aug 2006 | FR |
191317268 | Mar 1914 | GB |
859176 | Jan 1961 | GB |
1524477 | Sep 1978 | GB |
1537729 | Jan 1979 | GB |
2041111 | Sep 1980 | GB |
2050525 | Jan 1981 | GB |
2075274 | Nov 1981 | GB |
2131630 | Jun 1984 | GB |
2144587 | Mar 1985 | GB |
2208243 | Mar 1989 | GB |
2266937 | Nov 1993 | GB |
2359417 | Aug 2001 | GB |
2372783 | Sep 2002 | GB |
57059462 | Apr 1982 | JP |
3145945 | Jun 1991 | JP |
5122912 | May 1993 | JP |
6002970 | Jan 1994 | JP |
6269141 | Sep 1994 | JP |
10-070858 | Mar 1998 | JP |
11236977 | Aug 1999 | JP |
11-299197 | Oct 1999 | JP |
2000-134885 | May 2000 | JP |
2001-057750 | Feb 2001 | JP |
2003453072 | Jul 2003 | JP |
2004-153913 | May 2004 | JP |
2004-297947 | Oct 2004 | JP |
2005-006375 | Jan 2005 | JP |
2005-020906 | Jan 2005 | JP |
2005-312150 | Nov 2005 | JP |
8902534 | May 1991 | NL |
2000466 | Sep 1993 | RU |
2229621 | May 2004 | RU |
WO8402382 | Jun 1984 | WO |
WO9105953 | May 1991 | WO |
WO9212343 | Jul 1992 | WO |
WO9730504 | Aug 1997 | WO |
WO9733357 | Sep 1997 | WO |
WO9840627 | Sep 1998 | WO |
WO9930031 | Jun 1999 | WO |
WO9933165 | Jul 1999 | WO |
WO9937912 | Jul 1999 | WO |
WO9939426 | Aug 1999 | WO |
WO0001056 | Jan 2000 | WO |
WO0106121 | Jan 2001 | WO |
WO0106623 | Jan 2001 | WO |
WO0107784 | Feb 2001 | WO |
WO0121956 | Mar 2001 | WO |
WO0125631 | Apr 2001 | WO |
WO0129413 | Apr 2001 | WO |
WO0134973 | May 2001 | WO |
WO0135517 | May 2001 | WO |
WO0169754 | Sep 2001 | WO |
WO0233254 | Apr 2002 | WO |
WO02057624 | Jul 2002 | WO |
WO02083523 | Oct 2002 | WO |
WO03036084 | May 2003 | WO |
WO03067081 | Aug 2003 | WO |
WO03076801 | Sep 2003 | WO |
WO2004017497 | Feb 2004 | WO |
WO2005103489 | Nov 2005 | WO |
WO2006013722 | Feb 2006 | WO |
WO2006032515 | Mar 2006 | WO |
WO2007063370 | Jun 2007 | WO |
WO2007110718 | Oct 2007 | WO |
WO2008052562 | May 2008 | WO |
WO2008078342 | Jul 2008 | WO |
WO2008086608 | Jul 2008 | WO |
WO2008098573 | Aug 2008 | WO |
WO2008102184 | Aug 2008 | WO |
WO2008116463 | Oct 2008 | WO |
WO2008116464 | Oct 2008 | WO |
WO2008131766 | Nov 2008 | WO |
Entry |
---|
Maxime R. Dubous, Henk Polinder, Study of TFPM Machines with Toothed Rotor Applied to Direct-Drive Generators for Wind Turbines, 2004. |
Variable Speed Gearless Wind Turbine (website), http://www.mhi.cojp/msmw/mw/en/gearless.html, viewed on Sep. 22, 2006. |
Italian Search Report dated May 11, 2010 for IT MI20091443. |
Number | Date | Country | |
---|---|---|---|
20130106223 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12851782 | Aug 2010 | US |
Child | 13718716 | US |