Not Applicable
Not Applicable
Not Applicable
The present invention relates to communication systems. More particularly, and not by way of limitation, the present invention is directed to an apparatus and method for actively probing tunneled transmission paths in Internet Protocol (IP)-based communication systems such as Transmission Control Protocol/Internet Protocol (TCP/IP)-based communication systems.
There are numerous existing solutions to actively probe transmission paths in IP-based systems such as TCP/IP systems. These solutions are all based on test equipments (probes) placed at several places in the network. Probes initiate communication on the lower TCP/IP layer to other probes or to special servers (sometimes called reflectors). The system collects path properties between the probes including packet loss, delay, jitter, and throughput.
For systems utilizing GPRS Tunneling Protocol (GTP) tunnels, there is a GTP ECHO protocol available, which can test the connectivity between two GTP-capable devices (routers). The GTP ECHO protocol is similar to the Internet Control Message Protocol (ICMP) ECHO, but only GTP-capable devices can answer GTP requests. Published International Patent Application No. WO 2008/138509 A1 discloses a method for monitoring a GTP communication path by generating a GTP control message in the form of an ECHO request message.
A problem with existing network probe-based testing systems is that they probe the lower TCP/IP layer of the system. Thus, probing is limited between network sites. On the other hand, for mobility reasons, a mobile system has two TCP/IP layers, and the higher layer is the one that actually represents the end-to-end connectivity across the system.
It should be noted that there are also User Equipment (UE)-based active probing systems. Such UE-based systems, however, adversely consume radio resources, and require extra UE hardware, which is costly to upgrade or replace. Consequently, this solution is mostly used for drive testing, and is generally considered to be too expensive.
Thus, in mobile telecommunication networks, existing active probing systems do not effectively monitor the system end-to-end path from the base station or eNodeB (eNB) to the core Packet Data Network (PDN). As a result, the following areas cannot be tested:
The present invention solves the above problems. The invention enables the testing of the tunneled TCP/IP layer (i.e., the higher layer in mobile systems) via special probes. In one embodiment, a modification in the base station (for example the eNB in LTE) implements a new Emulated UE function that serves as the handler of signaling from an emulated UE to the core network. The modified eNB behaves as though it is an actual UE and controls the establishment of a PDN connection (tunnel) without any radio connection to a real UE. The established tunnel is then used to send test traffic towards other probes or test servers. In other embodiments, the UE Emulator may be located in an Operations Support System (OSS) or a separate server, from which it communicates using a dedicated communication protocol.
Thus, in one embodiment, the present invention is directed to a computer-controlled method of actively probing a tunneled transmission path in an IP-based mobile communication system. The method includes the steps of establishing the tunneled transmission path by a base station, wherein the base station forwards signaling from an emulated mobile communication device toward a core network; and generating probe traffic through the tunneled transmission path by the base station, the probe traffic being directed toward a probe server or another base station configured as a probe reflector; wherein a management system collects statistics about the probe traffic received at the probe server or other base station.
In another embodiment, the present invention is directed to an apparatus in a base station for actively probing a tunneled transmission path in an IP-based mobile communication system. The apparatus includes means for establishing the tunneled transmission path by forwarding signaling from an emulated mobile communication device toward a core network; and means for generating probe traffic through the tunneled transmission path, the probe traffic being directed toward a probe server or another base station configured as a probe reflector.
In another embodiment, the present invention is directed to a system in an IP-based mobile communication network for actively probing a tunneled transmission path from a base station to a core network. The system includes an emulator for emulating a mobile communication device and providing emulated mobile device signals to the base station; means within the base station for establishing the tunneled transmission path by forwarding the mobile device signals received from the emulator toward a core network; and means within the base station for generating probe traffic through the tunneled transmission path, the probe traffic being directed toward a probe server or another base station configured as a probe reflector.
The present invention makes it possible to monitor test traffic flowing through an SGW or SGSN since the probe traffic is actually routed across these nodes. The invention can also monitor testing of the path performance (including connectivity, loss, delay, and the like) through the PDN GW or GGSN. Additionally, the invention can monitor testing of mobile system users' performance towards servers above the PDN GW or GGSN since there is a routed path between an access or core network site and a server on the Gi interface. Technical personnel can utilize the emulated UEs to perform many different types of test cases much easier than with real active test UEs. The ease of control over the emulated UEs makes the process more convenient and cost effective. Additionally, since the control over multiple emulated UEs is centralized, it is possible to coordinate tests with them from all RAN nodes.
In the following section, the invention will be described with reference to exemplary embodiments illustrated in the figures, in which:
The exemplary embodiments described herein assume an SAE/LTE system using GTP tunnels, but the invention is equally applicable to other mobile systems and other tunneling protocols utilizing, for example, Mobile IP.
In various embodiments, the present invention thus requires modifications of the eNB and/or the OSS. The new UE Emulator may be implemented in the eNB, the OSS, or as a separate server. When the UE Emulator is implemented in the eNB, there is no protocol required between the UE Emulator and the eNB, just an Application Programming Interface (API). When the UE Emulator is either a separate node or part of the OSS, there is a need for a UE Emulator-eNB-OSS protocol to initiate and control the NAS messages. The protocol may be standardized or proprietary. In this configuration, the UE Emulator can offer emulation service for several sessions, and it can handle multiple UE states in parallel. In addition, there may also be more than one UE Emulator assigned to an eNB.
The eNB 23 includes a new function referred to as Probe Connection Control (PCC) 33. The PCC is utilized to receive and forward all NAS signaling messages between the UE Emulator 21 and the MME 32. Through the PCC, the eNB requests the UE Emulator for the initial NAS message necessary to initiate the PDN connection, and then forwards all NAS messages coming from the MME to the UE Emulator.
The PCC 33 forwards NAS messages transparently, and performs the necessary encapsulation of all messages coming from the UE Emulator 21 into the necessary protocol messages (S1) towards the Core Network. The eNB-UE Emulator communication may also require a transport protocol if the UE Emulator and eNB PCC are not co-located.
Specifically, when a protocol message arrives that is related to an emulated UE, the PCC 33 in the eNB takes responsibility for the message and performs the following functions:
The test traffic generation follows the well known methods used by probe systems. For example, the PTC units may generate voice-like traffic, web-like TCP downloads, and the like. The PTC units then forward the performance measurement results to the OSS 41.
As will be recognized by those skilled in the art, the innovative concepts described in the present application can be modified and varied over a wide range of applications. Accordingly, the scope of patented subject matter should not be limited to any of the specific exemplary teachings discussed above, but is instead defined by the following claims.