Not applicable.
This section of this document introduces information from the art that may be related to or provide context for some aspects of the technique described herein and/or claimed below. It provides background information to facilitate a better understanding of that which is disclosed herein. This is a discussion of “related” art. That such art is related in no way implies that it is also “prior” art. The related art may or may not be prior art. The discussion in this section is to be read in this light, and not necessarily as admissions of prior art.
Oil, gas, and other fluids are extracted from the Earth by drilling wells into the ground. Historically, and in the popular imagination, these wells were drilled straight down into the ground—i.e., vertically. In the last few decades, however, drilling wells that significantly deviate from the vertical have become quite common. For convenience, such wells will be called “horizontal” wells herein since many of them actually are horizontal to the Earth's surface.
The process of finishing a well for production of the sought after fluid is frequently referred to as “completion”. Completion often includes stimulation, or “fracking”, the well to help increase its production. When constructing a horizontal, multi-stage completion of a hydrocarbon producing well, it is often desirable to conduct a casing pressure test prior to beginning the stimulation (“frac”) process. The casing must be tested to the maximum anticipated treatment pressure. Current hydraulic opening initiator sleeves (toe shoes) require that the operator pressure up to their desired casing test pressure and then over to actually open the initiator sleeve (i.e., 10,000 psi test to 11,000 psi opening).
The presently disclosed technique is directed to resolving, or at least reducing, one or all of the problems associated with completion of a well. Even if solutions are available to the art to address these issues, the art is always receptive to improvements or alternative means, methods and configurations. Thus, there exists a need for a technique such as that disclosed herein.
In a first aspect, a method for operating a valve in a wellbore comprises: applying a first fluid pressure to a bore of the valve; trapping the first fluid pressure in a portion of the valve; reducing the pressure in the bore of the valve to a second fluid pressure, thereby creating a pressure differential between the portion of the valve and the bore of the valve; and opening the valve responsive to the pressure differential.
In a second aspect, a valve comprises: a valve body defining a bore, a chamber, and a fluid passageway, the bore being in fluid communication with the chamber; a first piston disposed in the body to trap a first fluid pressure in the chamber when the first fluid pressure is applied to the bore of the body; and a second piston disposed in the body to open the fluid passageway in the valve body when a second fluid pressure is applied to the bore of the body, wherein the second fluid pressure is less than the first fluid pressure.
In a third aspect, a method of actuating a downhole tool in a wellbore, the downhole tool being actuated by a valve, comprises: pressuring up the wellbore to a first fluid pressure; trapping the first fluid pressure in a portion of the valve; reducing the pressure in the wellbore to a second fluid pressure thereby creating a pressure differential within the valve; opening a fluid passageway in the valve responsive to the pressure differential; and pumping fluid through the opened fluid passageway of the valve to actuate the downhole tool.
The above paragraphs present a simplified summary of the presently disclosed subject matter in order to provide a basic understanding of some aspects thereof. The summary is not an exhaustive overview, nor is it intended to identify key or critical elements to delineate the scope of the subject matter claimed below. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description set forth below.
The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:
While the invention is susceptible to various modifications and alternative forms, the drawings illustrate specific embodiments herein described in detail by way of example. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Illustrative embodiments of the subject matter claimed below will now be disclosed. In the interest of clarity, not all features of an actual implementation are described in this specification. It will be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort, even if complex and time-consuming, would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The presently disclosed technique allows the operator to open a hydraulically actuated downhole tool at a predetermined pressure (equal to, greater than, or less than test pressure) by allowing the operator to pressure up to his test pressure, bleed the pressure off and then reapply pressure to open a sleeve. This is accomplished through a method of trapping pressure and creating a pressure differential during the bleed off cycle. This pressure differential then shifts the sleeve that exposes a pressure actuating device (e.g., a rupture disk) to casing pressure. A reapplication of pressure to the string activates the pressure actuating device and allows pressure to act on the shifting sleeve, this shifting sleeve in turn opens due to its own created pressure differential exposing stimulation ports in the wall of the tool housing.
Turning now to
The wellbore 120 includes a casing 140 that ends at some predetermined point above the bottom of the wellbore 120, and so is an “open hole”. The cementing operation 130 may be any kind of cementing operation encountered in the art. Those in the art will appreciate that cementing operations come in many variations depending on numerous factors such as the wellbore design, intended operations upon completion, the constitution of the formation in which the well is drilled, and applicable regulations. Accordingly, the embodiments disclosed herein are not limiting and are exemplary only. The technique currently disclosed and claimed is amenable to all manner of operations and variable to meet these types of concerns.
The length and composition of the tubular string 110 will be highly implementation specific and is not material to the practice of the technique. The downhole apparatus 100 is disposed in accordance with conventional practice toward the end of the tubular string 110. The downhole apparatus 100 may be, for example, three or four joints from the bottom of the casing 140 or the tubular string 110. The joints below the downhole apparatus 100 may include but is not limited to a landing collar 150, a float collar 160, a float shoe 170, or some combination of these depending on the embodiment.
The embodiment shown in
In the description that follows, the terms “upper” or “lower” are used to identify that which is closer and farther, or proximal and distal, to and from the wellhead at the Earth's surface as traced through the wellbore. This accords with their usage in the art. The same is true for similar terms such as “uphole” and “downhole” when used in such a context. Thus, in embodiments where the wellbore is horizontal and the components are not necessarily “above” or “below” each other in the sense one might find in a vertical wellbore, they will still be proximal or distal to the wellhead through the wellbore and so the terms “upper”, “lower”, “uphole”, and “downhole” still apply.
The valve 300 comprises a valve body 302 defining a bore 303 in fluid communication with a chamber 304 and a fluid passageway 305. The valve 300 also includes a first piston 306 and a second piston 307. The first piston 306 is disposed in the body 302 to trap a first fluid pressure in the chamber 304 when the first fluid pressure is applied to the bore 303 of the body 302. The second piston 307 is disposed in the body 302 to open the fluid passageway 305 when a second fluid pressure is applied to the bore 303 of the body 302, wherein the second fluid pressure is less than the first fluid pressure.
More particularly, the valve body 302 comprises in this embodiment an upper sub 310, a housing 315, a lower sub 320, and an inner mandrel 325. The housing 315 is mechanically engaged at either end thereof to the upper sub 310 and the lower sub 320. The mechanical engagement may be by any suitable means known to the art. The illustrated embodiment effects the mechanical engagement through mating threads such is well known and commonly used throughout the art. However, other suitable means may be employed in alternative embodiments. The inner mandrel 325 is disposed within the housing 315 between the upper sub 310 and the lower sub 320. The inner mandrel 325 abuts the upper sub 310 and the lower sub 320 on either end but does not engage them by mating thread, pins, welds, or any other such technique in this particular embodiment.
The inner mandrel 325, in conjunction with the housing 315, defines the chamber 304. The chamber 304 is in direct fluid communication with the bore 303 and a first port 345 and indirect fluid communication with a second port 330 and a third port 340 through the bore 304, all in the inner mandrel 325. As is better shown in
Some of the details described herein are implementation specific and so may see wide variation across different embodiments. This includes details such as the fit of the inner mandrel 325 to the upper sub 310 and the lower sub 320 and the number. Such details may be employed to, for example, facilitate manufacture and assembly of the valve 300. This also includes details such as the number and distribution of radial ports 400 in the first port 345, second port 330, and third port 340. However, other considerations familiar to those in the art, or even these particular considerations weighed differently or examined in a different context, might mitigate for departure from such details. The presently disclosed technique therefore admits variation in such details.
Returning now to
The toe valve 301 may be any suitable toe valve known to the art. In the illustrated embodiment, the toe valve 301 is the toe valve disclosed and claimed in U.S. application Ser. No. 13/924,828. However, it is to be understood that other suitable toe valves known to the art may be used in alternative embodiments. A fuller description of the design, construction and operation of the illustrated toe valve 301 can be found in the aforementioned application. For present purposes, the toe valve 301 is initiated by fluid pressure through the fluid passageway 305 to move a sliding sleeve and uncover ports permitting fluid flow from the bore 303 to the exterior of the tubular string 110.
The first piston 306 is pinned to the inner mandrel 325 by a shear pin 440 and the lock piston 360 is pinned to the inner mandrel 325 by a shear pin 442. The shear pins 440, 442 prevent inadvertent shifting of the first piston 306 and the second piston 307. The shear pins 440, 442 are, by way of example and illustration, but one means by which the inadvertent shifting of the first piston 306 and the lock piston 360 may be accomplished. Other suitable means are known to the art for performing this function. For example, the shear pins may be shear wires, screws, or some other device. Any suitable means known to the art may be used for this purpose and alternative embodiments may employ any such suitable means.
The chamber 304 is exposed to the fluid pressure in the bore 303 through the first port 345 and the aligned port 347 in the first piston 306. Thus, when the downhole apparatus 100 is run into the wellbore 120 as a part of the tubular string 110, the pressure in the chamber 304 is the ambient pressure in the wellbore 120 and the bore 303. The pressure across the lock piston 360 is balanced by the application of the fluid pressure in the bore 303 through the second port 330. Note that the third port 340 is closed by the bypass piston 365 and sealed by the sealing elements 367, 368.
Once the tubular string 110 is disposed within the wellbore 120, the wellbore 120 is pressured up to a first fluid pressure (P1) in accordance with conventional practice, as is shown in
These parameters include not only the pressure to which the well must be brought up to, but also the time during which it must be held at that pressure. Thus, even in embodiments in which the first fluid pressure is the testing pressure, that pressure will vary depending on the implementation. Similarly, the time at which the well is held at the first fluid pressure will also vary depending on the implementation. Those in the art having the benefit of this disclosure will be able to readily ascertain those parameters for their particular implementation.
The chamber 304, because it is in fluid communication with the bore 303 as described above, will pressure up to the first fluid pressure (P1) along with the rest of the well. The shear pin 440 holding the first piston 306 is selected to shear at the first fluid pressure. When the shear pin 440 shears as the well pressure reaches the first fluid pressure, the first piston 306 moves to a closed position as shown in
The movement of the first piston 306 to its closed position thereby interrupts the fluid communication between the bore 303 and the chamber 304 through the first port 345. The second piston 307, however, is still held in position by the second shear pin 442 as is shown in Figure SB. The pressure across the lock piston 360 is still balanced through the second port 330. The pressure in the bore 303 and the chamber 304 is at the first fluid pressure at this point in the operation. As described above, the closure of the first piston 306 seals the chamber 304 from the first port 345. The chamber 304 is furthermore sealed on its other end by the sealing elements 504, 505. Thus, the first fluid pressure is “trapped” within the chamber 304, i.e., in that portion of the valve 300.
The pressure in the wellbore 120 is then brought down to a second fluid pressure (P2) less than the first fluid pressure as shown in
Still referring now to
Still referring to
In the illustrated embodiment, the wellbore 120 is then pressured up again to a third fluid pressure (P3) greater than the second fluid pressure as shown in
The third fluid pressure then acts through the fluid passageway 305 to actuate the toe valve 301. Note that the actuation of the toe valve 301 will depend to some degree on the implementation thereof. In the illustrated embodiment, the third fluid pressure acts through the fluid passageway 305 to move the sliding sleeve 706, shown in both
The fluid used to open the toe valve 301 may be any fluid used in the art in such circumstances. The pressures at which the toe valve 205 opens will be implementation specific depending on operating regulations governing operations on the well. However, pressures on the order of 17,000 psi will not be uncommon.
This particular embodiment also includes a “failsafe” mode of operation. This mode of operation could be employed if, for example, some error happens in the function of the pistons in a manner that prohibits the delivery of the third fluid pressure through the fluid passageway 305. The fluid passageway 305 is protected by a pressure barrier 806, shown in
In the illustrated embodiment, the valve 300 and the toe valve 301 are manufactured as separate tools that are assembled prior to use. Alternative embodiments, however, may manufacture the features of each in a single tool for assembly into a string. This true also even in embodiments in which the hydraulically actuated downhole tool is a tool other than a toe valve. Other, similar variations may become apparent to those ordinarily skilled in the art having the benefit of this disclosure.
The presently disclosed technique admits variation in the design of the valve 300 in alternative embodiments. One such alternative embodiment is shown in
Referring now to
As shown in
The inner mandrel 1025, in conjunction with the upper housing 1015, defines a chamber 1040. The chamber 1040 is in fluid communication with the bore 1048 through a first port 1045 in the upper sub 1010. As better shown in
The chamber 1040 is also, at various times during the operation of the valve 1000, in fluid communication with the bore 1048 through a second port 1047. Each second port 1047 comprises a radial port through the inner mandrel 1025.
The third port 1050 is better shown in
Still referring to
Returning now to
The check piston 1055 does not seal the chamber 1040 in the position shown in
Once the tubular string 110 is disposed within the wellbore 120, the wellbore 120 is pressured up to a first fluid pressure (P1) in accordance with conventional practice, as is shown in
The sealing elements 1200, 1205, 1207—elastomeric O-rings, in this particular embodiment—seal the portion 1056 of the chamber 1040 below the check piston 1055 from that portion 1215 above the check piston 1055. In particular, they seal against the face of the check piston 1055. Thus, whereas fluid flow was previously permitted between the bore 1048 and the chamber 1040 around the check piston 1055, such fluid flow is sealed by the downward movement of the check piston 1055 to seal the chamber 1040 below the check piston 1055 from the bore 1048. The portion 1056 is sealed below by the sealing elements 1215, 1220, shown in
The pressure in the wellbore 120 is then brought down to a second pressure less than the first fluid pressure. In the illustrated embodiment, the pressure in the portion 1225 of the chamber 1040 is bled out through second port 1050. The portion 1056, however, is sealed at both ends as described above, and so remains at the first fluid pressure. This creates a differential pressure across the lock piston 1060 that shears the pin 1142, thereby permitting the lock piston 1060 to stroke downward, which is to the right in the drawings, as shown in
Referring now to both
The wellbore 120 is then pressured up again to a third fluid pressure greater than the second pressure as shown in
This particular embodiment also includes a “failsafe” mode of operation in the same manner as the embodiment of
The illustrated embodiment may include a shroud 1080, shown only in
Other non-limiting similarities to the embodiment of
The following patents and/or patent applications are hereby incorporated by reference in their entirety for all purposes as if expressly set forth herein.
U.S. application Ser. No. 13/924,828, entitled, “Method and Apparatus for Smooth Bore Toe Valve”, filed Jun. 24, 2013, in the name of the inventors Kenneth J. Anton and Michael J. Harris and commonly assigned herewith.
In the event of any conflict between any incorporated patent, patent application, or other reference and the disclosure herein, the present disclosure controls the conflict.
This concludes the detailed description. The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
This application is a continuation of U.S. patent application Ser. No. 14/073,706, filed Nov. 6, 2013, and a continuation of PCT Application No. PCT/US2014/64365, filed on Nov. 6, 2014. The entire disclosure of each of these applications is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5979553 | Brink | Nov 1999 | A |
6397949 | Walker | Jun 2002 | B1 |
7204315 | Pia | Apr 2007 | B2 |
7503390 | Gomez | Mar 2009 | B2 |
7591321 | Whitsitt | Sep 2009 | B2 |
8267178 | Sommers | Sep 2012 | B1 |
8757273 | Themig | Jun 2014 | B2 |
9359864 | Harris | Jun 2016 | B2 |
9476282 | Anton | Oct 2016 | B2 |
20090095463 | Swan et al. | Apr 2009 | A1 |
20120018169 | Caminari et al. | Jan 2012 | A1 |
20130087326 | Ringgenberg | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
2013154544 | Oct 2013 | WO |
Entry |
---|
Jin Ho Kim (Authorized Officer), PCT International Search Report and Written Opinion dated Feb. 24, 2015, PCT Application No. PCT/US2014/064365, dated Nov. 6, 2014, pp. 1-11. |
Notice of Allowance dated Nov. 18, 2015, U.S. Appl. No. 14/073,706, filed Nov. 6, 2013, pp. 1-17. |
Number | Date | Country | |
---|---|---|---|
20160237786 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14073706 | Nov 2013 | US |
Child | 15139418 | US | |
Parent | PCT/US2014/064365 | Nov 2014 | US |
Child | 14073706 | US |