Method and apparatus for adaptive rate selection in a communication system

Information

  • Patent Grant
  • 6760313
  • Patent Number
    6,760,313
  • Date Filed
    Monday, June 19, 2000
    24 years ago
  • Date Issued
    Tuesday, July 6, 2004
    20 years ago
Abstract
A method and an apparatus for adaptive data rate selection in a high data rate (HDR) communication system are disclosed. An exemplary HDR communication system defines a set of data rates, at which an access point (AP) may transmit data packets to an access terminal (AT). The transmission data rate is selected to maintain target packet error rate (PER). Each AT monitors signal quality metric of signals received from APs. An AT receiving forward link signals from multiple ATs identifies the AT associated with the highest quality forward link signal. The AT then evaluates the rate at which a tail probability of error is greater than or equal to a target tail probability of error. The AT then generates a prediction of a first data rate at which the PER of packets received from the identified AP will not exceed the target PER, and a prediction of a second data rate at which the PER of packets received from the selected AP will exceed the target PER. The AT uses the values of the first and second data rates to predict probabilities of selecting the first and the second data rates such that a throughput of the HDR system is maximized and the target PER is achieved. The predicted probabilities are then utilized as biases for a method identifying whether the first data rate or the second data rate will be requested from the AP. The disclosed method and apparatus may be extended to the full set of available data rates.
Description




BACKGROUND OF THE INVENTION




I. Field of the Invention




The current invention relates to communication. More particularly, the present invention relates to a novel method and apparatus for adaptive rate selection in a wireless communication system.




II. Description of the Related Art




A modern communications system is required to support a variety of applications. One such communications system is a code division multiple access (CDMA) system that conforms to the “TIA/EIA/IS95 Mobile Station-Base Station Compatibility Standard for Dual-Mode Wide-Band Spread Spectrum Cellular System,” hereinafter referred to as the IS-95 standard. The CDMA system supports voice and data communication between users over a terrestrial link. The use of CDMA techniques in a multiple access communication system is disclosed in U.S. Pat. No. 4,901,307, entitled “SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS,” and U.S. Pat. No. 5,103,459, entitled “SYSTEM AND METHOD FOR GENERATING WAVEFORMS IN A CDMA CELLULAR TELEPHONE SYSTEM,” both assigned to the assignee of the present invention and incorporated herein by reference.




In a CDMA system, communications between users are conducted through one or more base stations. In wireless communication systems, forward link refers to the channel through which signals travel from a base station to a subscriber station, and reverse link refers to channel through which signals travel from a subscriber station to a base station. By transmitting data on a reverse link to a base station, a first user on one subscriber station may communicate with a second user on a second subscriber station. The base station receives the data from the first subscriber station and routes the data to a base station serving the second subscriber station. Depending on the location of the subscriber stations, both may be served by a single base station or multiple base stations. In any case, the base station serving the second subscriber station sends the data on the forward link. Instead of communicating with a second subscriber station, a subscriber station may also communicate with, a wireline telephone through a public switched telephone network (PSTN) coupled to the base station, or a terrestrial Internet through a connection with a serving base station.




Given the growing demand for wireless data applications, the need for very efficient wireless data communication systems has become increasingly significant. The IS95 standard specifies transmitting traffic data and voice data over the forward and reverse links. A method for transmitting traffic data in code channel frames of fixed size is described in detail in U.S. Pat. No. 5,504,773, entitled “METHOD AND APPARATUS FOR THE FORMATTING OF DATA FOR TRANSMISSION,” assigned to the assignee of the present invention and incorporated by reference herein. In accordance with the IS-95 standard, the traffic data or voice data is partitioned into code channel frames that are 20 milliseconds wide with data rates as high as 14.4 Kbps.




In mobile radio communication systems, there are significant differences between the requirements for providing voice and data services (i.e., non-voice services such as Internet or fax transmissions). Unlike data services, voice services require stringent and fixed delays between speech frames. Typically, the overall one-way delay of speech frames used for transmitting voice information must be less than 100 msec. By contrast, transmission delays that occur during data (i.e., non-voice information) services can vary and larger delays then those that can be tolerated for voice services can be utilized.




Another significant difference between voice and data services is that, in contrast to data services, voice services require a fixed and common grade of service. Typically, for digital systems providing voice services, this requirement is met by using a fixed and equal transmission rate for all users and a maximum tolerable error rate for speech frames. For data services, the grade of service can vary from user to user.




Yet another difference between voice services and data services is that voice services require a reliable communication link which, in the case of a CDMA communication system, is provided using a soft handoff. A soft handoff requires the redundant transmission of the same voice information from two or more base stations to improve reliability. A soft handoff method is disclosed in U.S. Pat. No. 5,101,501, entitled “SOFT HANDOFF IN A CDMA CELLULAR TELEPHONE SYSTEM.” This additional reliability is not required to support data services, because data packets received in error can be retransmitted.




As a mobile station moves in a mobile radio communication system, the quality of the forward link (and the capacity of the forward link to transmit data) will vary. Thus, at some moments a given forward link between a base station and a mobile station will be able to support a very high data transmission and, at other moments, the same forward link may only be able to support a much reduced data transmission rate. In order to maximize the throughput of information on the forward link, it would be desirable if the transmission of data on the forward link could be varied so as to increase the data rate during those intervals where the forward link can support a higher transmission rate.




When non-voice traffic is being sent from a base station to a mobile station on a forward link, it may be necessary to send control information from the mobile station to the base station. At times, however, even though the forward link signal may be strong, the reverse link signal may be weak, thereby resulting in a situation where the base station cannot receive control information from the mobile station. In such situations, where the forward link and the reverse link are unbalanced, it may be undesirable to increase the transmit power on the reverse link in order to improve the reception quality of the control information at the base station. For example, in CDMA systems, increasing the transmit power on the reverse link would be undesirable, as such a power increase could adversely affect the reverse link capacity seen by other mobile stations in the system. It would be desirable to have a data transmission system where the forward and reverse links associated with each mobile station were maintained in a balanced state without adversely impacting the reverse link capacity. It would be further desirable if such a system could maximize the throughput of non-voice data on individual forward links when such links are sufficiently strong to support higher data rates.




One approach to the aforementioned requirements in high data rate (HDR) systems is to keep the transmit power fixed and vary the data rate depending on the users' channel conditions. Consequently, in a modern HDR system, Access Point(s) (APs) always transmit at maximum power to only one Access Terminal (AT) in each time slot, and the AP uses rate control to adjust the maximum rate that the AT can reliably receive. An AP is a terminal allowing high data rate transmission to ATs.




As used in this document, a time slot is a time interval of finite length, e.g., 1.66 Ms. A time slot can contain one or more packets. A packet is a structure, comprising a preamble, a payload, and a quality metric, e.g., a cyclical redundancy check (CRC), a parity bit, and the like. The preamble is used by an AT to determine whether a packet has been intended for the AT.




An exemplary HDR system defines a set of data rates, ranging from 38.4 kbps to 2.4 Mbps, at which an AP may send data packets to an AT. Such a system is disclosed in co-pending application Ser. No. 08/963,386, entitled “METHOD AND APPARATUS FOR HIGH RATE PACKET DATA TRANSMISSION,” filed Nov. 3, 1997, now U.S. Pat. No. 6,574,211, issued Jun. 3, 2003 to Padovani et al., assigned to the assignee of the present invention and incorporated by reference herein. The data rate is selected to maintain a targeted packet error rate (PER). The AT measures the received signal to interference and noise ratio (SINR) at regular intervals, and uses the information to predict an average SINR over the next packet duration. An exemplary prediction method is disclosed in co-pending application Ser. No. 09/394,980 entitled “SYSTEM AND METHOD FOR ACCURATELY PREDICTING SIGNAL TO INTERFERENCE AND NOISE RATIO TO IMPROVE COMMUNICATIONS SYSTEM PERFORMANCE,” filed Sep. 13, 1999, now U.S. Pat. No. 6,426,971, issued Jul. 30, 2002 to Wu et al., assigned to the assignee of the present invention and incorporated herein by reference.





FIG. 1

shows an exemplary embodiment of an open-loop rate control apparatus


100


. A stream of past SINR values at instances [n−m], . . . [n−1], [n], each measured over a duration of a corresponding packet, is provided to a predictor


102


. The predictor


102


predicts the average SINR over the next packet duration in accordance with the following equation:








OL









SINR




Pr edicted




=OL









SINR




Estimated




−K·σ




e


  (1)






In Equation (1), OL_SINR


Pr edicted


is an SINR predicted by the open-loop for next packet, OL_SINR


Estimated


is an SINR estimated by the open-loop based on past SINR values, K is a back-off factor, and σ


e


is a standard deviation of an error metric.




The estimated SINR may be obtained by selecting an output from a bank of low pass filters (not shown) acting on past measurements of SINR. Selection of a particular filter from the filter bank may be based on an error metric, defined as a difference between the particular filter output and measured SINR over a packet duration immediately following the output. The predicted SINR is obtained by backing off from the filter output by an amount equal to the product of the back-off factor K and the standard deviation σ


e


of the error metric. The value of the back-off factor K is determined by a back-off control loop, which ensures that a tail probability, i.e., probability that predicted SINR exceeds the measured SINR, is achieved for a certain percentage of time.




The SINR


Pr edicted


value is provided to a look up table


104


that maintains a set of SINR thresholds. The SINR thresholds represent the minimum SINR required to decode a packet at each data rate with 1% PER. An AT (not shown) uses the look up table


104


to select the highest data rate whose SINR threshold is below the predicted SINR, and requests that an AP (not shown) send the next packet at this data rate.




The aforementioned method is an example of an open-loop rate control method that, determines the best rate at which to receive the next packet, based only on the measurement of the channel SINR, without any information about the demodulator error rate (for packets of each data rate) at a given SINR under the prevailing channel conditions. Any open-loop rate control algorithm suffers from several shortcomings, some of which are discussed below. First, a certain tail probability, e.g., 2%, does not imply a PER of 2%. This is because PER is a monotonically decreasing function of SINR, with a finite slope that depends on the coding scheme and channel conditions. However, Equation (1) assumes “brick wall” PER characteristics, i.e., a packet is deemed to be decoded whenever the SINR exceeds the threshold for the corresponding rate, and a packet is declared to be in error whenever the SINR falls below the threshold. Furthermore, the open-loop rate control method uses a fixed set of SINR thresholds, which ensures PERs close to the target error rate under worst-case channel conditions. However, the performance of the demodulator depends not only on the SINR, but also on channel conditions. In other words, a method that uses a fixed set of SINR thresholds for all channels achieves different PERs on different channels. Consequently, while the open-loop method works optimally under the worst-case channel conditions, it is possible that under typical channel conditions, the method results in much lower error rates than is necessary, at the expense of diminished throughput. Additionally, a practical rate control method necessitates a small, finite set of data rates. The rate selection method always selects the nearest lower data rate in order to guarantee an acceptable PER. Thus, rate quantization results in loss of system throughput.




Therefore, there exists a need to address deficiencies of the existing method.




SUMMARY OF THE INVENTION




The present invention is directed to a novel method and apparatus for adaptive rate selection in a wireless communication system. It is one aspect of the invention to improve throughput of a high data rate wireless communication system by taking advantage of a margin between an SINR threshold required to receive a requested rate correctly and an SINR estimate. This goal is advantageously achieved by identifying two data rates and selecting frequency of transmission of each of them to achieve a target PER. It is another aspect of the invention to extend the method to N rates.




It is yet another aspect of the invention to further improve the throughput by updating parameters used for the data rate selection to more accurately reflect the predicted SINR value.











BRIEF DESCRIPTION OF THE DRAWINGS




The features, objects, and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:





FIG. 1

illustrates a block diagram of a conventional, open-loop rate-control apparatus.





FIG. 2

illustrates a block diagram of an exemplary communication system capable of implementing embodiments of the invention.





FIG. 3

illustrates a flowchart of an exemplary method of selecting a rate in a communication system.





FIGS. 4A-4B

illustrate methods for initial estimate of probabilities for a set of data rates.





FIGS. 5A-5B

depict a relationship between an SINR and a PER as used by the fast-track method.





FIG. 6

is a detailed block diagram of an exemplary communication system capable of implementing embodiments of the invention.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS





FIG. 2

illustrates an exemplary communication system


200


capable of implementing embodiments of the invention. An AT


202


transmits signals to an AP


204


over a reverse link


206




b


, and receives signals from the AT


204


over a forward link


206




a


. The communication system


200


can be operated bi-directionally, each of the terminals


202


,


204


operating as a transmitter unit or a receiver unit, or both concurrently, depending on whether data is being transmitted from, or received at, the respective terminal


202


,


204


. In a cellular wireless communication system embodiment, the AP


204


can be a base station (BS), the AT


202


can be a mobile station (MS), and the forward link


206




a


and reverse link


206




b


can be electromagnetic spectra. For simplicity, communication system


200


is shown to include one BS


204


and one MS


202


only. However, other variations and configurations of the communication system


200


are possible. For example, in a multi-user, multiple access communication system, a single BS may be used to concurrently transmit data to a number of MSs. In addition, in a manner similar to soft-handoff, disclosed in U.S. patent Ser. No. 5,101,501, entitled “SOFT HANDOFF IN A CDMA CELLULAR TELEPHONE SYSTEM,” assigned to the assignee of the present application and incorporated by reference herein, an MS may concurrently receive transmissions from a number of BSs. The communication system of the embodiments described herein may include any number of BSs and MSs. Consequently, each of the multiple BSs is connected to a base station controller (BSC)


208


through a backhaul similar to backhaul


210


. The backhaul


210


can be implemented in a number of connection types including, e.g., a microwave or wire-line E


1


or T


1


, or optical fiber. A connection


212


connects the wireless communication system


200


to a public switched data network (PSDN), which is not shown.




In one embodiment, each MS monitors signal quality metric of signals received from BSs. An MS (for example MS


202


) receiving forward link signals from multiple BSs identifies the BS associated with the highest quality forward link signal (for example BS


204


). The MS


202


then evaluates a rate at which a tail probability of error is greater than or equal to a target tail probability of error. The tail probability of error is the probability that the actual signal quality during the packet transmission period is less than the signal quality required for decoding a packet correctly at a given rate. An exemplary embodiment uses tail probability of error of approximately 10%. In one embodiment, the rate is computed in accordance with principles disclosed in reference to FIG.


1


. The MS


202


then generates a prediction of a maximum data rate R


i


at which a PER of packets received from the identified BS


204


will not exceed a target PER. An exemplary embodiment uses target PER of approximately 10%. The MS


202


then generates a prediction of a data rate R


i+1


, higher than R


i


, at which the PER of packets received from the selected BS


204


will exceed the target PER. The MS


202


uses the values R


1


, R


i+1


, in an adaptive rate selection method, discussed in detail in reference to

FIG. 3

below, which predicts probabilities α


i


, α


i+1


, of selecting data rates R


i


, R


i+1


, such that the target PER is achieved. The adaptive rate selection method uses the probabilities α


i


, α


i+1


, as biases for actual selection of data rates R


i


, R


i+1


. One embodiment of the selection method uses a random number generator, which generates numbers from the interval (0,1), inclusive. A bias threshold (TH


BLAS


) is defined by the following equation:










TH
BIAS

=


α
i


α

i
+
1







(
2
)













When the random number falls within the interval (0,TH


BLAS


) the data rate R


i


is selected, and when the random number falls within the interval (TH


BLAS


, 1) the data rate R


i+1


, is selected.




The MS


202


then sends a message over the reverse link


20




b


, requesting the actually selected rate. In one embodiment of the invention, the message is sent on a data rate control channel (DRC). The use of a DRC is disclosed in the above-mentioned co-pending application Ser. No. 08/963,386.




In one embodiment, the BS


204


monitors the reverse channel from one or more MSs and transmits data on the forward link


206




a


to no more than one destination MS during each forward link transmit time slot. The BS


204


selects a destination MS (for example MS


202


) based on a scheduling procedure designed to balance the grade of service (GoS) requirements of each MS with the desire to maximize throughput of the system


100


. In an exemplary embodiment, the BS


204


transmits data to the destination MS


202


only at the rate indicated by the most recent message received from the destination MS. This restriction makes it unnecessary for the destination MS


202


to perform rate detection on the forward link signal. The MS


202


need only determine whether it is the intended destination MS during a given time slot.




In an exemplary embodiment, BSs transmit a preamble within the first time slot of each new forward link packet. The preamble identifies the intended destination MS. Once a destination MS establishes that it is the intended destination for data in a slot, the MS begins decoding the data in the associated time slot. In an exemplary embodiment, the destination MS


202


determines the data rate of the data in the forward link based on the request message the MS


202


sent. The number of forward link time slots used to transmit a packet varies based on the data rate at which the packet is sent. Packets sent at a lower rate are sent using a greater number of time slots.




Once the MS


202


determines that the data are intended for the MS


202


, the method is repeated.




Although the aforementioned method was described in reference to two data rates R


i


, R


i+1


, one skilled in the art will appreciate that the method may be extended to N rates, as will be described below.




I. Adaptive Rate Selection Method Using Two Rates





FIG. 3

illustrates a flowchart of an exemplary adaptive rate selection method, which ensures the best possible throughput with acceptable error rates in a communication system, utilizing two rates.




In step


300


, a desired PER is set. The desired PER may advantageously be a parameter established by a system operator. In one embodiment, the desired PER is set to 10%. Control flow then proceeds to step


302


.




In step


302


, a target tail probability of error is set. The target tail probability of error is set to a value, advantageously approximating the value of desired PER. In one embodiment, the target tail probability of error is set to 10%. Control flow then proceeds to step


304


.




In step


304


, a rate at which a tail probability of error is greater than or equal to a target tail probability of error is evaluated. In one embodiment, the rate may be determined from a probability density function, which represents a probability of an error with which a packet transmitted at a certain rate will be received. Control flow then proceeds to step


306


.




In step


306


, a data rate R


i


at which a PER of packets received over a forward link will not exceed the target PER is selected. In one embodiment, R


1


is a data rate, an SINR threshold for correct detection of which is lower than and adjacent to a predicted SINR for a given tail probability of error. In another embodiment, R


i


is any data rate, an SINR threshold for correct detection of which is lower than the predicted SINR for a given tail probability of error. Control flow then proceeds to step


308


.




In step


308


, a data rate R


i+1


at which a PER of packets received over a forward link will exceed the target PER is selected. In one embodiment, R


i+1


is any data rate, an SINR threshold for correct detection of which is higher than and adjacent to the predicted SINR for a given tail probability. In another embodiment, R


i+1


is a data rate, an SINR threshold for correct detection of which is higher than the predicted SINR for a given tail probability of error. Control flow then proceeds to step


310


.




In step


310


, PER probabilities P


i


, P


i+1


for a set of data rates R


i


, R


i+1


, are calculated. The PER probability for the ith rate p


i


is defined by the following equation:








p




i




≡P


(


R




i—


in_error)  (1)






in which P denotes a probability that a packet with a data rate R


i


was received in error (R


i—


in_error).




The PER probabilities p


i


, p


i+1


are advantageously updated using a true packet event or, when a true packet event is not available, a fast-track method.




A true packet event occurs when, upon request from an MS for a packet at a certain rate, the MS detects a preamble and either correctly or incorrectly decodes the packet. The packet is correctly decoded if the packet's quality metric, determined from the received packet, matches a quality metric contained in the packet. The quality metric may be, e.g., a cyclic redundancy check, a parity bit, and other metric known to those skilled in the art. In an exemplary embodiment, the quality metric is a CRC. Otherwise, the packet is declared incorrectly decoded, i.e., the packet is in error.




A true packet event is not available when, upon request from an MS for a packet at a certain rate, the MS fails to detect a preamble. The fast-track method estimates whether the requested packet would have been properly decoded or whether the requested packet would have been in error in accordance with measured average SINR for the duration of the requested packet. Different embodiments of the method are described in detail in reference to FIG.


4


. Because the PER probabilities p


i


are calculated/estimated over several past time slots; the values of p


i


do not accurately reflect current predicted SINR value. Therefore, in step


310


, the PER probabilities p


i


are modified to reflect the current predicted SINR value. In accordance with one embodiment, the modification is carried out in accordance with the following equation:










p
i

=


p
i

·


e


-
β

·

(


OL_SINR
Predicted_CS

-

OL_SINR
Predicted_LT


)



.






(
2
)













In equation (2), β represents a factor controlling an amount by which the probabilities p


i


should be modified. The β factor is advantageously determined from simulation. In the exemplary embodiment OL_SINR


Pr edicted













CS


is an SINR predicted by the open loop from the current time slot, and OL_SINR


Pr edicted













LT


is an SINR predicted by the open loop based on past time slots. The open-loop method was discussed in reference to FIG.


1


. Control flow then proceeds to step


312


.




In step


312


, probabilities α


i





i+1


of requesting data rates R


i


, R


i+1


are calculated so that a throughput TH is maximized under the condition that a desired PER (p


target


) is achieved. Mathematically, α


i





i+1


are selected so that the following equation is satisfied:








TH


=max(α


i




·R




i


·(1


−p′




i


)+α


i




·R




i+1


·(1


−p′




i+1


))  (3)






subject to the conditions:




 α


i




·p




i





i+1




·p




i+1




=p




t arg et


, and  (4)






α


i





i+1


=1.  (5)






Control flow then proceeds to step


314


.




In step


314


, the values of probabilities α


i





i+1


, are used as biases for making a decision, which of the rates R


i


, R


i+1


, is to be requested. Control flow then proceeds to step


316


.




In step


316


, the rate selected in step


314


is requested.




II. Adaptive Rate Selection Method Using Three Rates




In another embodiment, the method described in reference to

FIG. 3

is extended to three data rates. Steps


300


through


306


are identical to those described in reference to FIG.


3


.




In step


308


, data rates R


i+1


, R


i+2


at which a PER of packets received over a forward link will exceed the target PER are selected. The data rates R


i


, R


i+1


, R


i+2


satisfy the following equation:








R




i




<R




i+1




<R




i+2


  (6)






In one embodiment, R


i+1


, is a data rate, an SINR threshold for correct detection of which is higher than and adjacent to the predicted SINR for a given tail probability. In another embodiment, R


i+1


is a data rate, an SINR threshold for correct detection of which is higher than the predicted SINR for a given tail probability of error. In one embodiment, R


i+2


is a data rate higher than and adjacent to the data rate R


i+1


. In another embodiment, R


i+2


is a data rate higher than the data rate R


i+1


.




Step


310


is identical to step described in reference to FIG.


3


.




In step


312


, probabilities α


i





i+1





i+2


of selecting rates R


i


, R


i+1


, are calculated so that a throughput estimates TH


i,i+1


, TH


i,i+2


for a data rate combination R


i


, R


i+1


and R


i


, R


i+2


are maximized under the condition that p


target


is achieved. Mathematically, α


i





i+1





i+2


are selected so that the following equations are satisfied:








TH




i,i+1


=max(α


i




·R




i


·(1


−p′




i


)+α


i+1




·R




i+1


·(1


−p′




i+1


))  (7)










TH




i,i+2


=max(α


i


·(1


−p′




i





R




i





i+2




·R




i+2


·(1


−p′




i+2


))  (8)






which are solved subject to the conditions:







p′




i


·α


i




+p′




i+1


·α


i+1




=p




t arg et


  (9)








p′




i


·α


i




+p′




i+2


·α


i+2




=p




t arg et


  (10)








α


i





i+1


=1  (11)








α


i





i+2


=1  (12)






In step


314


, the throughput estimates TH


i,i+1


, TH


i,i+2


are compared. The values of probabilities of α s corresponding to the greater throughput estimate are used as biases for making a decision, which of the rates corresponding to the values of probabilities of α s is to be requested. Thus if TH


i,i+1


is greater than TH


i,i+2


, the values of probabilities α


i





i+1


are used to make a decision whether R


i


or R


i+1


is to be requested.




Step


316


is identical to step described in reference to FIG.


3


.




III. Adaptive Rate Selection Method Using N Rates




In another embodiment, the method described in reference to

FIG. 3

is further extended to N rates.




Steps


300


through


306


are identical to those described in reference to FIG.


3


.




In step


308


, the remaining N−1 data rates are selected. In one embodiment, data rates R


i+j


, j∈(1,N−1) are the data rates at which a PER of packets received over a forward link will exceed the target PER. The data rates R


i+j


satisfy the following equation:








R




i




<R




i+1




<. . . <R




i+N−1


  (13)






In one embodiment, R


i+1


is a data rate, an SINR threshold for correct detection of which is higher than and adjacent to the predicted SINR for a given tail probability. In another embodiment, R


i+1


is a data rate, an SINR threshold for correct detection of which is higher than the predicted SINR for a given tail probability of error. In another embodiment, the data rates R


i+j


are adjacent to each other.




In another embodiment, data rates R


i+j


, j∈(1,N−1) are divided in two sets.




The first set contains data rates at which a PER of packets received over a forward link will not exceed the target PER. The data rates R


i+j


, j∈(−m,0) satisfy the following equation:







R




i−m




>. . . >R




i−1




>R




i


  (14)




In one embodiment, the data rates R


i+j


are adjacent to each other.




The second set contains data rates at which a PER of packets received over a forward link will exceed the target PER. The data rates R


i+j


, j∈(1,N−m) satisfy the following equation:








R




i




<R




i+1




<. . . <R




i+N−m


  (15)






In one embodiment, R


i+1


is a data rate, an SINR threshold for correct detection of which is higher than and adjacent to the predicted SINR for a given tail probability. In another embodiment, R


i+1


is a data rate, an SINR threshold for correct detection of which is higher than the predicted SINR for a given tail probability of error. In another embodiment, the data rates R


i+j


are adjacent to each other.




Step


310


is identical to step described in reference to FIG.


3


.




In step


312


, probabilities α


i


for all i∈(1,N) of selecting rates R


i


for all i∈(1,N) are calculated so that a throughput TH is maximized under the condition that p


target


is achieved. Mathematically, α


i


are selected so that the following equations are satisfied:









TH
=

max
[




i
=
1

N







(


α
i

·

R
i

·

(

1
-

p
i



)


]







(
12
)













when:













i
=
1

N








α
i

·

p
i




=

p

t





arg





et






(
13
)










i
=
1

N







α
i


=
1.




(
14
)













In step


314


, the values of probabilities α


i


for i⊂(1,N) are used as biases for making a decision, which of the rates for all i⊂(1,N) is to be requested.




In step


316


, the rate selected in step


314


is requested.





FIG. 4

illustrates methods for initial estimate of probabilities p


i


for a set of data rates R


i


, for all i.

FIG. 4



a


depicts an embodiment in which all the probabilities p


i


for a set of data rates R


i


below a certain SINR (SINR


TH


) are initialized to a first value, e.g., P


min


, and all the probabilities p


i


for a set of data rates R


i


above the certain SINR are initialized to a second value, e.g., p


max


.

FIG. 4



b


depicts another embodiment, in which the relationship between an SINR and a probability that a packet will be received at a certain rate is established.





FIG. 5

depicts a relationship between an SINR and a PER as used by the fast-track method.

FIG. 5



a


depicts a “brick-wall” approximation of the relationship. Consequently, a packet is declared to be in error, e.g., received with 100% PER, if the average SINR measured over the packet duration is less than the SINR threshold required for the rate selected. The packet is declared to be correctly received if the average SINR is greater than an SINR threshold required for the rate selected. The SINR thresholds required for each rate are advantageously chosen based on an average white gaussian noise (AWGN) channel model to represent a minimum SINR required to decode a packet at each data rate with 1% PER. Consider a packet received with SINR_P. If the requested rate were R


1


, the packet would be declared correctly received because the SINR_P is greater than the SINR threshold (TH


1


) for rate R


1


. If the requested rate were R


2


, the packet would be declared in error because the SINR_P is less than the SINR threshold (TH


2


) for rate R


2


.




However, as

FIG. 5



b


shows, the embodiment distorts the probabilities p


i


because certain requested packets characterized as correctly received by virtue of the approximation would in fact be received in error and vice versa.

FIG. 5



b


shows the measured relationship between an SINR and a PER at different rates, R


1


, R


2


, . . . R


N


, superimposed on a “brick-wall” approximation. Consider packet received with SINR_P. Using the “brick-wall” approximation, if the requested rate were R


2


, the packet would be declared in error because the SINR_P is less than the TH


2


. However, the measured relationship shows a PER of only 15%. As the SINR_P moves toward TH


2


, the PER further decreases.




Therefore, in another embodiment, the relationship between an SINR and a PER at a certain rate is established. The fast-track method then uses the established relationship to associate the measured average SINR with the PER. The PER is then used to calculate the probabilities p


i


.





FIG. 6

is a detailed block diagram of an exemplary communication system wherein an MS


602


contains an apparatus for an adaptive rate selection method in accordance with one embodiment of the present invention.




A signal arriving at the MS


602


from the BS


604


over the forward link


606




a


in packets is provided to a demodulator


608


. The demodulator


608


measures an: average SINR over the duration of each packet, and provides the average SINRs to a long-term SINR predictor


610


. The long-term SINR predictor


610


predicts an SINR value of the next packet (OL_SINR


Pr edicted













LT


) In one embodiment, the predictor


610


predicts the value OL_SINR


Pr edicted













LT


of the next packet in accordance with the open-loop method discussed in reference to FIG.


1


. However, one skilled in the art will understand that any open-loop method, not limited to the one discussed in reference to

FIG. 1

, may be used. The OL_SINR


Pr edicted













LT


value is provided to a processor


616


and to a look up table


614


. The look up table


614


maintains a set of SINR thresholds that represent the minimum SINR required to successfully decode a packet at each data rate. The processor


616


consults the look up table


614


to select a data rate R


i


at which a PER of packets received from over a forward link will not exceed the target PER is selected. In one embodiment, R


i


is a data rate, an SINR threshold for correct detection of which is lower and adjacent to a predicted SINR for a given tail probability of error. In another embodiment, R


i


is a data rate, an SINR threshold for correct detection of which is lower than the predicted SINR for a given tail probability of error.




The processor


616


further selects a data rate R


i+1


at which a PER of packets received from over a forward link will exceed the target PER. In one embodiment, R


i+1


is a data rate, an SINR threshold for correct detection of which is higher and adjacent to the predicted SINR for a given tail probability. In another embodiment, R


i+1


is a data rate, an SINR threshold for correct detection of which is higher than the predicted SINR for a given tail probability of error.




The demodulator


608


also measures an average SINR over the duration of a current time slot, and provides the average SINRs to a current-slot SINR predictor


612


. The current-slot SINR predictor


612


predicts an SINR value of the next packet (OL_SINR


Pr edicted













CS


). In one embodiment, the predictor


612


predicts the value OL_SINR


Pr edicted













CS


of the next packet in accordance with the open-loop method discussed in reference to FIG.


1


. However, one skilled in the art will understand that any open-loop method, not limited to the one discussed in reference to

FIG. 1

, may be used. The OL_SINR


Pr edicted













CS


value is provided to the processor


616


.




The processor


616


then performs operations described in steps


310


through


316


with reference to FIG.


3


.




One skilled in the art will appreciate that the principles extending the two-rate method to three and N rates, as disclosed in reference to

FIG. 3

, are equally applicable.




Although the demodulator


608


, the long-term predictor


610


, the current-slot predictor


612


, the look-up table


614


, and the processor


616


are shown as separate elements, one skilled in the art will appreciate that the physical distinction is made for explanatory purposes only. The demodulator


608


, the long-term predictor


610


, the current-slot predictor


612


, and the processor


616


may be incorporated into a single processor accomplishing the above-mentioned processing. Thus, the processor may be, e.g., a general-purpose processor, a digital signal processor, a programmable logic array, and other devices known to one skilled in the art. Furthermore, the look up table


614


is a space in a memory. The memory may be a part of the above-mentioned processor or processors, or be a separate element. The implementation of the memory is a design choice. Thus, the memory can be any medium capable of storing information, e.g., a magnetic disk, a semiconductor integrated circuit, and other storage media known to one skilled in the art.




The previous description of the preferred embodiments is provided to enable any person skilled in the art to make or use the present invention. The various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.



Claims
  • 1. A method for an adaptive data rate selection in a communication system, comprising:selecting a target packet error rate; predicting a first data rate a packet error rate of which is smaller than said target packet error rate, comprising: selecting a target tail probability of error; determining a first quality metric corresponding to said target tail probability; and selecting said first data rate a quality metric of which is smaller than said first quality metric; predicting a second data rate a packet error rate of which is greater than said target packet error rate; predicting a third data rate a packet error rate of which is greater than said target packet error rate; and requesting said first data rate or said second data rate or said third data rate to achieve said target packet error rate.
  • 2. The method of claim 1 wherein said quality metric of said first data rate is further adjacent to said first quality metric.
  • 3. A method for an adaptive data rate selection in a communication system, comprising:selecting a target packet error rate; predicting a first data rate a packet error rate of which is smaller than said target packet error rate; predicting a second data rate a packet error rate of which is greater than said target packet error rate, comprising: selecting a target tail probability of error; determining a first quality metric corresponding to said target tail probability; and selecting said second data rate a quality metric of which is greater than said first quality metric; predicting a third data rate a packet error rate of which is greater than said target packet error rate; and requesting said first data rate or said second data rate or said third data rate to achieve said target packet error rate.
  • 4. The method of claim 3 wherein said quality metric of said second data rate is further adjacent to said first quality metric.
  • 5. A method for an adaptive data rate selection in a communication system, comprising:selecting a target packet error rate; predicting a first data rate a packet error rate of which is smaller than said target packet error rate; predicting a second data rate a packet error rate of which is greater than said target packet error rate; predicting a third data rate a packet error rate of which is greater than said target packet error rate, comprising: selecting a target tail probability of error; determining a first quality metric corresponding to said target tail probability; and selecting said third data rate a quality metric of which is greater than said first quality metric, and said third data rate is greater than said second data rate; and requesting said first data rate or said second data rate or said third data rate to achieve said target packet error rate.
  • 6. The method of claim 5 wherein said third data rate is further adjacent to said second quality metric.
  • 7. A method for an adaptive data rate selection in a communication system, comprising:selecting a target packet error rate; predicting a first data rate a packet error rate of which is smaller than said target packet error rate; predicting a second data rate a packet error rate of which is greater than said target packet error rate; predicting a third data rate a packet error rate of which is greater than said target packet error rate; and requesting said first data rate or said second data rate or said third data rate to achieve said target packet error rate, comprising: determining a first packet error rate probability for a first data rate; determining a second packet error rate probability for a second data rate; determining a third packet error rate probability for a third data rate; and determining said first data rate or said second data rate or said third data rate in accordance with said first packet error rate probability, said second packet error rate probability, and said third packet error rate probability.
  • 8. The method of claim 7 further comprising:modifying said first packet error rate probability in accordance with a current predicted signal quality metric; modifying said second packet error rate probability in accordance with said current predicted signal quality metric; and modifying said third packet error rate probability in accordance with a current predicted signal quality metric.
  • 9. The method of claim 7 wherein said determining of a first packet error rate probability, a second packet error rate probability, and a third packet error rate probability is carried out in accordance with a true packet event.
  • 10. The method of claim 7 wherein said determining of a first packet error rate probability, a second packet error rate probability, and a third packet error rate probability is carried out in accordance with a fast-track method.
  • 11. The method of claim 7 wherein said determining of said first data rate or said second data rate or said third data rate comprises:calculating a first probability of selecting said first data rate and a second probability of selecting said second data rate so that a first throughput of said communication system is maximized and said target packet error rate is achieved; calculating a third probability of selecting said first data rate and a fourth probability of selecting said third data rate so that a second throughput of said communication system is maximized and said target packet error rate is achieved; selecting said first data rate or said second data rate in accordance with said first probability and said second probability when said first throughput is greater than said second throughput; and selecting said first data rate or said third data rate in accordance with said third probability and said fourth probability when said first throughput is smaller than said second throughput.
  • 12. An apparatus for an adaptive data rate selection in a communication system, comprising:a memory for storing a target packet error rate; and a processor coupled to said memory configured to: select a first data rate a packet error rate of which is greater than said target packet error rate; select a second data rate a packet error rate of which is greater than said target packet error rate; and select a third data rate a packet error rate of which is greater than said target packet error rate; request said first data rate or said second data rate said third data rate to achieve said target packet error rate, wherein said processor predicts a first data rate by being configured to: select a target tail probability of error; determine a first quality metric corresponding to said target tail probability; and select said first data rate a quality metric of which is smaller than said first quality metric.
  • 13. The apparatus of claim 12 wherein said quality metric of said first data rate is further adjacent to said first quality metric.
  • 14. An apparatus for an adaptive data rate selection in a communication system, comprising:a memory for storing a target packet error rate; and a processor coupled to said memory configured to: select a first data rate a packet error rate of which is greater than said target packet error rate; select a second data rate a packet error rate of which is greater than said target packet error rate; and select a third data rate a packet error rate of which is greater than said target packet error rate; request said first data rate or said second data rate said third data rate to achieve said target packet error rate, wherein said processor predicts a second data rate by being configured to: select a target tail probability of error; determine a first quality metric corresponding to said target tail probability; and select said second data rate a quality metric of which is greater than said first quality metric.
  • 15. The apparatus of claim 14 wherein said quality metric of said second data rate is further adjacent to said first quality metric.
  • 16. An apparatus for an adaptive data rate selection in a communication system, comprising:a memory for storing a target packet error rate; and a processor coupled to said memory configured to: select a first data rate a packet error rate of which is greater than said target packet error rate; select a second data rate a packet error rate of which is greater than said target packet error rate; and select a third data rate a packet error rate of which is greater than said target packet error rate; request said first data rate or said second data rate said third data rate to achieve said target packet error rate, wherein said processor predicts a third data rate by being configured to: select a target tail probability of error; determine a first quality metric corresponding to said target tail probability; and select said third data rate a quality metric of which is greater than said first quality metric and said third data rate is greater than said second data rate.
  • 17. The apparatus of claim 16, wherein said quality metric of said third data rate is further adjacent to said second data rate.
  • 18. An apparatus for an adaptive data rate selection in a communication system, comprising:a memory for storing a target packet error rate; and a processor coupled to said memory configured to: select a first data rate a packet error rate of which is greater than said target packet error rate; select a second data rate a packet error rate of which is greater than said target packet error rate; and select a third data rate a packet error rate of which is greater than said target packet error rate; request said first data rate or said second data rate said third data rate to achieve said target packet error rate, wherein said processor requests said first data rate or said second data rate or said third data rate by being configured to: determine a first packet error rate probability for a first data rate; determine a second packet error rate probability for a second data rate; determine a third packet error rate probability for a third data rate; and determine said first data rate or said second data rate or said third data rate in accordance with said first packet error rate, said second packet error rate probability, and said third packet error rate probability.
  • 19. The apparatus of claim 18 wherein said processor is further configured to:modify said first packet error rate probability in accordance with a current predicted signal quality metric; modify said second packet error rate probability in accordance with said current predicted signal quality metric; and modify said third packet error rate probability in accordance with said current predicted signal quality metric.
  • 20. The apparatus of claim 18 wherein said processor is configured to determine said first packet error rate probability, said second packet error rate probability, and said third packet error rate probability in accordance with a true packet event.
  • 21. The apparatus of claim 18 wherein said processor is configured to determine said first packet error rate probability, said second packet error rate probability, and said third packet error rate probability in accordance with a fast-track method.
  • 22. The apparatus of claim 18 wherein said processor determines said first data rate or said second data rate or said third data rate by being configured to:calculate a first probability of selecting said first data rate and a second probability of selecting said second data rate so that a throughput of said communication system is maximized and said target packet error rate is achieved; and calculate a third probability of selecting said first data rate and a fourth probability of selecting said third data rate so that a second throughput of said communication system is maximized and said target packet error rate is achieved; select said first data rate or said second data rate in accordance with said first probability and said second probability when said first throughput is greater than said second throughput; and select said first data rate or said third data rate in accordance with said third probability and said fourth probability when said first throughput is smaller than said second throughput.
  • 23. A method for an adaptive data rate selection in a communication system, comprising:selecting a target packet error rate; predicting a first set of data rates a packet error rate of which is smaller than said target packet error rate, comprising: selecting a target tail probability of error; determining a first quality metric corresponding to said target tail probability; and selecting said first set of data rates a quality metric of which is smaller than said first quality metric; predicting a second set of data rates a packet error rate of which is greater than said target packet error rate; and requesting a first data rate from said first set or a second data rate from said second set to achieve said target packet error rate.
  • 24. A method for an adaptive data rate selection in a communication system, comprising:selecting a target packet error rate; predicting a first set of data rates a packet error rate of which is smaller than said target packet error rate; predicting a second set of data rates a packet error rate of which is greater than said target packet error rate, comprising: selecting a target tail probability of error; determining a first quality metric corresponding to said target tail probability; and selecting said second set of data rates a quality metric of which is greater than said first quality metric; and requesting a first data rate from said first set or a second data rate from said second set to achieve said target packet error rate.
  • 25. A method for an adaptive data rate selection in a communication system, comprising:selecting a target packet error rate; predicting a first set of data rates a packet error rate of which is smaller than said target packet error rate; predicting a second set of data rates a packet error rate of which is greater than said target packet error rate; and requesting a first data rate from said first set or a second data rate from said second set to achieve said target packet error rate, comprising: determining a packet error rate probability for each data rate; and determining said first data rate from said first set or said second data rate from said second set in accordance with said packet error rate probabilities.
  • 26. The method of claim 25 further comprising modifying said packet error rate probabilities in accordance with a current predicted signal quality metric.
  • 27. The method of claim 25 wherein said determining of said packet error rate probabilities is carried out in accordance with a true packet event.
  • 28. The method of claim 25 wherein said determining of said packet error rate probabilities is carried out in accordance with a fast-track method.
  • 29. The method of claim 25 wherein said determining of said first data rate or said second data rate comprises:calculating a probability of selecting each of said data rates so that a throughput of said communication system is maximized and said target packet error rate is achieved; and selecting said first data rate or said second data rate in accordance with said probabilities.
  • 30. An apparatus for an adaptive data rate selection in a communication system, comprising:a memory for storing a target packet error rate; and a processor coupled to said memory configured to: select a first set of data rates a packet error rate of which is smaller than said target packet error rate; select a second set of data rates a packet error rate of which is greater than said target packet error rate; and request a first data rate from said first set or a second data rate from said second set to achieve said target packet error rate, wherein said processor selects a first set of data rates by being configured to: select a target tail probability of error; determine a first quality metric corresponding to said target tail probability; and select said first set of data rates a quality metric of which is smaller than said first quality metric.
  • 31. An apparatus for an adaptive data rate selection in a communication system, comprising:a memory for storing a target packet error rate; and a processor coupled to said memory configured to: select a first set of data rates a packet error rate of which is smaller than said target packet error rate; select a second set of data rates a packet error rate of which is greater than said target packet error rate; and request a first data rate from said first set or a second data rate from said second set to achieve said target packet error rate, wherein said processor selects a second set of data rates by being configured to: select a target tail probability of error; determine a first quality metric corresponding to said target tail probability; and select said second set of data rates a quality metric of which is greater than said first quality metric.
  • 32. An apparatus for an adaptive data rate selection in a communication system, comprising:a memory for storing a target packet error rate; and a processor coupled to said memory configured to: select a first set of data rates a packet error rate of which is smaller than said target packet error rate; select a second set of data rates a packet error rate of which is greater than said target packet error rate; and request a first data rate from said first set or a second data rate from said second set to achieve said target packet error rate, wherein said processor requests said first data rate or said second data rate by being configured to: determine a packet error rate probability for each data rate; and determine said first data rate from said first set or said second data rate from said second set in accordance with said packet error rate probability for each data rate.
  • 33. The apparatus of claim 32 wherein said processor is further configured to modify said packet error rate probability for each data rate in accordance with a current predicted signal quality metric.
  • 34. The apparatus of claim 32 wherein said processor is configured to determine said packet error rate probability for each data rate in accordance with a true packet event.
  • 35. The apparatus of claim 32 wherein said processor is configured to determine said first packet error rate probability for each data rate in accordance with a fast-track method.
  • 36. The apparatus of claim 32 wherein said processor determines said first data rate or said second data rate by being configured to:calculate a probability of selecting each of said data rates so that a throughput of said communication system is maximized and said target packet error rate is achieved; and selecting sa id first data rate or said second data rate in accordance with said probabilities.
US Referenced Citations (5)
Number Name Date Kind
4901307 Gilhousen et al. Feb 1990 A
5101501 Gilhousen et al. Mar 1992 A
5103459 Gilhousen et al. Apr 1992 A
5504773 Padovani et al. Apr 1996 A
6088335 I et al. Jul 2000 A
Foreign Referenced Citations (1)
Number Date Country
0848515 Jun 1998 EP