1. Field of the Invention
The present invention relates generally to optical devices and, more specifically, the present invention relates to optical add/drop devices.
2. Background Information
The need for fast and efficient optical-based technologies is increasing as the growth rate of Internet data traffic overtakes that of voice traffic, pushing the need for fiber optic communications. Transmission of multiple optical channels over the same fiber in the dense wavelength-division multiplexing (DWDM) system provides a simple way to use the unprecedented capacity (signal bandwidth) offered by fiber optics. Commonly used optical components in the system include WDM transmitters and receivers, optical add/drop multiplexers, and optical filters such as diffraction gratings, thin-film filters, fiber Bragg gratings, and arrayed-waveguide gratings.
Optical add/drop multiplexers are used in optical telecommunications and networking industries to add new channels and drop existing channels from multi-channel optical signals. Some known add/drop devices employ complex arrangements of optical demultiplexers and multiplexers or arrayed waveguide gratings (AWGs) in combination with 2×2 optical switches for each channel of the optical signal. Other commonly known optical add/dropmultiplexers employ fiber-based Bragg gratings and circulators. Integrating the circulators with the fiber Bragg gratings is a challenge for this approach.
A fiber Bragg grating is an optical fiber device that is constructed by creating periodic changes in the refractive index of fiber core materials along the fiber length. These index changes may be formed by exposing the photosensitive core to an intense optical interference pattern. With the changes in the refractive index along the fiber length, optical beams at a particular wavelength are reflected by the fiber Bragg grating while other wavelengths are allowed to propagate through.
A limitation with current fiber Bragg gratings is that the particular wavelength reflected by the fiber Bragg grating is substantially fixed. Consequently, if different wavelengths of light are to be reflected, different fiber Bragg gratings are utilized. In some fiber Bragg gratings, nominal adjustments to the reflected wavelength are made by physically stretching the fiber Bragg grating to modify its period. The disadvantages of this technique are that the tuning range to the reflected wavelength is relatively small and the optical fiber may suffer damage from stress and strain induced by the physical stretching.
The present invention is illustrated by way of example and not limitation in the accompanying figures.
Methods and apparatuses for adding and dropping DWDM channels of an optical signal traveling through a semiconductor substrate are disclosed. In the following description numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one having ordinary skill in the art that the specific details need not be employed to practice the present invention. In other instances, well-known materials or methods have not been described in detail in order to avoid obscuring the present invention.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
In one embodiment of the present invention, a semiconductor-based tunable optical add/drop multiplexer is provided in a fully integrated solution on a single integrated circuit chip. In one embodiment, semiconductor-based waveguide gratings are employed as wavelength selective tunable Bragg grating devices. The semiconductor-based tunable Bragg gratings selectively reflect infrared or near infrared input signals at a given center wavelength with a small bandwidth. The center wavelength is shifted using various techniques including thermal or plasma optical effects in for example silicon. Embodiments of the presently described semiconductor-based tunable optical add/drop multiplexer may be utilized in broadband optical networking systems, telecommunications or the like.
To illustrate,
In one embodiment, phase adjusters 111 and 113 are disposed along the waveguides connecting the 3 dB optical couplers 103 and 105. It is noted that although phase adjusters 111 and 113 are illustrated in
In operation, a multi-channel or multi-wavelength optical beam 115 is directed into 3 dB optical coupler 103. As shown in the example depicted, optical beam 115 includes wavelengths λ1, λ2 and λ3. It is appreciated that although optical beam 115 is illustrated to include 3 wavelengths λ1, λ2 and λ3, in
In one embodiment, optical beam 115 is split by 3 dB optical coupler 103 such that optical beams 117 and 119 are output from 3 dB optical coupler 103 as shown in FIG. 1. The optical power of optical beam 115 is substantially equally split between optical beams 117 and 119 with low optical loss over a relatively broad spectral range. The relative phase difference between optical beams 117 and 119 is substantially equal to π/2.
As shown in the depicted embodiment, Bragg gratings 107 and 109 are included in the waveguides optically coupling 3 dB optical couplers 103 and 105. In one embodiment, Bragg gratings 107 and 109 are tunable Bragg gratings disposed in semiconductor substrate 131 and are tuned to selectively reflect one or more wavelengths. In the illustrated example, Bragg gratings 107 and 109 are adjusted to have a tunable wavelength equal to λ2. Accordingly, the portions of optical beams 117 and 119 having a wavelength equal to λ2 are reflected back to 3 dB optical coupler 103. The remaining portions or wavelengths of optical beams 117 and 119 not reflected by Bragg gratings 107 and 109, including for example wavelengths λ1 and λ3, propagate through Bragg gratings 107 and 109 to 3 dB optical coupler 105.
Continuing with the example illustrated in
The portions of optical beams 117 and 119 not reflected by Bragg gratings 107 and 109 are directed to and combined by 3 dB optical coupler 105 such that optical beam 121 is output from 3 dB optical coupler 105. As shown in
As shown in the depicted embodiment, 3 dB optical coupler 105 is also coupled to receive an optical beam 125. In one embodiment, optical beam 125 carries a channel having the same wavelength as optical beam 123. Accordingly, optical beam 125 is illustrated in
As discussed previously, Bragg gratings 107 and 109 are adjusted to have a tunable wavelength equal to λ2 or λ2′. Accordingly, optical beams 127 and 129 are reflected back to 3 dB optical coupler 105. Optical beams 127 and 129 are then combined in 3 dB optical coupler 105 with the portions of optical beams 117 and 119 not reflected by Bragg gratings 107 and 109. Accordingly, optical beam 121 includes the channels corresponding to wavelengths λ1, λ2′ and λ3.
Therefore, optical add/drop multiplexer 101 as shown in
As shown in the depicted embodiment, optical beam 215 propagates from input 233 into waveguide 238 and is eventually deflected from cladding 220 enclosing waveguide 238. The deflected wavefronts of optical beam 215 interfere with each other within waveguide 238 of 2×2 MMI coupler 203 such that maximas 240 and minimas 242 are created as shown. In one embodiment, L and W are designed such that there is a maxima 240 located at each output location corresponding to the outputs 237 and 239. Thus, the 2 outputs 237 and 239 of 2×2 MMI coupler 203 are optically coupled to the input 233 of 2×2 MMI coupler 203. Therefore, input optical beam 215 is substantially equally split into corresponding output beams 217 and 219, which are output from outputs 237 and 239, respectively. In one embodiment, optical beams 217 and 219 have substantially equal amplitude over a wide spectrum and have a phase difference of π/2.
It is appreciated that operation of 2×2 MMI coupler 203 has been described with an input optical beam 215 received at input 233 with optical beams 217 and 219 output from outputs 237 and 239. However, it is appreciated that an input optical beam can be received at input 235 and that corresponding split optical beams are output from outputs 237 and 239. In addition, it is appreciated that operation of 2×2 MMI coupler 203 can be bi-directional such that input optical beams received at outputs 237 and/or 239 are output at inputs 233 and/or 235.
To illustrate, in one embodiment, an optical beam 215 is directed into waveguide 261 through input 253. As optical beam 215 propagates along waveguide 261, a portion is received by waveguide 263. Accordingly, optical beam 215 is split and corresponding output optical beams 217 and 219 are output from outputs 257 and 259 of waveguide coupler 265. In one embodiment, optical beams 217 and 219 have substantially equal amplitude over a wide spectrum and have a phase difference of π/2.
It is appreciated that operation of waveguide coupler 265 has been described with an input optical beam 215 received at input 253 with optical beams 217 and 219 output from outputs 257 and 259. However, it is appreciated that an input optical beam can be received at input 255 and that corresponding split optical beams are output from outputs 257 and 259. In addition, it is appreciated that operation of waveguide coupler 265 can be bi-directional such that input optical beams received at outputs 257 and/or 259 are output at inputs 253 and/or 255.
In one embodiment in which silicon and polysilicon are utilized, having effective refractive indexes of nSi and npoly, respectively, a small effective refractive index difference Δneff (or npoly−nSi) is provided at each interface between semiconductor substrate 303 and polysilicon 305. In one embodiment, Δneff is approximately within the range of 0.005 to 0.03. It is appreciated that other value ranges for Δneff may be utilized in accordance with the teachings of the present invention and that 0.005 to 0.03 is provided herewith for explanation purposes.
As illustrated in
In one embodiment, waveguide 325 is a rib waveguide. To illustrate,
Referring back to
As shown, the rib waveguide 425 includes a rib region 427 and a slab region 429. In the embodiment illustrated in
Referring back to the illustration in
In one embodiment, optical beam 319 includes a plurality of channels having wavelengths including for example λ1, λ2 and λ3. It is appreciated that although optical beam 319 has been illustrated to include three wavelengths λ1, λ2 and λ3 in the illustrated example, a different number of wavelengths may be included in optical beam 319 in accordance with the teachings of the present invention.
As mentioned above, there are periodic or quasi-periodic perturbations in the effective index of refraction along optical path 317 through waveguide 325. As a result of the effective refractive index difference Δneff described above, multiple reflections of an optical beam 319 occur at the interfaces between semiconductor substrate 303 and polysilicon 305 along optical path 317. In one embodiment, a Bragg reflection occurs when a Bragg condition or phase matching condition is satisfied. In particular, for uniform Bragg gratings, when the condition
mλB=2neffΛ, (Equation 1)
is satisfied, where m is the diffraction order, λB is the Bragg wavelength, neff is the effective index of the waveguide and Λ is the period of the grating, a Bragg reflection occurs.
To illustrate,
In one embodiment, the Bragg wavelength, λB, that is reflected or filtered by tunable Bragg grating 301 is tunable or adjustable with a heater 311 disposed proximate to waveguide 325. In an embodiment, heater 311 includes a thin-film heater or the like or other future arising technology that controls the temperature of semiconductor substrate 303 and polysilicon 305 of Bragg grating 301 in waveguide 325 along optical path 317. For instance, silicon and polysilicon have large index of refraction variations with temperature on the order of approximately 2×10−4/° K. It is appreciated that the index of refraction variations with temperature for semiconductor materials such as silicon and/or polysilicon are two orders of magnitude greater than other materials such as for example silica or the like. Thus, by controlling the temperature of semiconductor substrate 303 and polysilicon 305, relatively significant shifts in the center wavelength of light reflected by a tunable Bragg grating 301 are provided in accordance with the teachings of the present invention.
To illustrate,
Plot 503 shows that at 25° C., the center wavelength of an optical beam that is reflected by the silicon/polysilicon waveguide Bragg grating is approximately 1.544 μm in the illustrated embodiment. In comparison, plot 505 shows that at 75° C., the center wavelength of an optical beam that is reflected is shifted or tuned to be approximately 1.548 μm, while plot 507 shows that at 125° C., the center wavelength of an optical beam that is reflected is shifted or tuned to be approximately 1.552 μm. In one embodiment, a thin-film heater utilized for heater 311 provides center wavelength tuning speeds in the order of microseconds.
It is appreciated of course that the materials, dimensions, wavelengths and index of refraction values utilized in the embodiment illustrated in
In one embodiment, there are sidelobes on the sides of each maxima of plots 503, 505 and 507. When uniform or periodic Bragg gratings are utilized, the sidelobes are usually relatively large. An example of a uniform grating with periodic perturbations in the effective index of refraction along the optical path of the Bragg grating is illustrated in diagram 601 in FIG. 6A. As shown along the y-axis, the effective index of refraction neff is perturbed periodically or regularly down the optical path, which shown as Z along the x-axis of diagram 601.
In one embodiment, an apodized Bragg grating is provided in accordance with the teachings of the present invention, which reduces the sidelobes on the sides of each maxima of plots 503, 505 and 507. One embodiment of an apodized grating utilized in accordance with the teachings of the present invention is illustrated in diagram 651 of FIG. 6B. An apodized grating is provided with quasi-periodic perturbations in the effective index of refraction along the optical path of the Bragg grating. The perturbation in the effective index of refraction can be realized by either changing refractive index of constitutive materials or varying layer widths (duty cycle) along the Bragg grating. It is noted that an embodiment of a raised-cosine apodized grating is illustrated in diagram 651 of FIG. 6B. It is appreciated that other types of apodized gratings may be utilized in accordance with the teachings of the present invention including but not limited to Gaussian-apodized, chirped, discrete phase shift, superstructure or the like.
In the embodiment depicted in
In the embodiment depicted in
Accordingly, assuming semiconductor substrate 703 includes silicon, the effective index of refraction neff is a function of the height H of waveguide 725 not including structures 715, nSi and λ. In the regions 705 of waveguide 725 including structures 715, the effective index of refraction n′eff is a function of the height (H−h) of waveguide 725 including structures 715, nSi and λ. Thus, the difference in effective index of refraction is
Δneff=neff−n′eff. (Equation 2)
In the depicted embodiment, structures 715 are biased in response to modulation signal VG 739 through conductor 737 such that the concentration of free charge carriers in charge modulated regions 731 in the semiconductor substrate layer 703 proximate to the structures 715. For example, assuming a positive voltage is applied with modulation signal VG 739 through conductor 737, electrons in semiconductor substrate 703 are swept into charge modulated regions 731. When for example less positive voltage is applied to conductor 737, the concentration of free charge carriers swept into charge modulated regions 731 is reduced.
It is noted that for explanation purposes, charge modulated regions 731 have been illustrated to include negative charge. It is appreciated that in another embodiment, the polarities of these charges and the voltages of modulation signal VG 739 may be reversed in accordance with the teachings of the present invention.
In one embodiment, the effective index of refraction neff in charge modulated regions 731 is modulated in response to the modulation signal VG 739 due to the plasma optical effect. The plasma optical effect arises due to an interaction between the optical electric field vector and free charge carriers that may be present along the optical path 717 of the optical beam 719. The electric field of the optical beam 719 polarizes the free charge carriers and this effectively perturbs the local dielectric constant of the medium. This in turn leads to a perturbation of the propagation velocity of the optical wave and hence the refractive index for the light, since the refractive index is simply the ratio of the speed of the light in vacuum to that in the medium. The free charge carriers are accelerated by the field and also lead to absorption of the optical field as optical energy is used up. Generally the refractive index perturbation is a complex number with the real part being that part which causes the velocity change and the imaginary part being related to the free charge carrier absorption. In the case of the plasma optical effect in silicon, the effective change in the index of refraction Δneff due to the free electron (ΔNe) and hole (ΔNh) concentration change is given by:
where n0 is the nominal index of refraction for silicon, e is the electronic charge, c is the speed of light, ε0 is the permittivity of free space, me* and mh* are the electron and hole effective masses, respectively.
It is noted that tunable Bragg grating 701 has been illustrated in
In operation, optical beam 719 is directed along optical path 717 into one end of waveguide 725. In one embodiment, optical beam 719 includes infrared or near infrared light and is confined with insulating layers 707 and 709 to remain within waveguide 725 along optical path 717 between the ends of waveguide 725. In one embodiment, optical beam 719 is confined as a result of total internal reflection since the oxide material of insulating layers 707 and 709 has a smaller index of refraction than the semiconductor material of semiconductor substrate 703.
In one embodiment, optical beam 719 includes a plurality of channels corresponding to wavelengths including for example λ1, λ2 and λ3. As a result of the effective refractive index difference Δneff described above in the periodic or quasi-periodic perturbations in the effective index of refraction along optical path 717, a multiple reflection of optical beam 719 occurs when a Bragg condition or phase matching condition is satisfied, as described above in Equation 1.
To illustrate,
In one embodiment, the center wavelength that is reflected or filtered by tunable Bragg grating 701 is tunable or adjustable by appropriately modulating charge in modulated charge regions 731 with modulation signal VG 739 to adjust the conditions for the Bragg wavelength λB. Indeed, as discussed above, the difference in effective refractive index Δneff along optical path 717 is modulated in response to modulation signal VG 739 to tune the Bragg wavelength λB that is reflected or filtered by tunable Bragg grating 701 in accordance with the teachings of the present invention.
In the foregoing detailed description, the method and apparatus of the present invention have been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the present invention. The present specification and figures are accordingly to be regarded as illustrative rather than restrictive.
This application is a continuation-in-part of co-pending application Ser. No. 09/881,218, filed Jun. 13, 2001, entitled “METHOD AND APPARATUS FOR TUNING A BRAGG GRATING IN A SEMICONDUCTOR SUBSTRATE,” and assigned to the Assignee of the present application.
Number | Name | Date | Kind |
---|---|---|---|
4518219 | Leonberger et al. | May 1985 | A |
4984894 | Kondo | Jan 1991 | A |
5082342 | Wight et al. | Jan 1992 | A |
5379318 | Weber | Jan 1995 | A |
5446809 | Fritz et al. | Aug 1995 | A |
5467732 | Donnelly, Jr. et al. | Nov 1995 | A |
RE35516 | Henry et al. | May 1997 | E |
6011881 | Moslehi et al. | Jan 2000 | A |
6014480 | Baney | Jan 2000 | A |
6061481 | Heidrich et al. | May 2000 | A |
6172791 | Gill et al. | Jan 2001 | B1 |
6221565 | Jain et al. | Apr 2001 | B1 |
6268953 | Maloney | Jul 2001 | B1 |
6330255 | Hung | Dec 2001 | B1 |
6363202 | Goodfellow | Mar 2002 | B1 |
6438277 | Eggleton et al. | Aug 2002 | B1 |
6480513 | Kapany et al. | Nov 2002 | B1 |
6600864 | Samara-Rubio et al. | Jul 2003 | B2 |
6628450 | Samara-Rubio | Sep 2003 | B2 |
6661937 | Sobiski et al. | Dec 2003 | B2 |
20020113966 | Shchegrov et al. | Aug 2002 | A1 |
20020197011 | Liu et al. | Dec 2002 | A1 |
20030013438 | Darby | Jan 2003 | A1 |
20030021305 | Lundqvist | Jan 2003 | A1 |
20030025976 | Wipiejewski | Feb 2003 | A1 |
20030086655 | Deacon | May 2003 | A1 |
20030091086 | Sahara et al. | May 2003 | A1 |
20030099018 | Singh et al. | May 2003 | A1 |
Number | Date | Country |
---|---|---|
1094574 | Apr 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20020197012 A1 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09881218 | Jun 2001 | US |
Child | 09967365 | US |