This application is related to a processor for additive range reduction. For example, a processor configured to generate an output of a trigonometric function using a trigonometric argument reduction.
A certain imprecision exists in an operation performed in a computer due to the characteristics of the hardware used to represent real numbers in the computer. Due to the finite size of memory storage in a computer, non-terminating real numbers are represented with a certain number of significant digits after either truncation or rounding. These numbers are referred to as floating-point numbers. Once the real numbers are represented as floating-point numbers, further imprecision arises because arithmetic operations performed by a computer generally involve further truncation or rounding.
For periodic functions such as trigonometric functions, the large input argument can be reduced in magnitude to a smaller reduced argument that allows more manageable evaluations of the function. The smaller reduced arguments are obtained from identities for periodic functions. For example, the sine and cosine functions satisfy the following relations:
sin(x)=sin(x+2πN), and Equation (1)
cos(x)=cos(x+2πN), Equation (2)
where N is an integer.
In evaluation of the trigonometric functions on a computer having a specific machine precision, the performance of argument reductions may be problematic when the argument x is large since the period 2π is an irrational real number. Since the period is irrational, the argument reduction is, in itself, approximate when performed in a computer. In a computer, only an approximation to π may be represented. As the magnitude of the input argument increases, more and more digits of π, (more commonly π/2 or 2/π if the argument x is reduced to a range
will be involved in the argument reduction, and it may not result in an accurate outcome.
A method and apparatus for additive range reduction in a computer configured to represent non-terminating real numbers are disclosed. For example a processor configured to generate an output of a function such as a trigonometric function with a very large input argument are disclosed. A constant, such as 2/π, may be pre-stored in a look-up table (LUT) in a memory (e.g., a cache memory, a main memory, a register file, or the like), and at least one section of the constant may be retrieved from the LUT for generating a product of an input argument and the constant such that a precision of the product may be controlled in any degree. For a trigonometric function, a predetermined number of bits of 2/π may be stored in the LUT, and at least one section of 2/π is retrieved from the LUT. The argument is then multiplied with the retrieved sections of 2/π in the processor configured for such multiplication. The retrieved sections of 2/π are determined to correctly generate the two least significant bits (LSBs) of an integer portion in a multiplication result and a scalable number of most significant bits (MSBs) of the multiplication result. An output of the trigonometric function is generated for the argument with a fractional portion of the multiplication result based on the two LSBs of the integer portion of the multiplication result.
A more detailed understanding may be had from the following description, given by way of example in conjunction with the accompanying drawings wherein:
The embodiments will be described with reference to the drawing figures wherein like numerals represent like elements throughout.
Embodiments disclosed herein may be implemented for any type of processor, (e.g., central processing units (CPU), graphics processing units (GPU), accelerated processors, or the like), or any chipset or integrated circuit.
In accordance with one embodiment, a processor is configured for additive range reduction in generation of an output of a function, such as a trigonometric function with a very large input argument. A constant involved in generation of the output of a function may be pre-stored in an LUT in a memory, (e.g., a cache memory, a main memory, a register file, or the like), and a section of the constant is retrieved from the LUT for generating a product of an input argument and the constant such that a precision of the product may be controlled in any degree. The constant may be any transcendental or irrational number (such as √{square root over (2)}, π, ln 2, 2/π, etc.), or any number that requires a high precision. The number of bits of the constant stored in the LUT may be any number, (e.g., 1,184 bits).
For example, an input argument X may be written in a floating point format, (such as half, single, double, quad, extended double format, or the like), as follows:
A constant C may be written as follows:
An instruction accepts X (and optionally an index J (J=0, 1, 2, . . . )), and produces a floating point number YJ, which may be written as follows:
The above embodiment may be employed for a trigonometric argument reduction, which will be explained in detail hereafter. In trigonometric function calculation, C=2/π (with l=−1), and m=2.
In computing trigonometric functions, (such as sin(x), cos(x), or tan(x)), the argument x may be reduced to r in a range
The argument x may be represented as follows:
x=k(π/2)+r, Equation (3)
where k is an integer, and |r|≦π/4. The computation of trigonometric functions cos(x) and sin(x) may then be replaced by the computation of the trigonometric functions sin(r) or cos(r) in the range
as follows:
cos(x)=cos(r), and sin(x)=sin(r), if (k mod 4)=0; Equation (4)
cos(x)=−sin(r), and sin(x)=cos(r), if (k mod 4)=1; Equation (5)
cos(x)=−cos(r), and sin(x)=−sin(r), if (k mod 4)=2; and Equation (6)
cos(x)=sin(r), and sin(x)=−cos(r), if (k mod 4)=3. Equation (7)
By multiplying 2/π to equation (3), the following is obtained:
x(2/π)=k+r(2/π). Equation (8)
k is an integer part of x(2/π), and r(2/π) is a fractional part of x(2/π) since |r|≦π/4. One of the equations (4)-(7) is selected based on the integer part of x(2/π), (i.e., k), and the reduced argument value r may be obtained by multiplying (π/2) to the fractional part of x(2/π). The trigonometric function of the argument is then generated with the reduced argument r.
For extremely large values of x, it is required to multiply x with a large number of bits of (2/π) in order to obtain r to the required precision. This operation may take lots of instructions without acceleration. In one embodiment, a sufficient number of bits of (2/π), (e.g., 1184 bits), may be stored in the LUT and the input angle value x may be multiplied by a section of (2/π) that is retrieved to generate at least two least significant bits (LSBs) of the integer part of the multiplication result (x(2/π)) since only the two LSBs of the integer part of the multiplication result (x(2/π)), (i.e., k mod 4), is needed to select one of the equations (4)-(7).
The value of (2/π) may be stored in segments in a hardware LUT. Where the LUT hardware supplies a limited number of bits of (2/π) at a time, the instruction may be called iteratively to retrieve enough number of bits from the LUT for the required precision depending on the index (J).
The embodiment above may be implemented with a new opcode. The new opcode may inspect the input angle value x, (e.g., an exponent of the input angle value), and an index (J), and retrieve a section of (2/π) from the LUT. The result of the operation is the segment of (2/π) needed to perform the argument reduction.
For the trigonometric function, the processing unit 202 is configured to retrieve one or more segment(s) of 2/π from the LUT 204 based on the index. The retrieved segment(s) of 2/π is enough to generate at least two least significant bits (LSBs) of an integer portion in a multiplication result and the number of retrieved 2/π bits are enough for the required precision. Multiple segments of 2/π may be iteratively retrieved from the LUT for the required precision based on the index (J). The processing unit 202 multiplies the argument with the retrieved section of 2/π from the LUT 204. The processing unit 202 then generates an output of the trigonometric function for the argument with a fractional portion of the multiplication result based on the two LSBs of the integer portion of the multiplication result.
Although features and elements are described above in particular combinations, each feature or element may be used alone without the other features and elements or in various combinations with or without other features and elements. The apparatus described herein may be manufactured by using a computer program, software, or firmware incorporated in a computer-readable storage medium for execution by a general purpose computer or a processor. Examples of computer-readable storage mediums include a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
Embodiments of the present invention may be represented as instructions and data stored in a computer-readable storage medium. For example, aspects of the present invention may be implemented using Verilog, which is a hardware description language (HDL). When processed, Verilog data instructions may generate other intermediary data (e.g., netlists, GDS data, or the like) that may be used to perform a manufacturing process implemented in a semiconductor fabrication facility. The manufacturing process may be adapted to manufacture semiconductor devices (e.g., processors) that embody various aspects of the present invention.
Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, a graphics processing unit (GPU), a DSP core, a controller, a microcontroller, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), any other type of integrated circuit (IC), and/or a state machine, or combinations thereof.