The present teachings relate to an electrical connection between a trailer and a vehicle and more particularly relate to a customizable configuration of electronic components on the trailer that can be monitored from within a passenger compartment of the vehicle.
Typically, two people are required to confirm that all of the exterior lighting on the trailer works correctly. A first person is within the passenger compartment and activates the lights on the vehicle, which in turn activate the respective lights on the trailer. A second person walks around the perimeter of the trailer to confirm that each of the lights on the vehicle are activating the respective lights on the trailer. By walking around the trailer and individually identifying each of the lights, the second person who is outside of the vehicle is able to communicate to the first person inside the vehicle which lights on the trailer are not illuminated.
The present teachings generally include a method of determining whether an electronic component on a trailer is functioning from within a passenger compartment of a vehicle having an electrical connection with the trailer. The method generally includes determining a first electronic component configuration associated with the trailer and determining an electrical load profile for a terminal in the electrical connection between the vehicle and the trailer based on the first electronic component configuration of the trailer. The method also includes associating the electronic component on the trailer with the electrical load profile for the terminal in the electrical connection and monitoring a value descriptive of an electrical load at the terminal in the electrical connection. The method further includes informing a user in the passenger compartment that the electronic component is not functioning when the value is less than a threshold value.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present teachings.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present teachings in any way.
The following description is merely exemplary in nature and is not intended to limit the present teachings, their application or uses. It should be understood that throughout the drawings, corresponding reference numerals can indicate like or corresponding parts and features. As used herein, the term module, control module, component and/or device can refer to one or more of the following: an application specific integrated circuit (ASIC), an electronic circuit, a processer (shared, dedicated or group) and memory that executes one or more software or firmware programs, a combinational logic circuit and/or other suitable mechanical, electrical or electro-mechanical components that can provide the described functionality and/or one or more combinations thereof.
Moreover, certain terminology can be used for the purpose of reference only and need not limit the present teachings. For example, terms such as “upper,” “lower,” “above” and “below” can refer to directions in the drawings to which reference is made. Terms such as “front,” “back,” “rear,” and “side” can describe the orientation of portions of the component within a consistent but arbitrary frame of reference which can be made more clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivates thereof and words of similar import. Similarly, the terms “first,” “second” and other such numerical terms referring to structures, systems and/or methods do not imply a sequence or order unless clearly indicated by the context.
With reference to
In one example, the trailer 10 can have a first electronic component configuration 16. By way of this example, the first electronic component configuration 16 can include multiple external lights 18 on the trailer 10 to which power can be supplied through the connection 14 between the trailer 10 and the vehicle 12. By monitoring the electrical connection 14 between the trailer 10 and the vehicle 12, it can be determined when one or more of the lights 18 on the trailer 10 are not illuminated and/or electronic components are not functioning. This can be done from within the vehicle 12 without the need for a user 20 to leave a passenger compartment 22 of the vehicle 12.
Based on an electrical profile that can be determined from the first electronic component configuration 16, it can be determined that a change in current level through one or more of the terminals of the electrical connection 14 can indicate that one or more of the external lights 18 and/or one or more other electronic components associated with the first electronic component configuration 16 is not functioning.
In
Each of the lights 18 on the trailer 10 can be powered through the electrical connection 14 to the vehicle 12. As such, the lights 18 on the trailer 10 are selectively illuminated and extinguished, as complimentary lights 38 on the vehicle 12 can do the same. The complimentary lights 38 of the vehicle 12 can include running lights 40, brake lights 42, tail lights 44 and turn lights 46. The vehicle 12 can also include additional lights, e.g., headlights 48 (
In accordance with the present teachings, the user 20 from within the passenger compartment 22 can determine whether any or all of the external lights 18 (and/or other electronic components) on the trailer 10 are not functioning while remaining in the passenger compartment 22. More specifically, a trailer tow module 50 (
The trailer tow module 50 can determine an electrical profile for each of the lights 18 and/or each of the electronic components, as applicable. The electrical profile of each of the external lights 18 and/or each of the electronic components can include a power requirement for each of the external lights 18 and/or each of the electronic components of the trailer 10 as defined in the first electronic component configuration 16. As such, a predicted electrical load on one or more of the terminals in the electrical connection 14 can be based on the power requirement for each of the external lights 18 and/or each of the electronic components. When a measured electrical load through one or more of the terminals (i.e., the electrical load determined by the trailer tow module 50), is less than the predicted electrical load (i.e., below the threshold value) based on the first electronic component configuration, the trailer tow module 50 can inform the user 20 within the passenger compartment 22 that one or more of the lights 18 are not illuminated and/or one or more of the electronic components are not functioning.
In the example illustrated in
It will be appreciated in light of the disclosure that the ability of the trailer tow module 50 to determine whether one or more of the lights 18 are not illuminated and/or one or more of the electronic components are not functioning is not limited by the selection of any pattern of the external lights 18 on the trailer 10. With reference to
In another example and with reference to
The external lights 104 can include one or more brake lights 110, turn lights 112 and multiple running lights 114. Through an electrical connection 120 between the vehicle 12 and the trailer 100, the user 20 (
The trailer tow module 50 (
In one example and with reference to
The third electronic component configuration 208 for the trailer 202 can include a right running light module 220, a right reverse light module 222, right brake light module 224 and a right stop light module 226. The right running light module 220 can connect the trailer tow module 50 to a first right running light 230, a second right running light 232 and additional right running lights 234 (illustrated in phantom line). The right reverse light module 222 can connect the trailer tow module 50 to a first right reverse light 236, a second right reverse light 238 and additional right reverse lights 240 (illustrated in phantom line). The right brake light module 224 can connect the trailer tow module 50 to a first right brake light 242, a second right brake light 244 and additional right brake lights 246 (illustrated in phantom line). The right stop light module 224 can connect the trailer tow module 50 to a first right stop light 248, a second right stop light 250 and additional right stop lights 252 (illustrated in phantom line).
The third electronic component configuration 208 for the trailer 202 can also include a left running light module 260, a left reverse light module 262, a left brake light module 264 and a left stop light module 266. The left running light module 260 can connect the trailer tow module 50 to a first left running light 270, a second left running light 272 and additional left running lights 274 (illustrated in phantom line). The left reverse light module 262 can connect the trailer tow module 50 to a first left reverse light 276, a second left reverse light 278 and additional left reverse lights 280 (illustrated in phantom line). The left brake light module 264 can connect the trailer tow module 50 to a first left brake light 282, a second left brake light 284 and additional left brake lights 286 (illustrated in phantom line). The left stop light module 264 can connect the trailer tow module 50 to a first left stop light 288, a second left stop light 290 and additional left stop lights 292 (illustrated in phantom line).
It will be appreciated in light of the disclosure that the additional lights, additional light modules and other additional electronic components can be connected to the trailer tow module 50 through the electrical connection 206. As such, the third electronic component configuration 208 can include the individual power requirements for each of the above mentioned lights 206 and any other lights and/or electronic components that can be added (and/or removed from) to the third electronic component configuration 208. In addition to the individual power requirements, the third electronic component configuration 208 can also include through which of the terminals 204 of the electrical connection 206 each of the above mentioned lights 206 and any other lights and/or electronic components are provided power.
By knowing the third electronic component configuration 208, the trailer tow module 50 can therefore determine the predicted electrical load for each of the one or more external lights 206 and/or one or more electronic components. The predicted electrical load for each of the one or more external lights 206 and/or one or more electronic components can be combined to establish an electrical profile for each of the terminals 204 in the electrical connection 200. In this regard, the electrical profile for each of the terminals 204 includes the total power requirements and thus predicted total electrical load for all of the one or more lights 206 and/or one or more electronic components on the trailer 202.
The trailer tow module 50 can thus determine that one or more of the lights 206 are not illuminated and/or one or more electrical components on the trailer 202 are not functioning, when the value descriptive of the electrical load (i.e., current level) through one or more of the terminals 204 in the electrical connection 200 is less than the threshold value. The threshold value is based on the expected (predicted) value of the electrical load determined from the electrical profile for each of the terminals 204 of the electrical connection 200.
With reference to
The user 20 is able to provide information about the trailer 202 to compose a new (or re-configure an established) electronic component configuration associated with the trailer 202. In one example and with reference to
In other examples, the user may set up four lights on one terminal of the electrical connection, six lights on a different terminal of the electrical connection and inform the trailer tow module via an input template the power requirements of the above lights. By way of this example, four five-watt bulbs can be connected to the first terminal of the connector, but two five-watt bulbs and four two and one half watt bulbs can be connected through the other terminal. It will be appreciated in light of the disclosure that the user can customize the lighting on the trailer and can upload to the trailer tow module the appropriate information so the trailer tow module knows exactly how many lights, the power requirement of each light, and through what terminal each light is connected when the trailer is connected to the vehicle.
Without knowing the individual power requirements of the lights and/or other electronic components on the trailer, the user 20 is still able to compose a new (or re-configure an established) electronic component configuration by providing a weight and/or class of weight of the trailer 202. In one example and with reference to
As noted above, the power requirements for lights and/or other electronic components on the trailer 202 can be estimated based on the weight or the class of weight of the trailer. It will be appreciated in light of the disclosure that the weight of the trailer increases as the weight class of the trailer increases as shown in the diagram of
As the user 20 wishes to further customize the electronic component configuration of the trailer tow module 50, the user 20 can input into the trailer tow module 50 more specifics about the lights 206 and/or other electronic components on the trailer 202. It will be appreciated in light of the disclosure that as more specifics are provided to the trailer tow module 50 about the number and power requirements of the lights and/or electronic components on the trailer 12, the determination by the trailer tow module 50 of whether the lights are illuminated and/or the electronic components are functioning can be more accurate.
The user 20 is, however, not required to enter any information about the trailer for the trailer tow module 50 to provide illumination information about the lights 208 on the trailer 202 to the user 20 in the passenger compartment 22. Notwithstanding, as the user 20 provides more information to the trailer tow module 50, it will be appreciated in light of the present disclosure the ability of the trailer tow module 50 to more accurately predict which of the lights 206 of the trailer 202 are not functioning can increase.
With reference to
With reference to
With reference to
With reference to
With reference to
While specific aspects have been described in this specification and illustrated in the drawings, it will be understood by those skilled in the art that various changes can be made and equivalents can be substituted for elements thereof without departing from the scope of the present teachings, as defined in the claims. Furthermore, the mixing and matching of features, elements and/or functions between various aspects of the present teachings may be expressly contemplated herein so that one skilled in the art will appreciate from the present teachings that features, elements and/or functions of one aspect of the present teachings may be incorporated into another aspect, as appropriate, unless described otherwise above. Moreover, many modifications may be made to adapt a particular situation, configuration or material to the present teachings without departing from the essential scope thereof. Therefore, it is intended that the present teachings not be limited to the particular aspects illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out the present teachings but that the scope of the present teachings will include many aspects and examples following within the foregoing description and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3821560 | Hansen | Jun 1974 | A |
3821669 | Wuerffel | Jun 1974 | A |
3840852 | Schwellenbach | Oct 1974 | A |
3965456 | Schwellenbach | Jun 1976 | A |
4620109 | Kummer | Oct 1986 | A |
4809177 | Windle et al. | Feb 1989 | A |
5030938 | Bondzeit | Jul 1991 | A |
5157376 | Dietz et al. | Oct 1992 | A |
5285113 | Schlich | Feb 1994 | A |
5397924 | Gee et al. | Mar 1995 | A |
5491383 | Leiber et al. | Feb 1996 | A |
5596233 | Leiber et al. | Jan 1997 | A |
5693985 | Gee et al. | Dec 1997 | A |
5719552 | Thompson | Feb 1998 | A |
5805061 | Fritz et al. | Sep 1998 | A |
6069559 | Davis et al. | May 2000 | A |
6130487 | Bertalan et al. | Oct 2000 | A |
6218952 | Borland et al. | Apr 2001 | B1 |
6501376 | Dieckmann et al. | Dec 2002 | B2 |
6525654 | Siggers | Feb 2003 | B1 |
6535113 | Gravolin | Mar 2003 | B1 |
6642628 | Burdick et al. | Nov 2003 | B2 |
6788195 | Stegman et al. | Sep 2004 | B1 |
6909363 | Bell et al. | Jun 2005 | B2 |
7052031 | Gravolin | May 2006 | B2 |
7064658 | Burlak et al. | Jun 2006 | B2 |
7106182 | De Wilde | Sep 2006 | B2 |
7113078 | Young | Sep 2006 | B2 |
7339465 | Cheng et al. | Mar 2008 | B1 |
20040160123 | Burdick et al. | Aug 2004 | A1 |
20050017856 | Peterson | Jan 2005 | A1 |
20050275288 | Miller | Dec 2005 | A1 |