This application claims the benefit of Korean Patent Application No. 10-2010-0002748, filed on Jan. 12, 2010, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field
The exemplary embodiments relate to a method and apparatus for adjusting volume, and more particularly, to a method and apparatus for adjusting volume, which increase the volume of an audio signal by removing a signal of a certain frequency band from the audio signal.
2. Description of the Related Art
In order to prevent a speaker from being damaged, an audio signal should be reproduced to be equal to or less than a rated output power of the speaker. However, when the audio signal is reproduced to a level equal to or less than the rated output power of the speaker, volume of the reproduced audio signal is reduced. That is, there is a trade-off between the volume of the audio signal and the rated output power of the speaker.
When an audio signal of excessively large volume is reproduced, a stress ratio is adjusted by reducing a gain at a reproducing end in order to reproduce the audio signal under the rated output power of the speaker. When an audio signal of general volume that has already been stored in a memory is reproduced in a state where the gain of the reproducing end is set to be low, the volume of the audio signal decreases.
In addition, when an input signal is recorded to generate an audio signal and the audio signal is reproduced where the gain at the reproducing end is set to be low, volume of the reproduced audio signal is decreased due to the low gain. Therefore, in order to reproduce the recorded audio signal above a certain reference volume, a gain at a recording end should be set to be high when recording the input signal. However, when the gain at the recording end is set to be high, a sound source of the recorded audio signal is saturated, and thereby degrading sound quality.
The exemplary embodiments provide a method and apparatus for adjusting volume in order to allow an audio signal to be reproduced with volume and sound quality above a reference level under a rated output power of a speaker.
According to an aspect of an exemplary embodiment, there is provided a method of adjusting volume, the method including: removing an audio signal of a first frequency band from the audio signal; and increasing the volume of the audio signal from which in which the audio signal of the first frequency band is removed.
The method may further include generating the audio signal by recording an input signal, and the generating of the audio signal may include adjusting a recording gain so as not to saturate the audio signal.
The first frequency band may be included in a frequency band of an audio signal that is not reproducible through a speaker. The first frequency band may be a band of frequency that is equal to or less than 800 Hz. The method may further include receiving a selection of the first frequency band of which the audio signal is removed from a user.
The increasing of the volume of the audio signal may include: calculating an amount of volume of the audio signal that is reduced in a time domain corresponding to the removed signal of the first frequency band; and increasing the volume of the audio signal by using the calculated amount of volume. The method may further include, when a voltage value of the audio signal, the volume of which is increased, is greater than a first voltage value, reducing the volume of the audio signal so that the voltage value of the audio signal is reduced less than the first voltage value.
The reducing of the volume may include: calculating an average voltage value of the audio signal, the volume of which is increased, in a frame unit; and reducing the volume of the audio signal so that the average voltage value of the audio signal greater than the first voltage value is reduced less than the first voltage value. The method may further include: adjusting a gain of the audio signal, the volume of which is adjusted; and outputting the audio signal from which the gain is adjusted. The first voltage value may be smaller than a value of rated output power of the speaker.
The method may further include increasing the first voltage value so as not to exceed the rated output power of the speaker. The adjusting of the first voltage value may include receiving the selection of the first voltage value from the user.
According to another aspect of an exemplary embodiment, there is provided a volume adjusting apparatus including: a low frequency signal deduction unit for removing an audio signal of a first frequency band from audio signal; and a volume amplifier for increasing volume of the audio signal from which in which the audio signal of the first frequency band is removed.
According to another aspect of an exemplary embodiment, there is provided a computer readable recording medium having embodied thereon a program for executing a method of adjusting volume, the method including: removing an audio signal of a first frequency band from audio signals; and increasing the volume of the audio signal from which in which the signal of the first frequency band is removed.
The above and other features of the exemplary embodiments will become more apparent by describing in detail with reference to the attached drawings in which:
Hereinafter, exemplary embodiments will be described with reference to accompanying drawings.
The low frequency signal deduction unit 210 removes signal of a first frequency band from an audio signal.
The audio signal processing apparatus does not output signal of low frequency bands due to the characteristics of the hardware in the audio signal processing apparatus. Therefore, even when the audio signal of a low frequency band, which is not reproduced by the audio signal processing apparatus, is removed, volume and sound quality of the reproduced audio signal are not changed.
The low frequency signal deduction unit 210 removes the signal of low frequency band, which is not reproduced by the audio signal processing apparatus. For example, the first frequency band may be a frequency band from about 100 Hz to about 800 Hz.
The audio signal may be displayed in a time domain or on a frequency domain. That is, the audio signal may be represented as volume of the audio signal according to frequency or the volume of the audio signal according to time. In the case where the low frequency signal deduction unit 210 removes the audio signal of the first frequency band from the audio signals in the frequency domain, when the audio signal, from which the audio signal of the first frequency band is removed, is represented in the time domain, the volume of the audio signal is less than the original audio signal, from which the audio signal of the first frequency band is not removed. That is, a waveform denoting the volume of the audio signal according to time is reduced.
As described above, since the audio signal processing apparatus cannot reproduce the audio signal of a certain frequency band, the volume output from a speaker (not shown) is constant even when the volume of the audio signal according to time is reduced by the removal of the audio signal of a certain frequency band.
The low frequency signal deduction unit 210 may secure a gain margin, head room for increasing the volume, by removing the signal of the first frequency band from the audio signal. The low frequency signal deduction unit 210 transmits the audio signal from which the signal of the first frequency band is removed, to the volume amplifier 220.
The volume amplifier 220 increases the volume of the audio signal that is transmitted from the low frequency signal deduction unit 210 by applying a gain. Since a gain margin that is applicable is increased due to the removal of the signal of the first frequency band, the volume amplifier 220 may increase the volume higher than that of an original audio signal. The volume amplifier 220 calculates an amount of volume of the audio signal reduced in the time domain corresponding to the removed signal of the first frequency band, and increases the volume of the audio signal by using the amount of reduced volume.
As described above, according to the present exemplary embodiment, the audio signal of the low frequency band, which is not reproduced by the audio signal processing apparatus, is removed, and the volume of the audio signal according to time may be increased by as much as the removed audio signal.
The maximum output adjuster 330 receives the audio signal, the volume of which is increased, from the volume amplifier 320. The maximum output adjuster 330 adjusts the volume of the audio signal transmitted from the volume amplifier 320 again. The maximum output adjuster 330 adjusts an output of the audio signal transmitted from the volume amplifier 320, which exceeds a rated output power. That is, when there is a signal having a voltage value exceeding a certain voltage value among the audio signals transmitted from the volume amplifier 320, the maximum output adjuster 330 adjusts the volume so that the voltage value of that signal is under the certain voltage value.
To this end, the maximum output adjuster 330 calculates a root mean square (RMS) in a frame unit to calculate an average voltage value of the audio signal, and determines whether the average voltage value of the audio signal calculated per a frame unit is greater than a reference threshold value, that is, a first voltage value. When the average voltage value of the audio signal is greater than the first voltage value, the maximum output adjuster 330 adjusts a gain of an audio signal sample in the frame so that the average voltage value of the audio signals included in that frame may be smaller than the first voltage value. The maximum output adjuster 330 adjusts the volume per a frame unit, and thus, the audio signal of low volume in the frame is not changed and the audio signal of high volume in the frame may be adjusted. The maximum output adjuster 330 adjusts the volume in frame unit, and thus, adjusts the volume of the audio signal included in the frame exceeding the first voltage value without changing the audio signal in the frame which is less than the first voltage value.
In the exemplary embodiments, the first voltage value may be equal to or smaller than a rated output power of the speaker. When the first voltage value is smaller than the rated output power of the speaker, the volume adjusting apparatus 300 may adjust the first voltage value as much as possible, provided that the first voltage value does not exceed the rated output power of the speaker. The first voltage value is adjusted as much as possible, because as the first voltage value increases, a signal distortion is reduced.
According to the exemplary embodiments, the volume of the audio signal that exceeds the reference voltage value is decreased, and thus, the voltage value of the audio signal does not exceed the rated output power of the speaker.
The audio signal processing apparatus 400 may record an input signal to generate an audio signal, and reproduces the generated audio signal and the audio signal stored in the memory 430. The audio signal processing apparatus 400 may be an MPEG audio layer-3 (MP3) player, a personal media player (PMP), a CD player, a digital versatile disk (DVD) player, or a mobile terminal.
The audio signal generator 410 records an input signal to generate an audio signal. The audio signal generator 410 includes a recording microphone to record the input signal and adjusts a gain of the input signal. As described with reference to
The audio signal processor 410 transmits the generated audio signal to the encoder 420.
The encoder 420 encodes the generated audio signal, and transmits the encoded audio signal to the memory 430.
The memory 430 stores the encoded audio signal transmitted from the encoder 420. The audio signal processing apparatus 400 may further include a communication unit (not shown), and in this case, the memory 430 may store an audio signal that is downloaded from an external server via the communication unit. The memory 430 may be built in the audio signal processing apparatus 400, or may be an external memory, for example, a universal serial bus (USB) or a disk such as a DVD or a blue-ray disk (BD), that is detachable from the audio signal processing apparatus 400.
The decoder 440 decodes the audio signal stored in the memory 430, and transmits the decoded audio signal to the volume adjusting apparatus 450.
The volume adjusting apparatus 450 removes the audio signal of the first frequency band from the received audio signal, and increases the volume of the audio signal from which the audio signal of the first frequency band is removed.
The volume adjusting apparatus 450 may receive a user's selection of the frequency band to be removed via the user interface 480. In this case, the volume adjusting apparatus 450 removes the signal of the selected frequency band.
The volume adjusting apparatus 450 increases the volume of the audio signal in the time domain by as much as the audio signal of the first frequency band that is removed.
If necessary, the volume adjusting apparatus 450 may decrease the volume of the audio signal, which has a volume above a certain reference value among the audio signals having increased volume, below the reference value. To do this, the volume adjusting apparatus 450 calculates the voltage value of the audio signal, the volume of which is increased in the frame unit and decreases the volume of the audio signal so that the voltage value of the audio signal greater than the first voltage value in frame unit may be equal to or less than the first voltage value.
The volume adjusting apparatus 450 may receive the user's selection of the first voltage value via the user interface 480. That is, the output voltage of the audio signal may be adjusted according to the user's selection. However, the first voltage value is smaller than a value of the rated output power of the first voltage value.
The output gain adjuster 460 adjusts a gain of the audio signal output from the speaker 470. The output gain adjuster 460 calculates the gain that will be applied to the audio signals so as to output the audio signal with an output voltage less than the rated output power of the speaker, and applies the calculated gain to the audio signal. The output gain adjuster 460 is different from the volume adjusting apparatus 450, which adjusts the volume of the audio signal per the frame unit, in that the output gain adjuster 460 applies the same gain to the entire audio signals.
The speaker 470 outputs the audio signal, the gain of which is adjusted by the output gain adjuster 460.
The user interface 480 receives commands, characters, features, or voice information from the user by using a physical transducer such as a keyboard, a keypad, a mouse, a touch pad, a touch screen, or a microphone, and informs the audio signal processing apparatus 400 about the information. The user interface 480 receives the user's selection about the frequency band that is to be removed from the audio signal, and transfers the received selection to the volume adjusting apparatus 450. In addition, the user interface 480 receives the user's selection of the first voltage value that is the reference value when increasing the volume of audio signal, and transmits the selected first voltage value to the volume adjusting apparatus 450.
As described above, according to the exemplary embodiments, the volume adjusting apparatus 450 adjusts the volume of the audio signal, and then, the audio signal having a volume above the predetermined reference value may be output. In addition, when the input signal is recorded to generate the audio signal, there is no need to use a excessively large recording gain.
In the graphs of
As shown in the lower graph of
The volume adjusting apparatus 200, 300, or 450 increases the volume of the audio signals from which the signal of the first frequency band is removed (S720). The volume adjusting apparatus 200, 300, or 450 calculates the amount of reduced volume of the audio signal in the time domain corresponding to the removed signal of the first frequency band. The volume adjusting apparatus 200, 300, or 450 increases the volume of the audio signal by using the calculated amount of the reduced volume.
The volume adjusting apparatus 200, 300, or 450 may reduce the volume of the audio signal to be less than a certain reference value, when the increased volume of the audio signal is excessively large. The volume adjusting apparatus 200, 300, or 450 calculates the average voltage value of the audio signal by the frame unit, and determines whether the average voltage value is greater than the first voltage value (S730). The volume adjusting apparatus 200, 300, or 450 adjusts the volume of the audio signal so that the average voltage value of the audio signal is equal to or less than the first voltage value, with respect to the audio signal having the average voltage value that is greater than the first voltage value in the frame (S740). The volume adjusting apparatus 300 or 450 may reduce the volume of the audio signal of high volume without changing the audio signal having low volume.
The present invention can also be embodied as computer readable code on a computer readable recording medium. The computer readable recording medium is any data storage device that can store data which can be thereafter read by a computer system. Examples of the computer readable recording medium include recording media, such as magnetic storage media (e.g., ROM, floppy disks, hard disks, etc.) and optical recording media (e.g., CD-ROMs, or DVDs), and transmission media such as Internet transmission media. Thus, the medium may be such a defined and measurable structure including or carrying a signal or information, such as a device carrying a bitstream according to one or more embodiments of the present invention. The media may also be a distributed network, so that the computer readable code is stored/transferred and executed in a distributed fashion. Furthermore, the processing element could include a processor or a computer processor, and processing elements may be distributed and/or included in a single device.
According to the exemplary embodiments, the method and apparatus for adjusting volume so that the audio signal may be reproduced to be less than the rated output power of the speaker with a volume of a predetermined standard or greater.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0002748 | Jan 2010 | KR | national |