The invention relates to the field of aircraft and ground vehicle tracking and surveillance. In particular, the present invention is directed toward a technique for dynamic multilateration and elliptical surveillance and also techniques for validating Automatic Dependent Surveillance (ADS) position reports using bilateration techniques.
Global implementation of Automatic Dependent Surveillance (ADS) is underway and promises to replace conventional radar surveillance (e.g., Secondary Surveillance Radar, or SSR) within the next 10 to 20 years. Switching to ADS from radar techniques represents a fundamental shift in the techniques and philosophy of aircraft tracking.
Aircraft tracking relying on multilateration techniques are well established in the air traffic control industry with several companies supplying systems including Rannoch Corporation (www.rannoch.com), Sensis Corporation (www.sensis.com), and ERA (www.era.cz). These systems rely on the time stamping of transponder replies, either at remote sensor locations, or at a central time reference. The aircraft or vehicle location is then computed from the time difference of arrival of the transponder signal, as the transponder signal is received at multiple sensor locations. For a description of time difference of arrival multilateration, please refer to: http://en.wikipedia.org/wiki/Multilateration.
A system for elliptical surveillance uses one or more receiving elements, one or more transmitting elements, and a central workstation. The transmitting elements and receiving elements are time-synchronized to a common precision time reference. The antennas for the transmitting elements are separated in distance from the antennas from the receiving elements and are located at known positions. At a given time, one of the transmitting elements transmits an interrogation signal to one or more targets. The target(s) respond to the interrogation with a reply transmission. The reply transmission is received by one or more receiving elements and each target's ellipse of position with respect to each receiving element is calculated by the central workstation using the interrogator element time of interrogation measurement and each receiving element's time of arrival measurement for the corresponding reply transmission. The central workstation fuses the elliptical lines of position for each receiving element to compute target positions or augment passive surveillance position. At a scheduled time, the one or more transmitting elements transmit a reference signal to the receiving elements(s). The central workstation uses each of the receiving elements time stamped signals to perform integrity monitoring.
There are a variety of systems that emit pulses and other radio signals on board most aircraft including transponders, DME, TACAN, ADS-B, UAT, and various data link systems. Systems exist today, to multilaterate position using a combination of fixed ground based receiver systems, such as the PSS VERA E (http://www.era.cz/en/pss-vera-e.shtml).
Other systems that embrace the ADS-B concept of position self-reporting include Iridium, FANS (Future Air Navigation System), ACARS and CPDLC, as described below:
In addition to aircraft, vehicles and ships also carry systems that provide self-reporting over a data link, for example the IBM VTS/2000 system (http://www-304.ibm.com/jct09002c/gsdod/solutiondetails.do?solution=938&expand=true&lc=en).
As the transportation industry moves toward real-time global tracking and identification of all forms of transport, there is recognition that relying on self-reporting is vulnerable to errors, or intentional spoofing, and other security issues. This is probably most acute in aviation following the events of 9/11 and the potential damage that can result from aircraft accidents. In aviation, the need for a potential back up or validation is the subject of debate at the FAA (www.faa.gov), the Next Generation of Air Traffic Systems (NGATS) and the Joint Planning and Development Office (JPDO). For more information on these organizations and aviation initiatives please visit (wwwjpdo.aero).
Although, as of early 2006, there is no overall plan for a particular back-up or validation technology, the use of combinations of sensor systems has been discussed by FAA, NGATS, and JPDO. Sensor systems discussed include mixes of conventional radar systems, multilateration, passive tracking, and other techniques.
A discussion of various potential back-up methods is presented in U.S. Department of Transportation Federal Aviation Administration Safe Flight 21—Future Surveillance Broadcast Services Ground Station (BSGS) Specification Using the Universal Access Transceiver (UAT) and 1090 MHz Extended Squitter (1090ES) ADS-B Data Links, Draft, Version 2.0, 12 Dec. 2005.
There are many issues involved in selecting an appropriate back up technology including:
The business case for ADS-B is to forgo the use of older more expensive radar technologies, in favor of a more flexible ADS self-reporting technology. It is has been difficult thus far to achieve general consensus on an optimal approach using ADS and some form of back-up. The use of encryption or secure transponders to prevent spoofing has been discussed, but there are many cost equipage issues, avionics standardization, and the ability to spoof may be reduced but will not be eliminated. (See, e.g., Viggiano,. U.S. patent application Ser. No. 10/285,070, Publication No. 20040086121, entitled “Secure Automatic Dependent Surveillance,” incorporated herein by reference).
Other possible methods to confirm the authenticity of ADS-B include comparison and correlation between ADS-B and TCAS, such as that described in U.S. patent application Ser. No. 10/923,433, Publication No. 20050231422, entitle “Systems and Methods for Correlation in an Air Traffic Control System of Interrogation-Based Target Positional Data and GPS-Based Intruder Positional Data,” incorporated herein by reference. However, although probably a good approach for aircraft to aircraft surveillance and target verification, it is not practical for an ATC-wide application, and would still rely on some form of self-reporting. Also, TCAS is not designed to provide sufficient lateral accuracy for ATC surveillance.
Multilateration and elliptical surveillance as described above are excellent candidates for verification of ADS self-reports, providing the systems are sufficiently independent as described in Co-pending U.S. patent application Ser. No. 11/343,079 (RANN 0025), entitled “Use of Geo-Stationary Satellites to Augment Wide Area Multilateration Synchronization,” incorporated herein by reference. However, there are practical limitations to the deployment of extensive fixed multilateration and elliptical systems, although novel uses have been demonstrated such as nationwide and regional use of cell towers and existing communications infrastructure (See, e.g., U.S. patent application Ser. No. 11/342,289 (RANN 0024), entitled “Multilateration Enhancements for Noise and Operations Management,” and U.S. patent application Ser. No. 11/257,416, (RANN 0022), entitled “Method and Apparatus to Improve ADS-B Security” both of which are incorporated herein by reference).
In a first embodiment of the present invention, dynamic multilateration and/or elliptical approaches are used, where receiver and transmitter units would provide for a more effective, flexible surveillance system, which is not limited to regional deployment of fixed base infrastructure. For example, use of Low Earth Orbit (LEO) satellite systems to multilaterate onto aircraft generated transmissions would provide for global, independent, coverage. Although multilateration is based on time difference of arrival, if the location and time is known at each sensor, regardless of whether the sensor is fixed or moving, the target position may be calculated accurately in three dimensions.
In second embodiment of the present invention, multilateration and elliptical surveillance are possible using dynamic unsynchronized remote interrogator(s). The time of interrogation and position of interrogator are first determined by utilizing receivers on the interrogation frequency and multilateration, elliptical ranging, ADS, equations of motion, or other position determination system. This technique then enables calculation of a target's position from its response to the interrogator using the elliptical ranging, multilateration, or a combination of both.
In this second embodiment, all components (receivers, interrogators, and targets) of the multilateration and elliptical ranging system may be dynamic. For example, the use of LEO satellite systems as transmitters of interrogation signals would greatly enhance the coverage of system in areas where other aircraft or sources of interrogation were not available to illicit a response from the tracked target. Interrogators could also be aboard satellites, aircraft, ships, buoys, or any other non-stationary source.
Traditional multilateration systems as described above use at least four receivers to uniquely identify the location of the aircraft in space, or can use just three receivers when combined with altitude information provided by the aircraft's barometric altimeter and encoded within the transmitted message.
In a third embodiment of the present invention, data derived from only two receivers is used to assess the validity and integrity of the aircraft self-reported position by comparing the time of arrival of the emitted message at the second receiver to the predicted time of message arrival at the second receiver based on the self-reported position of the aircraft and the time of arrival at the first receiver.
This same concept can be alternatively understood by considering that, when the same signal is received at two separate receivers, the “time difference of arrival” principle can be used to locate the source of the signal on a hyperboloid. The present invention compares the ADS-B self-reported position to the positions on the hyperboloid and assesses the validity and integrity of the ADS-B self-reported position based on whether the self-reported position lies within an acceptable error of the hyperboloid.
This invention has a significant commercial advantage to alternate ADS-B validation approaches, which are based on multilateration, as it requires only that two receivers are able to receive data from aircraft under surveillance, rather than the three or four receivers required for traditional multilateration.
This is particularly significant when viewed in the context that ADS-B systems are generally deployed with overlapping and redundant coverage to ensure high levels of system availability. In such a system, no additional sensors may be required in order to establish an ADS-B validation mechanism.
Further, as the aircraft is tracked over time, reliability of the approach proposed in the current invention increases as it becomes increasingly improbable that the self-reported position will coincide with the dynamically changing hyperboloid calculated by the proposed invention.
Radio signals 110, output from aircraft 100, may also be received by several LEO satellites, and the time-stamped information then used to multilaterate the 3-D geometric position of the aircraft. Multilateration may be performed by the space element (e.g., on one or more satellites, which may then communicate aircraft position to other aircraft 300 or ground stations 500). Alternately, time-stamp data may be down-linked to an ATC sensor or receiver 500 which is passed onto an ATC network 520, and position data calculated at grounds station 610.
Simultaneously, the calculated position of aircraft 100 may be relayed 220 to other aircraft 300, either from satellites 200 as a form of Traffic Information Services Broadcast (TIS-B), on an appropriate data link. In one embodiment, aircraft position data may be calculated onboard satellites 200 using multilateration techniques, and then aircraft position data may then be relayed to other aircraft 300 over link 220. In this manner, each aircraft may have position and other information regarding all other similarly equipped aircraft, without having to rely upon ground installations.
Once position and time of transmission of interrogator 1020 has been determined by server 1000, responses from interrogated targets 1040 can be determined through receipt of their response 1090 using the central server to compute position from signals received at receivers 1061.
Interrogator 1020, targets 1040, and receivers 1061 can be moving or fixed, based on land, sea, air, or space, and can be multiples. For example, the system allows ranging at sites where system-controlled or initiated interrogation is not allowed (passive U.S. NOMS flight tracking systems) by utilizing interrogators on aircraft as sources of interrogation for ranging calculations.
The dynamic interrogation system of
As the aircraft travels across this space, along the indicated dashed line, it passes through each of the following types of surveillance zone:
It can be readily seen that the present invention greatly increases the total area in which ADS-B self-reports can be validated. Thus, aircraft in a larger area, can be validated for position data without the need for additional receiver installations.
Knowing the (fixed) position of receiver 2040, the server can work forward and calculate the time the signal should reach receiver 2040 and compare this time to the time stamp applied by receiver 2040 when the signal actually reaches the receiver.
If the difference in these two times is outside of a pre determined acceptable level of error, the system can indicate that the data should be regarded as having lower levels of integrity by updating the data feed to the ATC display systems, or by raising an error condition.
While the preferred embodiment and various alternative embodiments of the invention have been disclosed and described in detail herein, it may be apparent to those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope thereof.
This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/492,711, filed Jul. 25, 2006, and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/429,926, filed on May 8, 2006, and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/343,079, filed on Jan. 30, 2006, and incorporated herein by reference; This application is also a Continuation-In-Part of U.S. patent application Ser. No. 11/342,289 filed Jan. 28, 2006 and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/209,030, filed on Aug. 22, 2005, and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/257,416, filed on Oct. 24, 2005, and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/203,823 filed Aug. 15, 2005 and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 11/145,170 filed on Jun. 6, 2005 and incorporated herein by reference; This application is a Continuation-In-Part of U.S. patent application Ser. No. 10/743,042 filed Dec. 23, 2003 and incorporated herein by reference; application Ser. No. 10/743,042 is a Continuation-In-Part of U.S. patent application Ser. No. 10/638,524 filed Aug. 12, 2003 and incorporated herein by reference; application Ser. No. 10/638,524 is a Continuation of U.S. patent application Ser. No. 09/516,215 filed Feb. 29, 2000 and incorporated herein by reference; application Ser. No. 09/516,215 claims is a Non Prov. of Provisional U.S. Patent Application Ser. No. 60/123,170 filed Mar. 5, 1999 and incorporated herein by reference; application Ser. No. 10/743,042 is a Continuation-In-Part of U.S. patent application Ser. No. 10/319,725 filed Dec. 16, 2002 and incorporated herein by reference. Application Ser. No. 10/743,042 is a Non Prov. of Provisional U.S. Patent Application Ser. No. 60/440,618 filed Jan. 17, 2003 and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1738571 | Gare | Dec 1929 | A |
3668403 | Meilander | Jun 1972 | A |
3705404 | Chisholm | Dec 1972 | A |
3792472 | Payne et al. | Feb 1974 | A |
4079414 | Sullivan | Mar 1978 | A |
4122522 | Smith | Oct 1978 | A |
4167006 | Funatsu et al. | Sep 1979 | A |
4196474 | Buchanan et al. | Apr 1980 | A |
4224669 | Brame | Sep 1980 | A |
4229737 | Heldwein et al. | Oct 1980 | A |
4293857 | Baldwin | Oct 1981 | A |
4327437 | Frosch et al. | Apr 1982 | A |
4359733 | O'Neill | Nov 1982 | A |
4454510 | Crow | Jun 1984 | A |
4524931 | Nilsson | Jun 1985 | A |
4646244 | Bateman | Feb 1987 | A |
4688046 | Schwab | Aug 1987 | A |
4782450 | Flax | Nov 1988 | A |
4811308 | Michel | Mar 1989 | A |
4899296 | Khattak | Feb 1990 | A |
4910526 | Donnangelo et al. | Mar 1990 | A |
4914733 | Gralnick | Apr 1990 | A |
4958306 | Powell et al. | Sep 1990 | A |
5017930 | Stoltz | May 1991 | A |
5025382 | Artz | Jun 1991 | A |
5075694 | Donnangelo et al. | Dec 1991 | A |
5081457 | Motisher et al. | Jan 1992 | A |
5089822 | Abaunza et al. | Feb 1992 | A |
5138321 | Hammer | Aug 1992 | A |
5144315 | Schwab et al. | Sep 1992 | A |
5153836 | Fraughton et al. | Oct 1992 | A |
5191342 | Alsup et al. | Mar 1993 | A |
5200902 | Pilley | Apr 1993 | A |
5260702 | Thompson | Nov 1993 | A |
5262784 | Drobnicki et al. | Nov 1993 | A |
5265023 | Sokkappa | Nov 1993 | A |
5268698 | Smith et al. | Dec 1993 | A |
5283574 | Grove | Feb 1994 | A |
5317316 | Sturm et al. | May 1994 | A |
5365516 | Jandrell | Nov 1994 | A |
5374932 | Wyschogrod et al. | Dec 1994 | A |
5381140 | Kuroda et al. | Jan 1995 | A |
5402116 | Ashley | Mar 1995 | A |
5454720 | FitzGerald et al. | Oct 1995 | A |
5493309 | Bjornholt | Feb 1996 | A |
5506590 | Minter | Apr 1996 | A |
5528244 | Schwab | Jun 1996 | A |
5570095 | Drouilhet, Jr. et al. | Oct 1996 | A |
5596326 | Fitts | Jan 1997 | A |
5596332 | Coles et al. | Jan 1997 | A |
5617101 | Maine et al. | Apr 1997 | A |
5627546 | Crow | May 1997 | A |
5629691 | Jain | May 1997 | A |
5666110 | Paterson | Sep 1997 | A |
5680140 | Loomis | Oct 1997 | A |
5714948 | Farmakis et al. | Feb 1998 | A |
5752216 | Carlson et al. | May 1998 | A |
5774829 | Cisneros et al. | Jun 1998 | A |
5781150 | Norris | Jul 1998 | A |
5798712 | Coquin | Aug 1998 | A |
5839080 | Muller | Nov 1998 | A |
5841398 | Brock | Nov 1998 | A |
5867804 | Pilley et al. | Feb 1999 | A |
5872526 | Tognazzini | Feb 1999 | A |
5884222 | Denoize et al. | Mar 1999 | A |
5890068 | Fattouce et al. | Mar 1999 | A |
5913912 | Nishimura et al. | Jun 1999 | A |
5999116 | Evers | Dec 1999 | A |
6049304 | Rudel et al. | Apr 2000 | A |
6049754 | Beaton et al. | Apr 2000 | A |
6085150 | Henry et al. | Jul 2000 | A |
6088634 | Muller | Jul 2000 | A |
6092009 | Glover | Jul 2000 | A |
6094169 | Smith et al. | Jul 2000 | A |
6122570 | Muller | Sep 2000 | A |
6127944 | Daly | Oct 2000 | A |
6133867 | Eberwine et al. | Oct 2000 | A |
6138060 | Conner | Oct 2000 | A |
6161097 | Glass et al. | Dec 2000 | A |
6195609 | Pilley et al. | Feb 2001 | B1 |
6201499 | Hawkes et al. | Mar 2001 | B1 |
6208284 | Woodell et al. | Mar 2001 | B1 |
6211811 | Evers | Apr 2001 | B1 |
6219592 | Muller et al. | Apr 2001 | B1 |
6222480 | Kuntman et al. | Apr 2001 | B1 |
6230018 | Watters et al. | May 2001 | B1 |
6233522 | Morici | May 2001 | B1 |
6246342 | Vandevoorde et al. | Jun 2001 | B1 |
6275172 | Curtis et al. | Aug 2001 | B1 |
6282487 | Shiomi et al. | Aug 2001 | B1 |
6292721 | Conner et al. | Sep 2001 | B1 |
6311127 | Stratton et al. | Oct 2001 | B1 |
6314363 | Pilley et al. | Nov 2001 | B1 |
6327471 | Song | Dec 2001 | B1 |
6347263 | Johnson et al. | Feb 2002 | B1 |
6366240 | Timothy et al. | Apr 2002 | B1 |
6380870 | Conner et al. | Apr 2002 | B1 |
6384783 | Smith et al. | May 2002 | B1 |
6393359 | Flynn et al. | May 2002 | B1 |
6420993 | Varon | Jul 2002 | B1 |
6445310 | Bateman et al. | Sep 2002 | B1 |
6448929 | Smith et al. | Sep 2002 | B1 |
6463383 | Baiada et al. | Oct 2002 | B1 |
6469664 | Michaelson et al. | Oct 2002 | B1 |
6477449 | Conner et al. | Nov 2002 | B1 |
6493610 | Ezaki | Dec 2002 | B1 |
6542809 | Hehls, III | Apr 2003 | B2 |
6542810 | Lai | Apr 2003 | B2 |
6545631 | Hudson et al. | Apr 2003 | B2 |
6567043 | Smith et al. | May 2003 | B2 |
6571155 | Carriker et al. | May 2003 | B2 |
6584400 | Beardsworth | Jun 2003 | B2 |
6584414 | Green et al. | Jun 2003 | B1 |
6587079 | Rickard et al. | Jul 2003 | B1 |
6606034 | Muller et al. | Aug 2003 | B1 |
6615648 | Ferguson et al. | Sep 2003 | B1 |
6633259 | Smith et al. | Oct 2003 | B1 |
6691004 | Johnson | Feb 2004 | B2 |
6707394 | Yasuo | Mar 2004 | B2 |
6710723 | Muller | Mar 2004 | B2 |
6744396 | Stone et al. | Jun 2004 | B2 |
6750815 | Michaelson et al. | Jun 2004 | B2 |
6751545 | Walter | Jun 2004 | B2 |
6789011 | Baiada et al. | Sep 2004 | B2 |
6792058 | Hershey et al. | Sep 2004 | B1 |
6799114 | Etnyre | Sep 2004 | B2 |
6809679 | LaFrey et al. | Oct 2004 | B2 |
6812890 | Smith et al. | Nov 2004 | B2 |
6816105 | Winner et al. | Nov 2004 | B2 |
6862519 | Walter | Mar 2005 | B2 |
6873903 | Baiada et al. | Mar 2005 | B2 |
6885340 | Smith et al. | Apr 2005 | B2 |
6927701 | Schmidt et al. | Aug 2005 | B2 |
6930638 | Lloyd et al. | Aug 2005 | B2 |
6952631 | Griffith et al. | Oct 2005 | B2 |
6967616 | Etnyre | Nov 2005 | B2 |
6992626 | Smith | Jan 2006 | B2 |
7030780 | Shiomi et al. | Apr 2006 | B2 |
7043355 | Lai | May 2006 | B2 |
7065443 | Flynn et al. | Jun 2006 | B2 |
7095360 | Kuji et al. | Aug 2006 | B2 |
7117089 | Khatwa et al. | Oct 2006 | B2 |
7120537 | Flynn et al. | Oct 2006 | B2 |
7123169 | Farmer et al. | Oct 2006 | B2 |
7123192 | Smith et al. | Oct 2006 | B2 |
7126534 | Smith et al. | Oct 2006 | B2 |
7136059 | Kraud et al. | Nov 2006 | B2 |
7142154 | Quilter et al. | Nov 2006 | B2 |
7148816 | Carrico | Dec 2006 | B1 |
7170441 | Perl et al. | Jan 2007 | B2 |
7187327 | Coluzzi et al. | Mar 2007 | B2 |
7206698 | Conner et al. | Apr 2007 | B2 |
7228207 | Clarke et al. | Jun 2007 | B2 |
7248963 | Baiada et al. | Jul 2007 | B2 |
7257469 | Pemble | Aug 2007 | B1 |
7272495 | Coluzzi et al. | Sep 2007 | B2 |
7307578 | Blaskovich et al. | Dec 2007 | B2 |
7308343 | Horvath et al. | Dec 2007 | B1 |
7333887 | Baiada et al. | Feb 2008 | B2 |
7382286 | Cole et al. | Jun 2008 | B2 |
7383104 | Ishii et al. | Jun 2008 | B2 |
7383124 | Vesel | Jun 2008 | B1 |
7385527 | Clavier et al. | Jun 2008 | B1 |
7398157 | Sigurdsson et al. | Jul 2008 | B2 |
7437225 | Rathinam | Oct 2008 | B1 |
7457690 | Wilson, Jr. | Nov 2008 | B2 |
7477145 | Tatton et al. | Jan 2009 | B2 |
7479919 | Poe et al. | Jan 2009 | B2 |
20010026240 | Neher | Oct 2001 | A1 |
20020021247 | Smith et al. | Feb 2002 | A1 |
20020089433 | Bateman et al. | Jul 2002 | A1 |
20030004641 | Corwin et al. | Jan 2003 | A1 |
20030009267 | Dunsky et al. | Jan 2003 | A1 |
20030097216 | Etnyre | May 2003 | A1 |
20040004554 | Srinivasan et al. | Jan 2004 | A1 |
20040015274 | Wilkins et al. | Jan 2004 | A1 |
20040044463 | Shing-Feng et al. | Mar 2004 | A1 |
20040086121 | Viggiano | May 2004 | A1 |
20040225432 | Pilley et al. | Nov 2004 | A1 |
20050021283 | Brinton et al. | Jan 2005 | A1 |
20050046569 | Spriggs et al. | Mar 2005 | A1 |
20060119515 | Smith | Jun 2006 | A1 |
20060191326 | Smith et al. | Aug 2006 | A1 |
20060276201 | Dupray | Dec 2006 | A1 |
20070001903 | Smith et al. | Jan 2007 | A1 |
20070040734 | Evers | Feb 2007 | A1 |
20070159378 | Powers et al. | Jul 2007 | A1 |
20080030375 | Cotton et al. | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
0466239 | Jan 1992 | EP |
9-288175 | Nov 1994 | JP |
6-342061 | Dec 1994 | JP |
8-146130 | May 1996 | JP |
9-119983 | Nov 1996 | JP |
WO 94014251 | Jun 1994 | WO |
WO 9950985 | Oct 1999 | WO |
WO 0186319 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070252760 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60123170 | Mar 1999 | US | |
60440618 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09516215 | Feb 2000 | US |
Child | 10638524 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11492711 | Jul 2006 | US |
Child | 11541480 | US | |
Parent | 11429926 | May 2006 | US |
Child | 11492711 | US | |
Parent | 11343079 | Jan 2006 | US |
Child | 11429926 | US | |
Parent | 11342289 | Jan 2006 | US |
Child | 11343079 | US | |
Parent | 11257416 | Oct 2005 | US |
Child | 11342289 | US | |
Parent | 11209030 | Aug 2005 | US |
Child | 11257416 | US | |
Parent | 11203823 | Aug 2005 | US |
Child | 11209030 | US | |
Parent | 11145170 | Jun 2005 | US |
Child | 11203823 | US | |
Parent | 10743042 | Dec 2003 | US |
Child | 11145170 | US | |
Parent | 10638524 | Aug 2003 | US |
Child | 10743042 | US | |
Parent | 10319725 | Dec 2002 | US |
Child | 10743042 | US |