Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surveillance

Information

  • Patent Grant
  • 8072382
  • Patent Number
    8,072,382
  • Date Filed
    Saturday, June 6, 2009
    15 years ago
  • Date Issued
    Tuesday, December 6, 2011
    13 years ago
Abstract
A system and method are disclosed to track aircraft or other vehicles using techniques including multilateration and elliptical surveillance. Unlike conventional approaches that use time difference of arrival for multilateration at a fixed set of reception points, this technique allows targets to be tracked from a number of dynamic or moving reception points. This allows for triangulation/multilateration and elliptical surveillance of targets from combinations of fixed, fixed and moving or only moving ground-based receivers, sea-based receivers, airborne receivers and space-based receivers. Additionally this technique allows for ADS-B validation through data derived from only two receivers to assess the validity and integrity of the aircraft self-reported position by comparing the time of arrival of the emitted message at the second receiver to the predicted time of message arrival at the second receiver based on the self-reported position of the aircraft and the time of arrival at the first receiver. The benefits of using less than three receivers for validation include greater validation coverage areas using a smaller set of ground stations at a lower infrastructure cost.
Description
FIELD OF THE INVENTION

The invention relates to the field of aircraft and ground vehicle tracking and surveillance. In particular, the present invention is directed toward a technique for dynamic multilateration and elliptical surveillance and also techniques for validating Automatic Dependent Surveillance (ADS) position reports using bilateration techniques.


BACKGROUND OF THE INVENTION

Global implementation of Automatic Dependent Surveillance (ADS) is underway and promises to replace conventional radar surveillance (e.g., Secondary Surveillance Radar, or SSR) within the next 10 to 20 years. Switching to ADS from radar techniques represents a fundamental shift in the techniques and philosophy of aircraft tracking.


Aircraft tracking relying on multilateration techniques are well established in the air traffic control industry with several companies supplying systems including Rannoch Corporation (www.rannoch.com), Sensis Corporation (www.sensis.com), and ERA (www.era.cz). These systems rely on the time stamping of transponder replies, either at remote sensor locations, or at a central time reference. The aircraft or vehicle location is then computed from the time difference of arrival of the transponder signal, as the transponder signal is received at multiple sensor locations. For a description of time difference of arrival multilateration, please refer to: http://en.wikipedia.org/wiki/Multilateration.


A system for elliptical surveillance uses one or more receiving elements, one or more transmitting elements, and a central workstation. The transmitting elements and receiving elements are time-synchronized to a common precision time reference. The antennas for the transmitting elements are separated in distance from the antennas from the receiving elements and are located at known positions. At a given time, one of the transmitting elements transmits an interrogation signal to one or more targets. The target(s) respond to the interrogation with a reply transmission. The reply transmission is received by one or more receiving elements and each target's ellipse of position with respect to each receiving element is calculated by the central workstation using the interrogator element time of interrogation measurement and each receiving element's time of arrival measurement for the corresponding reply transmission. The central workstation fuses the elliptical lines of position for each receiving element to compute target positions or augment passive surveillance position. At a scheduled time, the one or more transmitting elements transmit a reference signal to the receiving elements(s). The central workstation uses each of the receiving elements time stamped signals to perform integrity monitoring.


There are a variety of systems that emit pulses and other radio signals on board most aircraft including transponders, DME, TACAN, ADS-B, UAT, and various data link systems. Systems exist today, to multilaterate position using a combination of fixed ground based receiver systems, such as the PSS VERA E (http://www.era.cz/en/pss-vera-e.shtml).


Other systems that embrace the ADS-B concept of position self-reporting include Iridium, FANS (Future Air Navigation System), ACARS and CPDLC, as described below:

    • Iridium satellite is used for voice and data, including aircraft position self-reports. (http://www.iridium.com/corp/iri_corp-news.asp?newsid=111).
    • The International Civil Aviation Organization (ICAO), the International Air Transport Association (IATA), and other air traffic service providers developed the concept of FANS to transition the current air traffic control system to an advanced air traffic management system utilizing satellite based communications, navigation and surveillance for all regions of the world for the twenty-first century. For more information on FANS refer to: www.simlabs.arc.nasa.gov/library/technical_papers/aiaa96.html and http://www.icao.int/icao/en/ro/apac/2003/cnsatmgmtf/CnsAtmGM_TFReport.pdf#search=‘FANS %20ICAO
    • The Aircraft Addressing and Reporting System (ACARS) is a widely used commercial service that includes aircraft self-position reports. A good description of ACARS is available from: www.ARINC.com.
    • Controller Pilot Data Link (CPDLC) and VDLM2 offer higher data rates for aircraft messaging that include self position reports. An excellent description and comparison of ACARS, CPDLC, and VDLM2 was presented by John Burke of ARINC at the ICNS conference in Annapolis in May, 2003. (http://spacecom.grc.nasa.gov/icnsconf/docs/2003/04_B1/B1-04-Burks.pdf#search=‘cpdlc’).


In addition to aircraft, vehicles and ships also carry systems that provide self-reporting over a data link, for example the IBM VTS/2000 system (http://www-304.ibm.com/jct09002c/gsdod/solutiondetails.do ?solution=938&expand=true&lc=en).


As the transportation industry moves toward real-time global tracking and identification of all forms of transport, there is recognition that relying on self-reporting is vulnerable to errors, or intentional spoofing, and other security issues. This is probably most acute in aviation following the events of 9/11 and the potential damage that can result from aircraft accidents. In aviation, the need for a potential back up or validation is the subject of debate at the FAA (www.faa.gov), the Next Generation of Air Traffic Systems (NGATS) and the Joint Planning and Development Office (JPDO). For more information on these organizations and aviation initiatives please visit (www.jpdo.aero).


Although, as of early 2006, there is no overall plan for a particular back-up or validation technology, the use of combinations of sensor systems has been discussed by FAA, NGATS, and JPDO. Sensor systems discussed include mixes of conventional radar systems, multilateration, passive tracking, and other techniques.


A discussion of various potential back-up methods is presented in U.S. Department of Transportation Federal Aviation Administration Safe Flight 21—Future Surveillance Broadcast Services Ground Station (BSGS) Specification Using the Universal Access Transceiver (UAT) and 1090 MHz Extended Squitter (1090ES) ADS-B Data Links, Draft, Version 2.0, 12 Dec. 2005.


There are many issues involved in selecting an appropriate back up technology including:

    • Practicality
    • Performance
    • Independence
    • Cost
    • Business case


The business case for ADS-B is to forgo the use of older more expensive radar technologies, in favor of a more flexible ADS self-reporting technology. It is has been difficult thus far to achieve general consensus on an optimal approach using ADS and some form of back-up. The use of encryption or secure transponders to prevent spoofing has been discussed, but there are many cost equipage issues, avionics standardization, and the ability to spoof may be reduced but will not be eliminated. (See, e.g., Viggiano, U.S. patent application Ser. No. 10/285,070, Publication No. 20040086121, entitled “Secure Automatic Dependent Surveillance,” incorporated herein by reference).


Other possible methods to confirm the authenticity of ADS-B include comparison and correlation between ADS-B and TCAS, such as that described in U.S. patent application Ser. No. 10/923,433, Publication No. 20050231422, entitle “Systems and Methods for Correlation in an Air Traffic Control System of Interrogation-Based Target Positional Data and GPS-Based Intruder Positional Data,” incorporated herein by reference. However, although probably a good approach for aircraft to aircraft surveillance and target verification, it is not practical for an ATC-wide application, and would still rely on some form of self-reporting. Also, TCAS is not designed to provide sufficient lateral accuracy for ATC surveillance.


SUMMARY OF THE INVENTION

Multilateration and elliptical surveillance as described above are excellent candidates for verification of ADS self-reports, providing the systems are sufficiently independent as described in Co-pending U.S. patent application Ser. No. 11/343,079 (RANN 0025), entitled “Use of Geo-Stationary Satellites to Augment Wide Area Multilateration Synchronization,” incorporated herein by reference. However, there are practical limitations to the deployment of extensive fixed multilateration and elliptical systems, although novel uses have been demonstrated such as nationwide and regional use of cell towers and existing communications infrastructure (See, e.g., U.S. patent application Ser. No. 11/342,289 (RANN 0024), entitled “Multilateration Enhancements for Noise and Operations Management,” and U.S. patent application Ser. No. 11/257,416, (RANN 0022), entitled “Method and Apparatus to Improve ADS-B Security” both of which are incorporated herein by reference).


In a first embodiment of the present invention, dynamic multilateration and/or elliptical approaches are used, where receiver and transmitter units would provide for a more effective, flexible surveillance system, which is not limited to regional deployment of fixed base infrastructure. For example, use of Low Earth Orbit (LEO) satellite systems to multilaterate onto aircraft generated transmissions would provide for global, independent, coverage. Although multilateration is based on time difference of arrival, if the location and time is known at each sensor, regardless of whether the sensor is fixed or moving, the target position may be calculated accurately in three dimensions.


In second embodiment of the present invention, multilateration and elliptical surveillance are possible using dynamic unsynchronized remote interrogator(s). The time of interrogation and position of interrogator are first determined by utilizing receivers on the interrogation frequency and multilateration, elliptical ranging, ADS, equations of motion, or other position determination system. This technique then enables calculation of a target's position from its response to the interrogator using the elliptical ranging, multilateration, or a combination of both.


In this second embodiment, all components (receivers, interrogators, and targets) of the multilateration and elliptical ranging system may be dynamic. For example, the use of LEO satellite systems as transmitters of interrogation signals would greatly enhance the coverage of system in areas where other aircraft or sources of interrogation were not available to illicit a response from the tracked target. Interrogators could also be aboard satellites, aircraft, ships, buoys, or any other non-stationary source.


Traditional multilateration systems as described above use at least four receivers to uniquely identify the location of the aircraft in space, or can use just three receivers when combined with altitude information provided by the aircraft's barometric altimeter and encoded within the transmitted message.


In a third embodiment of the present invention, data derived from only two receivers is used to assess the validity and integrity of the aircraft self-reported position by comparing the time of arrival of the emitted message at the second receiver to the predicted time of message arrival at the second receiver based on the self-reported position of the aircraft and the time of arrival at the first receiver.


This same concept can be alternatively understood by considering that, when the same signal is received at two separate receivers, the “time difference of arrival” principle can be used to locate the source of the signal on a hyperboloid. The present invention compares the ADS-B self-reported position to the positions on the hyperboloid and assesses the validity and integrity of the ADS-B self-reported position based on whether the self-reported position lies within an acceptable error of the hyperboloid.


This invention has a significant commercial advantage to alternate ADS-B validation approaches, which are based on multilateration, as it requires only that two receivers are able to receive data from aircraft under surveillance, rather than the three or four receivers required for traditional multilateration.


This is particularly significant when viewed in the context that ADS-B systems are generally deployed with overlapping and redundant coverage to ensure high levels of system availability. In such a system, no additional sensors may be required in order to establish an ADS-B validation mechanism.


Further, as the aircraft is tracked over time, reliability of the approach proposed in the current invention increases as it becomes increasingly improbable that the self-reported position will coincide with the dynamically changing hyperboloid calculated by the proposed invention.





BRIEF DESCRIPTION OF THE DRAWINGS AND TABLES


FIG. 1 is a block diagram of another embodiment of the present invention, using satellite-based multilateration, illustrating an aircraft emitting various signals that may include ADS-B, DME, Mode S and various other communications, navigation, and surveillance signals. Note that for the purposes of the present invention, the signals emanating from the aircraft may include any one of a number of radio or other signals, which may be detected by one or more receivers. Thus, aircraft position can be detecting using any one of a number of broadband aircraft signals—i.e., not just SSR transponders but other high frequency emitters found on aircraft (UAT, weather radar, jamming radar, TACAN, datalink, and the like). Other signals, such as cellular telephones, and other equipment onboard an aircraft may also generate signals which may be used to track location of an aircraft.



FIG. 2 is a block diagram illustrating another embodiment, illustrating dynamic interrogation.



FIG. 3 is a diagram illustrating potential receiver coverage for the Hudson Bay area in Canada based on the installation of six receivers at locations around the perimeter of the bay, each with a reception range of 250 nm.



FIG. 4 is a block diagram of another embodiment of the present invention, illustrating an aircraft emitting ADS-B signals which are received, time stamped and decoded at a receiver before being passed to the central system processor.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 is a block diagram of a first embodiment of the present invention, illustrating an aircraft 100 emitting various signals, which may include ADS-B, DME, Mode S and various other communications, navigation, and surveillance signals. Aircraft 100 may send self-reported position data to ADS-B receiver 400 which may then communicated the position data 410 to a surveillance network 600. Surveillance network 600 makes available the self-report and independently calculated report to various users 610 where they may be compared and alerts generated in the case of discrepancies. A ground-based station 610 mat then compare self-reported position data with other sources, to determine whether the self-reported position data is accurate.


Radio signals 110, output from aircraft 100, may also be received by several LEO satellites, and the time-stamped information then used to multilaterate the 3-D geometric position of the aircraft. Multilateration may be performed by the space element (e.g., on one or more satellites, which may then communicate aircraft position to other aircraft 300 or ground stations 500). Alternately, time-stamp data may be down-linked to an ATC sensor or receiver 500 which is passed onto an ATC network 520, and position data calculated at grounds station 610.


Simultaneously, the calculated position of aircraft 100 may be relayed 220 to other aircraft 300, either from satellites 200 as a form of Traffic Information Services Broadcast (TIS-B), on an appropriate data link. In one embodiment, aircraft position data may be calculated onboard satellites 200 using multilateration techniques, and then aircraft position data may then be relayed to other aircraft 300 over link 220. In this manner, each aircraft may have position and other information regarding all other similarly equipped aircraft, without having to rely upon ground installations.



FIG. 2 is a block diagram illustrating a second embodiment of the present invention, illustrating dynamic interrogation. Transmission of interrogation occurs (from interrogator 1020) but time of transmission and position of transmitter are not known and must be determined (1030 MHz Mlat, elliptical ranging, 1090 MHz ADS-B, ADS-C, etc.). Interrogation signal 1030 is received at receivers 1061 and received signals 1010 are sent to central server 1000. Central server may not be physically connected to interrogator 1020 in any way but may be used to compute the position of the interrogator at the time of transmission and the time of transmission.


Once position and time of transmission of interrogator 1020 has been determined by server 1000, responses from interrogated targets 1040 can be determined through receipt of their response 1090 using the central server to compute position from signals received at receivers 1061.


Interrogator 1020, targets 1040, and receivers 1061 can be moving or fixed, based on land, sea, air, or space, and can be multiples. For example, the system allows ranging at sites where system-controlled or initiated interrogation is not allowed (passive U.S. NOMS flight tracking systems) by utilizing interrogators on aircraft as sources of interrogation for ranging calculations.


The dynamic interrogation system of FIG. 2 may be combined with the use of orbiting satellites systems in FIG. 1 to interrogate targets 1040 and receive responses 1090. Such a system includes an application of ranging techniques to satellite-based interrogation and response reception. Use of dynamic interrogation sources whose time and position of transmission may or may not have to be determined first to enable multilateration and elliptical ranging. A multilateration and ranging tracking system may include combination of fixed or moving interrogators, fixed or moving receivers, and fixed or moving targets.



FIG. 3 is a diagram illustrating potential receiver coverage for the Hudson Bay area in Canada based on the installation of six receivers at locations around the perimeter of the bay, each with a reception range of 250 nm. The diagram is shaded to show zones with a single receiver able to receive signals, zones with two receivers in range, and zones with three or more receivers.


As the aircraft travels across this space, along the indicated dashed line, it passes through each of the following types of surveillance zone:

    • Where three receivers are able to receive the signal, the ADS-B self-reports can be validated by traditional multilateration systems, which can derive an independent position report for the aircraft.
    • Where two receivers are able to receive the signal, the ADS-B self-reports can be validated by the TDOA validation method described in the present invention.
    • Where only a single receiver is in range, there is no independent validation of ADS-B reports, although a surveillance system may assess the self-reported position based on tracking the aircraft from its last validated position. Based upon reported position and speed, a subsequent time-stamp can be predicted, and then compared to an actual subsequent time-stamp received at the same location.


It can be readily seen that the present invention greatly increases the total area in which ADS-B self-reports can be validated. Thus, aircraft in a larger area, can be validated for position data without the need for additional receiver installations.



FIG. 4 is a block diagram of this third embodiment of the present invention, illustrating an aircraft 2010 emitting ADS-B signals which are received, time stamped and decoded at receiver 2020 before being passed to the central system processor 2030. The server, knowing the location of the receiver 2020 and the reported position of the aircraft 2010, can calculate the time that the signal originated from the aircraft by calculating and deducting the time taken for the signal to travel from aircraft 2010 to receiver 2020 from the time stamp applied by receiver 2020 when it received the signal.


Knowing the (fixed) position of receiver 2040, the server can work forward and calculate the time the signal should reach receiver 2040 and compare this time to the time stamp applied by receiver 2040 when the signal actually reaches the receiver.


If the difference in these two times is outside of a predetermined acceptable level of error, the system can indicate that the data should be regarded as having lower levels of integrity by updating the data feed to the ATC display systems, or by raising an error condition.


While the preferred embodiment and various alternative embodiments of the invention have been disclosed and described in detail herein, it may be apparent to those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope thereof.

Claims
  • 1. A method of tracking vehicles, comprising the step of: receiving, from at least one moving sensor, a radio signal,time-stamping the radio signal from the at least one moving sensor at least one known location, to determine a time of arrival of the radio signal from the at least one moving sensor at the at least one known location,calculating, from the time of arrival of the radio signal from at least one the moving sensor, a position of the at least one moving sensor,receiving at the at least one moving sensor, a radio signal from a vehicle,time-stamping the radio signal from the vehicle at the at least one moving sensor, to determine a time of arrival of the radio signal from the vehicle at the at least one moving sensor, andcalculating, from the time of arrival of the radio signal from the vehicle at the at least one the moving sensor, a position of the vehicle.
  • 2. The method of claim 1, wherein at least one of the at least one moving sensors comprises an orbiting satellite.
  • 3. The method of claim 1, wherein at least one of the at least one moving sensors comprises a ground vehicle moving sensor.
  • 4. The method of claim 1, wherein at least one of the at least one moving sensors comprises a moving ship/vessel sensor.
  • 5. The method of claim 2, wherein the orbiting satellite broadcasts calculated vehicle position.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Divisional of U.S. patent application Ser. No. 11/541,480 filed on Sep. 29, 2006, now U.S. Pat. No. 7,570,214 and incorporated herein by reference; application Ser. No. 11/541,480 is a Continuation-In-Part of U.S. patent application Ser. No. 11/492,711, filed Jul. 25, 2006, now U.S. Pat. No. 7,429,950 and incorporated herein by reference; application Ser. No. 11/541,480 is a Continuation-In-Part of U.S. patent application Ser. No. 11/429,926, filed on May 8, 2006, now U.S. Pat. No. 7,477,193 and incorporated herein by reference; application Ser. No. 11/541,480 is a Continuation-In-Part of U.S. patent application Ser. No. 11/343,079, filed on Jan. 30, 2006, now U.S. Pat. No. 7,375,683 and incorporated herein by reference; application Ser. No. 11/541,480 is also a Continuation-In-Part of U.S. patent application Ser. No. 11/342,289 filed Jan. 28, 2006 now U.S. Pat. No. 7,576,695 and incorporated herein by reference; application Ser. No. 11/541,480 is a Continuation-In-Part of U.S. patent application Ser. No. 11/209,030, filed on Aug. 22, 2005, now U.S. Pat. No. 7,248,219 and incorporated herein by reference; application Ser. No. 11/541,480 is a Continuation-In-Part of U.S. patent application Ser. No. 11/257,416, filed on Oct. 24, 2005, now U.S. Pat. No. 7,495,612 and incorporated herein by reference; application Ser. No. 11/541,480 is a Continuation-In-Part of U.S. patent application Ser. No. 11/203,823 filed Aug. 15, 2005 now U.S. Pat. No. 7,739,167 and incorporated herein by reference; application Ser. No. 11/541,480 is a Continuation-In-Part of U.S. patent application Ser. No. 11/145,170 filed on Jun. 6, 2005 now U.S. Pat. No. 7,437,250 and incorporated herein by reference; application Ser. No. 11/541,480 is a Continuation-In-Part of U.S. patent application Ser. No. 10/743,042 filed Dec. 23, 2003 now U.S. Pat. No. 7,132,982 and incorporated herein by reference; application Ser. No. 10/743,042 is a Continuation-In-Part of U.S. patent application Ser. No. 10/638,524 filed Aug. 12, 2003 now U.S. Pat. No. 6,806,829 and incorporated herein by reference; application Ser. No. 10/638,524 is a Continuation of U.S. patent application Ser. No. 09/516,215 filed Feb. 29, 2000 now U.S. Pat. No. 6,633,259 and incorporated herein by reference; application Ser. No. 09/516,215 claims is a Non Prov. of Provisional U.S. Patent Application Ser. No. 60/123,170 filed Mar. 5, 1999 and incorporated herein by reference; application Ser. No. 10/743,042 is a Continuation-In-Part of U.S. patent application Ser. No. 10/319,725 filed Dec. 16, 2002 now U.S. Pat. No. 6,812,890 and incorporated herein by reference. Application Ser. No. 10/743,042 is a Non Prov. of Provisional U.S. Patent Application Ser. No. 60/440,618 filed Jan. 17, 2003 and incorporated herein by reference.

US Referenced Citations (453)
Number Name Date Kind
1738571 Gare Dec 1929 A
3668403 Meilander Jun 1972 A
3705404 Chisholm Dec 1972 A
3792472 Payne et al. Feb 1974 A
4079414 Sullivan Mar 1978 A
4115771 Litchford Sep 1978 A
4122522 Smith Oct 1978 A
4167006 Funatsu et al. Sep 1979 A
4196474 Buchanan et al. Apr 1980 A
4224669 Brame Sep 1980 A
4229737 Heldwein et al. Oct 1980 A
4293857 Baldwin Oct 1981 A
4315609 McLean et al. Feb 1982 A
4327437 Frosch et al. Apr 1982 A
4359733 O'Neill Nov 1982 A
4454510 Crow Jun 1984 A
4524931 Nilsson Jun 1985 A
4646244 Bateman Feb 1987 A
4688046 Schwab Aug 1987 A
4782450 Flax Nov 1988 A
4811308 Michel Mar 1989 A
4843397 Galati et al. Jun 1989 A
4853700 Funatsu et al. Aug 1989 A
4897661 Hiraiwa Jan 1990 A
4899296 Khattak Feb 1990 A
4910526 Donnangelo et al. Mar 1990 A
4914733 Gralnick Apr 1990 A
4958306 Powell et al. Sep 1990 A
5001490 Fichtner Mar 1991 A
5001650 Francis et al. Mar 1991 A
5017930 Stoltz May 1991 A
5025382 Artz Jun 1991 A
5027114 Kawashima et al. Jun 1991 A
5045861 Duffett-Smith Sep 1991 A
5075680 Dabbs Dec 1991 A
5075694 Donnangelo et al. Dec 1991 A
5081457 Motisher et al. Jan 1992 A
5089822 Abaunza et al. Feb 1992 A
5113193 Powell et al. May 1992 A
5119102 Barnard Jun 1992 A
5132695 Sumas et al. Jul 1992 A
5138321 Hammer Aug 1992 A
5144315 Schwab et al. Sep 1992 A
5153836 Fraughton et al. Oct 1992 A
5179384 De Haan Jan 1993 A
5191342 Alsup et al. Mar 1993 A
5200902 Pilley Apr 1993 A
5225842 Brown et al. Jul 1993 A
5260702 Thompson Nov 1993 A
5262784 Drobnicki et al. Nov 1993 A
5265023 Sokkappa Nov 1993 A
5268698 Smith et al. Dec 1993 A
5283574 Grove Feb 1994 A
5311194 Brown May 1994 A
5317316 Sturm et al. May 1994 A
5317317 Billaud et al. May 1994 A
5339281 Narendra et al. Aug 1994 A
5341139 Billaud et al. Aug 1994 A
5365516 Jandrell Nov 1994 A
5374932 Wyschogrod et al. Dec 1994 A
5379224 Brown et al. Jan 1995 A
5381140 Kuroda et al. Jan 1995 A
5402116 Ashley Mar 1995 A
5406288 Billaud et al. Apr 1995 A
5424746 Schwab et al. Jun 1995 A
5424748 Pourailly et al. Jun 1995 A
5438337 Aguado Aug 1995 A
5448233 Saban et al. Sep 1995 A
5450329 Tanner Sep 1995 A
5454720 FitzGerald et al. Oct 1995 A
5455586 Barbier et al. Oct 1995 A
5471657 Gharpuray Nov 1995 A
5486829 Potier et al. Jan 1996 A
5493309 Bjornholt Feb 1996 A
5506590 Minter Apr 1996 A
5515286 Simon May 1996 A
5528244 Schwab Jun 1996 A
5534871 Hidaka et al. Jul 1996 A
5541608 Murphy et al. Jul 1996 A
5570095 Drouilhet, Jr. et al. Oct 1996 A
5570099 DesJardins Oct 1996 A
5583775 Nobe et al. Dec 1996 A
5590044 Buckreub Dec 1996 A
5596326 Fitts Jan 1997 A
5596332 Coles et al. Jan 1997 A
5608412 Welles, II et al. Mar 1997 A
5614912 Mitchell Mar 1997 A
5617101 Maine et al. Apr 1997 A
5627546 Crow May 1997 A
5629691 Jein May 1997 A
5635693 Benson et al. Jun 1997 A
5659319 Rost et al. Aug 1997 A
5666110 Paterson Sep 1997 A
5670960 Cessat Sep 1997 A
5670961 Tomita et al. Sep 1997 A
5677841 Shiomi et al. Oct 1997 A
5680140 Loomis Oct 1997 A
5686921 Okada et al. Nov 1997 A
5694322 Westerlage et al. Dec 1997 A
5714948 Farmakis et al. Feb 1998 A
5732384 Ellert et al. Mar 1998 A
5752216 Carlson et al. May 1998 A
5757314 Gounon et al. May 1998 A
5774829 Cisneros et al. Jun 1998 A
5781150 Norris Jul 1998 A
5784022 Kupfer Jul 1998 A
5793329 Nakada et al. Aug 1998 A
5798712 Coquin Aug 1998 A
5802542 Coiera et al. Sep 1998 A
5825021 Uemura Oct 1998 A
5828333 Richardson et al. Oct 1998 A
5839080 Muller Nov 1998 A
5841391 Lucas, Jr. et al. Nov 1998 A
5841398 Brock Nov 1998 A
5850420 Guillard et al. Dec 1998 A
5867804 Pilley et al. Feb 1999 A
5872526 Tognazzini Feb 1999 A
5884222 Denoize et al. Mar 1999 A
5890068 Fattouche et al. Mar 1999 A
5892462 Tran Apr 1999 A
5913912 Nishimura et al. Jun 1999 A
5920277 Foster et al. Jul 1999 A
5920318 Salvatore, Jr. et al. Jul 1999 A
5923293 Smith et al. Jul 1999 A
5949375 Ishiguro et al. Sep 1999 A
5969674 von der Embse et al. Oct 1999 A
5977905 Le Chevalier Nov 1999 A
5979234 Karlsen Nov 1999 A
5990833 Ahlbom et al. Nov 1999 A
5991687 Hale et al. Nov 1999 A
5995040 Issler et al. Nov 1999 A
5999116 Evers Dec 1999 A
6043777 Bergman et al. Mar 2000 A
6044322 Stieler Mar 2000 A
6049304 Rudel et al. Apr 2000 A
6049754 Beaton et al. Apr 2000 A
6075479 Kudoh Jun 2000 A
6081222 Henkel et al. Jun 2000 A
6081764 Varon Jun 2000 A
6085150 Henry et al. Jul 2000 A
6088634 Muller Jul 2000 A
6092009 Glover Jul 2000 A
6094169 Smith et al. Jul 2000 A
6122570 Muller Sep 2000 A
6127944 Daly Oct 2000 A
6133867 Eberwine et al. Oct 2000 A
6138060 Conner Oct 2000 A
6147748 Hughes Nov 2000 A
6161097 Glass et al. Dec 2000 A
6178363 McIntyre et al. Jan 2001 B1
6188937 Sherry et al. Feb 2001 B1
6195040 Arethens Feb 2001 B1
6195609 Pilley Feb 2001 B1
6201499 Hawkes et al. Mar 2001 B1
6208284 Woodell et al. Mar 2001 B1
6208937 Huddle Mar 2001 B1
6211811 Evers Apr 2001 B1
6219592 Muller et al. Apr 2001 B1
6222480 Kuntman et al. Apr 2001 B1
6225942 Alon May 2001 B1
6230018 Watters et al. May 2001 B1
6233522 Morici May 2001 B1
6239739 Thomson et al. May 2001 B1
6240345 Vesel May 2001 B1
6246342 Vandevoorde et al. Jun 2001 B1
6253147 Greenstein Jun 2001 B1
6271768 Frazier, Jr. et al. Aug 2001 B1
6275172 Curtis et al. Aug 2001 B1
6275767 Delseny et al. Aug 2001 B1
6282487 Shiomi et al. Aug 2001 B1
6282488 Castor et al. Aug 2001 B1
6289280 Fernandez-Corbaton Sep 2001 B1
6292721 Conner et al. Sep 2001 B1
6311127 Stratton et al. Oct 2001 B1
6314361 Yu et al. Nov 2001 B1
6314363 Pilley et al. Nov 2001 B1
6317663 Meunier et al. Nov 2001 B1
6321091 Holland Nov 2001 B1
6327471 Song Dec 2001 B1
6329947 Smith Dec 2001 B2
6337652 Shiomi et al. Jan 2002 B1
6338011 Furst et al. Jan 2002 B1
6339745 Novik Jan 2002 B1
6340935 Hall Jan 2002 B1
6340947 Chang et al. Jan 2002 B1
6344820 Shiomi et al. Feb 2002 B1
6347263 Johnson et al. Feb 2002 B1
6348856 Jones et al. Feb 2002 B1
6366240 Timothy et al. Apr 2002 B1
6377208 Chang et al. Apr 2002 B2
6380869 Simon et al. Apr 2002 B1
6380870 Conner et al. Apr 2002 B1
6384783 Smith et al. May 2002 B1
6393359 Flynn et al. May 2002 B1
6396435 Fleischhauer et al. May 2002 B1
6408233 Solomon et al. Jun 2002 B1
6414629 Curcio Jul 2002 B1
6415219 Degodyuk Jul 2002 B1
6420993 Varon Jul 2002 B1
6445310 Bateman et al. Sep 2002 B1
6445927 Kng et al. Sep 2002 B1
6448929 Smith et al. Sep 2002 B1
6459411 Frazier et al. Oct 2002 B2
6462674 Ohmura et al. Oct 2002 B2
6463383 Baiada et al. Oct 2002 B1
6469654 Winner et al. Oct 2002 B1
6469655 Franke et al. Oct 2002 B1
6469664 Michaelson et al. Oct 2002 B1
6473027 Alon Oct 2002 B1
6473694 Akopian et al. Oct 2002 B1
6477449 Conner et al. Nov 2002 B1
6492932 Jin et al. Dec 2002 B1
6493610 Ezaki Dec 2002 B1
6504490 Mizushima Jan 2003 B2
6518916 Ashihara et al. Feb 2003 B1
6522295 Baugh et al. Feb 2003 B2
6531978 Tran Mar 2003 B2
6542809 Hehls, III Apr 2003 B2
6542810 Lai Apr 2003 B2
6545631 Hudson et al. Apr 2003 B2
6549829 Anderson et al. Apr 2003 B1
6563432 Millgard May 2003 B1
6567043 Smith et al. May 2003 B2
6571155 Carriker et al. May 2003 B2
6584400 Beardsworth Jun 2003 B2
6584414 Green et al. Jun 2003 B1
6587079 Rickard et al. Jul 2003 B1
6606034 Muller et al. Aug 2003 B1
6606563 Corcoran, III Aug 2003 B2
6615648 Ferguson et al. Sep 2003 B1
6617997 Ybarra et al. Sep 2003 B2
6618008 Scholz Sep 2003 B1
6633259 Smith et al. Oct 2003 B1
6657578 Stayton Dec 2003 B2
6680687 Phelipot Jan 2004 B2
6690295 De Boer Feb 2004 B1
6690296 Corwin et al. Feb 2004 B2
6690618 Tomasi et al. Feb 2004 B2
6691004 Johnson Feb 2004 B2
6707394 Ishihara et al. Mar 2004 B2
6710719 Jones et al. Mar 2004 B1
6710723 Muller Mar 2004 B2
6714782 Monot et al. Mar 2004 B1
6721652 Sanqunetti Apr 2004 B1
6744396 Stone et al. Jun 2004 B2
6750815 Michaelson et al. Jun 2004 B2
6751545 Walter Jun 2004 B2
6760387 Langford et al. Jul 2004 B2
6765533 Szajnowski Jul 2004 B2
6789011 Baiada et al. Sep 2004 B2
6789016 Bayh et al. Sep 2004 B2
6792058 Hershey et al. Sep 2004 B1
6792340 Dunsky et al. Sep 2004 B2
6798381 Benner et al. Sep 2004 B2
6799114 Etnyre Sep 2004 B2
6801152 Rose Oct 2004 B1
6801155 Jahangir et al. Oct 2004 B2
6809679 LaFrey et al. Oct 2004 B2
6810329 Koga Oct 2004 B2
6812890 Smith et al. Nov 2004 B2
6816105 Winner et al. Nov 2004 B2
6819282 Galati et al. Nov 2004 B1
6823188 Stern Nov 2004 B1
6828921 Brown et al. Dec 2004 B2
6845362 Furuta et al. Jan 2005 B2
6861982 Forstrom et al. Mar 2005 B2
6862519 Walter Mar 2005 B2
6862541 Mizushima Mar 2005 B2
6865484 Miyasaka et al. Mar 2005 B2
6873269 Tran Mar 2005 B2
6873903 Baiada et al. Mar 2005 B2
6876859 Anderson et al. Apr 2005 B2
6882930 Trayford et al. Apr 2005 B2
6885340 Smith et al. Apr 2005 B2
6900760 Groves May 2005 B2
6912461 Poreda Jun 2005 B2
6927701 Schmidt et al. Aug 2005 B2
6930638 Lloyd et al. Aug 2005 B2
6952631 Griffith et al. Oct 2005 B2
6963304 Murphy Nov 2005 B2
6967616 Etnyre Nov 2005 B2
6977612 Bennett Dec 2005 B1
6985103 Ridderheim et al. Jan 2006 B2
6985743 Bajikar Jan 2006 B2
6992626 Smith Jan 2006 B2
7006032 King et al. Feb 2006 B2
7012552 Baugh et al. Mar 2006 B2
7026987 Lokshin et al. Apr 2006 B2
7030780 Shiomi et al. Apr 2006 B2
7043355 Lai May 2006 B2
7050909 Nichols et al. May 2006 B2
7053792 Aoki et al. May 2006 B2
7058506 Kawase et al. Jun 2006 B2
7062381 Rekow et al. Jun 2006 B1
7065443 Flynn et al. Jun 2006 B2
7071843 Hashida et al. Jul 2006 B2
7071867 Wittenberg et al. Jul 2006 B2
7079925 Kubota et al. Jul 2006 B2
7095360 Kuji et al. Aug 2006 B2
7102570 Bar-On et al. Sep 2006 B2
7106212 Konishi et al. Sep 2006 B2
7109889 He Sep 2006 B2
7117089 Khatwa et al. Oct 2006 B2
7120537 Flynn et al. Oct 2006 B2
7123169 Farmer et al. Oct 2006 B2
7123192 Smith et al. Oct 2006 B2
7126534 Smith et al. Oct 2006 B2
7136059 Kraus et al. Nov 2006 B2
7142154 Quilter et al. Nov 2006 B2
7148816 Carrico Dec 2006 B1
7155240 Atkinson et al. Dec 2006 B2
7164986 Humphries et al. Jan 2007 B2
7170441 Perl et al. Jan 2007 B2
7170820 Szajnowski Jan 2007 B2
7187327 Coluzzi et al. Mar 2007 B2
7190303 Rowlan Mar 2007 B2
7196621 Kochis Mar 2007 B2
7206698 Conner et al. Apr 2007 B2
7218276 Teranishi May 2007 B2
7218278 Arethens May 2007 B1
7221308 Burton et al. May 2007 B2
7228207 Clarke et al. Jun 2007 B2
7233545 Harvey, Jr. et al. Jun 2007 B2
7248963 Baiada et al. Jul 2007 B2
7250849 Spriggs et al. Jul 2007 B2
7250901 Stephens Jul 2007 B2
7257469 Pemble Aug 2007 B1
7272495 Coluzzi et al. Sep 2007 B2
7277052 Delaveau et al. Oct 2007 B2
7286624 Woo et al. Oct 2007 B2
7307578 Blaskovich et al. Dec 2007 B2
7308343 Horvath et al. Dec 2007 B1
7321813 Meunier Jan 2008 B2
7333052 Maskell Feb 2008 B2
7333887 Baiada et al. Feb 2008 B2
7352318 Osman et al. Apr 2008 B2
7358854 Egner et al. Apr 2008 B2
7379165 Anderson et al. May 2008 B2
7382286 Cole et al. Jun 2008 B2
7383104 Ishii et al. Jun 2008 B2
7383124 Vesel Jun 2008 B1
7385527 Clavier et al. Jun 2008 B1
7391359 Ootomo et al. Jun 2008 B2
7398157 Sigurdsson et al. Jul 2008 B2
7400297 Ferreol et al. Jul 2008 B2
7408497 Billaud et al. Aug 2008 B2
7408498 Kuji et al. Aug 2008 B2
7420501 Perl Sep 2008 B2
7430218 Lee et al. Sep 2008 B2
7437225 Rathinam Oct 2008 B1
7440846 Irie et al. Oct 2008 B2
7457690 Wilson, Jr. Nov 2008 B2
7460866 Salkini et al. Dec 2008 B2
7460871 Humphries et al. Dec 2008 B2
7477145 Tatton et al. Jan 2009 B2
7479919 Poe et al. Jan 2009 B2
7479922 Hunt et al. Jan 2009 B2
7479923 Carpenter Jan 2009 B2
7479925 Schell Jan 2009 B2
7487108 Aoki et al. Feb 2009 B2
7501977 Ino Mar 2009 B2
7504996 Martin Mar 2009 B2
7515715 Olive Apr 2009 B2
20010014847 Keenan Aug 2001 A1
20010026240 Neher Oct 2001 A1
20020089433 Bateman et al. Jul 2002 A1
20020152029 Sainthuile et al. Oct 2002 A1
20030060941 Griffith et al. Mar 2003 A1
20030097216 Etnyre May 2003 A1
20030152248 Spark et al. Aug 2003 A1
20030158799 Kakihara et al. Aug 2003 A1
20040002886 Dickerson et al. Jan 2004 A1
20040004554 Srinivasan et al. Jan 2004 A1
20040039806 Miras Feb 2004 A1
20040044463 Shen-Feng et al. Mar 2004 A1
20040086121 Viggiano et al. May 2004 A1
20040094622 Vismara May 2004 A1
20040210371 Adachi et al. Oct 2004 A1
20040225432 Pilley et al. Nov 2004 A1
20040266341 Teunon Dec 2004 A1
20050007272 Smith et al. Jan 2005 A1
20050021283 Brinton et al. Jan 2005 A1
20050057395 Atkinson Mar 2005 A1
20050159170 Humphries et al. Jul 2005 A1
20050166672 Atkinson Aug 2005 A1
20050192717 Tafs et al. Sep 2005 A1
20050228715 Hartig et al. Oct 2005 A1
20050231422 Etnyre Oct 2005 A1
20060023655 Engel et al. Feb 2006 A1
20060044184 Kimura Mar 2006 A1
20060052933 Ota Mar 2006 A1
20060119515 Smith Jun 2006 A1
20060129310 Tarrant et al. Jun 2006 A1
20060161340 Lee Jul 2006 A1
20060167598 Pennarola Jul 2006 A1
20060181447 Kuji et al. Aug 2006 A1
20060191326 Smith et al. Aug 2006 A1
20060208924 Matalon Sep 2006 A1
20060262014 Shemesh et al. Nov 2006 A1
20060265664 Simons et al. Nov 2006 A1
20060276201 Dupray Dec 2006 A1
20070001903 Smith et al. Jan 2007 A1
20070040734 Evers Feb 2007 A1
20070060079 Nakagawa et al. Mar 2007 A1
20070090295 Parkinson et al. Apr 2007 A1
20070106436 Johansson May 2007 A1
20070109184 Shyr et al. May 2007 A1
20070159356 Borel et al. Jul 2007 A1
20070159378 Powers et al. Jul 2007 A1
20070182589 Tran Aug 2007 A1
20070213887 Woodings Sep 2007 A1
20070222665 Koeneman Sep 2007 A1
20070250259 Dare Oct 2007 A1
20070252750 Jean et al. Nov 2007 A1
20070298786 Meyers et al. Dec 2007 A1
20080027596 Conner et al. Jan 2008 A1
20080042880 Ramaiah et al. Feb 2008 A1
20080042902 Brandwood et al. Feb 2008 A1
20080062011 Butler et al. Mar 2008 A1
20080063123 De Mey et al. Mar 2008 A1
20080068250 Brandao et al. Mar 2008 A1
20080088508 Smith Apr 2008 A1
20080106438 Clark et al. May 2008 A1
20080106457 Bartolini et al. May 2008 A1
20080109343 Robinson et al. May 2008 A1
20080117106 Sarno et al. May 2008 A1
20080120032 Brandao et al. May 2008 A1
20080129601 Thomas Jun 2008 A1
20080132270 Basir Jun 2008 A1
20080137524 Anderson et al. Jun 2008 A1
20080150784 Zhang et al. Jun 2008 A1
20080158040 Stayton et al. Jul 2008 A1
20080158059 Bull et al. Jul 2008 A1
20080174472 Stone et al. Jul 2008 A1
20080183344 Doyen et al. Jul 2008 A1
20080186224 Ichiyanagi et al. Aug 2008 A1
20080186231 Aljadeff et al. Aug 2008 A1
20080195309 Prinzel, III et al. Aug 2008 A1
20080231494 Galati Sep 2008 A1
20080252528 Shen et al. Oct 2008 A1
20080266166 Schuchman Oct 2008 A1
20080272227 Sharpe Nov 2008 A1
20080275642 Clark et al. Nov 2008 A1
20080294306 Huynh et al. Nov 2008 A1
20080297398 Kamimura Dec 2008 A1
20090005960 Roberts et al. Jan 2009 A1
20090009357 Heen et al. Jan 2009 A1
20090012660 Roberts et al. Jan 2009 A1
20090012661 Louis Jan 2009 A1
20090015471 Shen et al. Jan 2009 A1
20090027270 Fisher et al. Jan 2009 A1
20090051570 Clark et al. Feb 2009 A1
20090055038 Garrec et al. Feb 2009 A1
Foreign Referenced Citations (203)
Number Date Country
4306660 Aug 1974 DE
4204164 Aug 1993 DE
19751092 Jun 1999 DE
10149006 Apr 2003 DE
202004007747 Sep 2004 DE
202006005089 Jun 2006 DE
102006009121 Aug 2007 DE
0265902 May 1988 EP
0346461 Dec 1989 EP
0514826 Nov 1992 EP
0550073 Jul 1993 EP
0574009 Jun 1994 EP
0613110 Aug 1994 EP
0613111 Aug 1994 EP
0614092 Sep 1994 EP
0629877 Dec 1994 EP
0355336 Aug 1995 EP
0670566 Sep 1995 EP
0682332 Nov 1995 EP
0505827 Jun 1996 EP
0385600 Jul 1996 EP
0732596 Sep 1996 EP
0487940 Jan 1997 EP
0774148 May 1997 EP
0578316 Apr 1998 EP
0915349 May 1999 EP
1022580 Feb 2001 EP
1118871 Jul 2001 EP
0877997 Dec 2001 EP
0778470 May 2002 EP
1202233 May 2002 EP
0865004 Jul 2002 EP
1109032 Mar 2003 EP
1300689 Apr 2003 EP
1331620 Jul 2003 EP
1345044 Sep 2003 EP
1369704 Dec 2003 EP
1302920 Feb 2004 EP
1396832 Mar 2004 EP
1406228 Apr 2004 EP
1070968 May 2004 EP
1431946 Jun 2004 EP
1467575 Oct 2004 EP
0903589 Nov 2004 EP
1517281 Mar 2005 EP
1531340 May 2005 EP
0926510 Aug 2005 EP
1405286 Sep 2005 EP
1485730 Sep 2005 EP
1428195 Oct 2005 EP
1603098 Dec 2005 EP
1125415 Jan 2006 EP
1205732 Mar 2006 EP
1632787 Mar 2006 EP
1632892 Mar 2006 EP
0953261 Jun 2006 EP
1275975 Jun 2006 EP
1285232 Jun 2006 EP
1672384 Jun 2006 EP
0987562 Jul 2006 EP
1093564 Nov 2006 EP
1218694 Nov 2006 EP
1727094 Nov 2006 EP
1742170 Jan 2007 EP
1188137 Feb 2007 EP
1755356 Feb 2007 EP
1463002 Apr 2007 EP
1361555 May 2007 EP
1798572 Jun 2007 EP
1410364 Oct 2007 EP
1843161 Oct 2007 EP
1860456 Nov 2007 EP
1884462 Feb 2008 EP
1101385 Mar 2008 EP
1901090 Mar 2008 EP
0964268 Apr 2008 EP
1483755 Apr 2008 EP
1906204 Apr 2008 EP
1912077 Apr 2008 EP
1331490 Jun 2008 EP
1942351 Jul 2008 EP
1327159 Aug 2008 EP
1436641 Aug 2008 EP
1953565 Aug 2008 EP
1483902 Sep 2008 EP
1965219 Sep 2008 EP
1972962 Sep 2008 EP
1975884 Oct 2008 EP
1118011 Nov 2008 EP
1995708 Nov 2008 EP
2000778 Dec 2008 EP
2001004 Dec 2008 EP
2023155 Feb 2009 EP
2708349 Feb 1995 FR
2791778 Oct 2000 FR
2881841 Aug 2006 FR
9-288175 Nov 1994 JP
6-342061 Dec 1994 JP
WO9205456 Apr 1992 WO
WO9427161 Nov 1994 WO
WO9428437 Dec 1994 WO
WO9503598 Feb 1995 WO
WO9521388 Aug 1995 WO
WO9605562 Feb 1996 WO
WO9635961 Nov 1996 WO
WO9726552 Jul 1997 WO
WO9747173 Dec 1997 WO
WO9804965 Feb 1998 WO
WO9805977 Feb 1998 WO
WO9814926 Apr 1998 WO
WO9822834 May 1998 WO
WO9822923 May 1998 WO
WO9835311 Aug 1998 WO
WO9843107 Oct 1998 WO
WO9849654 Nov 1998 WO
WO9908251 Feb 1999 WO
WO9935630 Jul 1999 WO
WO9942855 Aug 1999 WO
WO9945519 Sep 1999 WO
WO9950985 Oct 1999 WO
WO9956144 Nov 1999 WO
WO0023816 Apr 2000 WO
WO0039775 Jul 2000 WO
WO0111389 Feb 2001 WO
WO0133302 May 2001 WO
WO0148652 Jul 2001 WO
WO0157550 Aug 2001 WO
WO0159601 Aug 2001 WO
WO0163239 Aug 2001 WO
WO0165276 Sep 2001 WO
WO0186319 Nov 2001 WO
WO0194969 Dec 2001 WO
WO0205245 Jan 2002 WO
WO0208784 Jan 2002 WO
WO0215151 Feb 2002 WO
WO0227275 Apr 2002 WO
WO02054103 Jul 2002 WO
WO02059838 Aug 2002 WO
WO02066288 Aug 2002 WO
WO02069300 Sep 2002 WO
WO02075667 Sep 2002 WO
WO02091312 Nov 2002 WO
WO02095709 Nov 2002 WO
WO02099769 Dec 2002 WO
WO03013010 Feb 2003 WO
WO03016937 Feb 2003 WO
WO03023439 Mar 2003 WO
WO03027934 Apr 2003 WO
WO03054830 Jul 2003 WO
WO03056495 Jul 2003 WO
WO03060855 Jul 2003 WO
WO03067281 Aug 2003 WO
WO03079136 Sep 2003 WO
WO03081560 Oct 2003 WO
WO03093775 Nov 2003 WO
WO03096282 Nov 2003 WO
WO03098576 Nov 2003 WO
WO03107299 Dec 2003 WO
WO2004042418 May 2004 WO
WO2004068162 Aug 2004 WO
WO2004109317 Dec 2004 WO
WO2004114252 Dec 2004 WO
WO2005038478 Apr 2005 WO
WO2005052887 Jun 2005 WO
WO2005081012 Sep 2005 WO
WO2005081630 Sep 2005 WO
WO2005114613 Dec 2005 WO
WO2005121701 Dec 2005 WO
WO2005017555 May 2006 WO
WO2006070207 Jul 2006 WO
WO2006079165 Aug 2006 WO
WO2006093682 Sep 2006 WO
WO2006108275 Oct 2006 WO
WO2006110973 Oct 2006 WO
WO2006135916 Dec 2006 WO
WO2006135923 Dec 2006 WO
WO2007001660 Jan 2007 WO
WO2007010116 Jan 2007 WO
WO2007012888 Feb 2007 WO
WO2007013069 Feb 2007 WO
WO2007048237 May 2007 WO
WO2007086899 Aug 2007 WO
WO2006088554 Sep 2007 WO
WO2007113469 Oct 2007 WO
WO2007115246 Oct 2007 WO
WO2007120588 Oct 2007 WO
WO2007124300 Nov 2007 WO
WO2008001117 Jan 2008 WO
WO2008005012 Jan 2008 WO
WO2008012377 Jan 2008 WO
WO2008018088 Feb 2008 WO
WO2008051292 May 2008 WO
WO2008053173 May 2008 WO
WO2008065328 Jun 2008 WO
WO2008065658 Jun 2008 WO
WO2008068679 Jun 2008 WO
WO2008093036 Aug 2008 WO
WO2008116580 Oct 2008 WO
WO2008126126 Oct 2008 WO
WO2008144784 Dec 2008 WO
WO2008145986 Dec 2008 WO
WO2009001294 Dec 2008 WO
WO2009004381 Jan 2009 WO
Related Publications (1)
Number Date Country
20100149019 A1 Jun 2010 US
Provisional Applications (2)
Number Date Country
60123170 Mar 1999 US
60440618 Jan 2003 US
Divisions (1)
Number Date Country
Parent 11541480 Sep 2006 US
Child 12471384 US
Continuations (1)
Number Date Country
Parent 09516215 Feb 2000 US
Child 10319725 US
Continuation in Parts (11)
Number Date Country
Parent 11492711 Jul 2006 US
Child 11541480 US
Parent 11429926 May 2006 US
Child 11492711 US
Parent 11343079 Jan 2006 US
Child 11429926 US
Parent 11342289 Jan 2006 US
Child 11343079 US
Parent 11209030 Aug 2005 US
Child 11342289 US
Parent 11257416 Oct 2005 US
Child 11209030 US
Parent 11203823 Aug 2005 US
Child 11257416 US
Parent 11145170 Jun 2005 US
Child 11203823 US
Parent 10743042 Dec 2003 US
Child 11145170 US
Parent 10638524 Aug 2003 US
Child 10743042 US
Parent 10319725 Dec 2002 US
Child 10638524 US